何亞凱,李樹君,楊學軍,顏 華,王 薇
(1.中國農業(yè)機械化科學研究院,北京 100083;2.現(xiàn)代農裝科技股份公司,北京 100083)
凸輪擺桿式栽植機構運動分析及性能試驗
何亞凱1,2,李樹君1※,楊學軍2,顏 華2,王 薇2
(1.中國農業(yè)機械化科學研究院,北京 100083;2.現(xiàn)代農裝科技股份公司,北京 100083)
該文針對缽苗栽植機構栽植直立度低的問題,設計一套凸輪擺桿式栽植機構。建立了栽植機構的運動學模型,得到機構栽植器栽植軌跡、栽植速度和栽植加速度方程。基于MATLAB/GUI開發(fā)了應用于栽植機構運動分析的圖形交互界面,分析了栽植機構曲柄CD長度與初始相位角、擺桿OA長度與初始相位角以及平行桿AG長度對栽植軌跡的影響,并通過正交試驗方法對移栽結構參數(shù)進行優(yōu)化。根據(jù)優(yōu)化所得參數(shù)加工出試驗樣機,以缽苗直立度為主要檢測指標對該試驗樣機進行田間試驗。試驗表明:該栽植機構能夠在0.556 m/s的工作速度和栽植頻率60.7株/min條件下較好地滿足缽苗農藝栽植要求,缽苗栽植直立度優(yōu)良率為95%且其變異系數(shù)為2.03%,倒伏率為1.67%,栽植株距誤差率為0.22%,無缺苗和漏栽現(xiàn)象。由此表明所設計栽植機構在高栽植效率的條件下,仍具有良好的栽植性能,所涉及的研究方法和試驗結果可為后期樣機的設計提供參考依據(jù)。
農業(yè)機械;運動學;優(yōu)化;凸輪擺桿;移栽機;栽植機構;運動學分析;試驗
何亞凱,李樹君,楊學軍,顏 華,王 薇.凸輪擺桿式栽植機構運動分析及性能試驗[J].農業(yè)工程學報,2016,32(6):34-41. doi:10.11975/j.issn.1002-6819.2016.06.005 http://www.tcsae.org
He Yakai,Li Shujun,Yang Xuejun,Yan Hua,Wang Wei.Kinematic analysis and performance experiment of cam-swing link planting mechanism[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(6): 34-41.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.005 http://www.tcsae.org
作物移栽作為一種現(xiàn)代栽培技術,能夠有效地增加作物產量。隨著缽苗育苗技術逐漸成熟,缽苗移栽也被廣泛應用于煙草和蔬菜等經濟作物種植。機械移栽的應用有效地減輕了勞動強度并提高缽苗栽植頻率,但現(xiàn)有移栽機栽植機構栽植的缽苗直立度仍然不高[1-5]。目前研究較為成熟的栽植機構主要有轉盤式栽植機構、行星齒輪式栽植機構和多連桿式栽植機構,此類栽植機構移栽機不僅能較好地應用于根系不發(fā)達、易破碎的缽苗移栽,而且還能較好地應用在膜上和非膜上的缽苗移栽[5-8]。行星齒輪式栽植機構與轉盤式栽植機構的工作原理相似,都可以簡化為平行四桿栽植機構,該栽植機構栽植鴨嘴的栽植軌跡為余擺線,即栽植軌跡下部存在較大的扣環(huán),造成鴨嘴在栽苗時撕膜較為嚴重,缽苗栽植直立度難以保證[5,8-11]。多連桿式栽植機構中較為成熟的機構為七連桿式栽植機構,該機構栽植軌跡下部有重合部分且有一定的長度,能夠有效保證作物栽植狀態(tài)且減少栽植器對地膜的破壞程度,但該栽植機構栽植器在栽植過程中處于擺動狀態(tài)影響缽苗的栽植效果,且該機構的栽植軌跡上部變化不平穩(wěn),對栽植機構栽植器接苗造成很大的影響[12-14]。為較好地滿足缽苗移栽性能要求,基于四桿機構和多連桿機構基礎上[15-23],設計一套凸輪擺桿式缽苗栽植機構,并對該栽植機構進行運動學分析和結構參數(shù)優(yōu)化,得出一組較優(yōu)的結構參數(shù),為以后缽苗栽植機構設計與研究提供理論支持和參考。
具有凸輪擺桿式缽苗栽植機構的樣機結構如圖1所示,樣機主要由驅動件、轉桿、移栽機架、座椅總成、苗盤架、變速箱、拉線、投苗支架、栽植機構、栽植器(鴨嘴)和鎮(zhèn)壓機構等部件組成。
圖1 凸輪擺桿式試驗樣機結構圖Fig.1 Structure diagram of cam-swing rod type prototype
拖拉機拖掛整機行走,同時帶動地輪轉動。地輪通過鏈傳動將動力傳到栽植機構,栽植機構按照機構的約束實現(xiàn)接苗、打穴、栽苗運動。當該栽植機構栽植器(鴨嘴)運動到土壤一定深度時,栽植器將會被凸輪拉線機構控制打開,栽植器內缽苗靠自身重力下落至穴口內。栽植器上升離開缽苗后由覆土鎮(zhèn)壓輪對缽苗周圍土壤進行擠壓,使得缽苗栽植穩(wěn)定,完成移栽過程。
2.1 機構模型建立
凸輪擺桿式缽苗栽植機構運動簡圖如圖2所示,該栽植機構為以一個凸輪和一個曲柄為原動件構成的凸輪擺桿雙平行四桿機構,機構中參數(shù)及含義見表1所示。凸輪N和曲柄CD均以順時針方向轉動,且角速度大小為定值ω,在凸輪擺桿NQOA和曲柄連桿CDE機構的共同作用下使固結于連桿FG上的栽植桿HJI來完成栽植機構的接苗、栽苗運動。
2.2 凸輪擺桿式栽植機構數(shù)學模型
以O點為坐標原點建立如圖2所示的笛卡爾平面直角坐標系,設水平方向為x軸且x軸正方向與機組前進方向相反,豎直方向為y軸。機構數(shù)學建模過程中所需相關參數(shù)及含義詳見表1中所示,其中φ2=-ωt,φ1=f(ωt),φ1和φ2之間關系式可根據(jù)凸輪擺桿知識得出,且φ1和φ2符號相反。
表1 相關符號及其說明Table 1 Symbol and description of parameters
圖2 栽植機構運動模型Fig.2 Motion model of transplanting mechanism
2.2.1 位移方程
通過使用解析法對該機構建立參數(shù)方程并求解,最終得出栽植機構栽植點的靜軌跡和動軌跡的坐標方程:
式中v是機組前進速度;μ是連桿GH長度與GF長度的比;θ1=180-θ2+θ3。
2.2.2 速度和加速度曲線方程
通過對上述位移方程(1)~(9)以時間t為參數(shù)變量,分別進行一次和兩次導數(shù)運算并整理可得到栽植器I點的速度和加速度方程:
根據(jù)所建立數(shù)學模型,基于MATLAB設計了凸輪擺桿式缽苗栽植機構的GUI圖形交互界面[24-25](如圖3所示)。該界面主要由參數(shù)輸入和仿真結果兩部分組成。在輸入部分對結構參數(shù)和運動參數(shù)進行調整,可得到栽植器栽植點不同的運動軌跡、速度和加速度軌跡曲線。以栽植機構L1、Φ1、L2、Φ2和L5為變量參數(shù),其他相關參數(shù)取值如表2所示,對栽植軌跡進行分析。
圖3 凸輪擺桿式栽植機構輔助分析界面Fig.3 Interface of aided analytical program of cam-swing link type transplanting mechanism
表2 參數(shù)取值表Table 2 Value of parameters
3.1 曲柄CD長度L2對栽植軌跡的影響
取L1=118 mm,L5=310 mm,Φ1=256°,Φ2=316°,研究L2對栽植軌跡曲線的影響,如圖4所示。
通過對圖4中的栽植軌跡分析得出,曲柄CD長度的變化對栽植軌跡總高度有較大的影響,對栽植株距、栽植深度和栽植穴口尺寸的影響較??;隨著曲柄CD尺寸的增大,栽植軌跡的總高度增高,其栽植機構的最佳栽植株距也會相應變大。
圖4 曲柄CD長度(L2)對栽植軌跡的影響規(guī)律Fig.4 Effects of crack L2on transplanting trajectory
3.2 曲柄CD初始相位角Φ2對栽植軌跡的影響
取L1=118 mm,L2=52 mm,L5=310 mm,Φ1=256°,研究Φ2對栽植軌跡曲線的影響,如圖5所示。
圖5 初始相位角(Φ2)對栽植軌跡的影響規(guī)律Fig.5 Effects of crack Φ2on transplanting trajectory
通過對圖5所示的栽植軌跡分析得出,曲柄CD的初始相位角對栽植軌跡高度、栽植深度和軌跡頂部形狀有較大的影響;隨著CD初始相位角的增大,栽植深度增加,軌跡頂部接苗處會變得光滑平穩(wěn),其栽植機構的最佳栽植株距相應變小。
3.3 擺桿OA長度L1對栽植軌跡的影響
取L2=52 mm,L5=310 mm,Φ1=256°,Φ2=316°,研究L1對栽植軌跡曲線的影響,如圖6所示。
圖6 擺桿OA長度(L1)尺寸對栽植軌跡的影響規(guī)律Fig.6 Effects of crack L1on transplanting trajectory
通過對圖6中的栽植軌跡曲線比較分析得出,擺桿OA長度變化對接苗處軌跡高度差影響較為明顯,對栽植深度影響較??;隨著OA長度的增加,接苗處高度差越明顯,即接苗狀態(tài)越不穩(wěn)定;隨著OA長度的增加,栽植機構最佳栽植株距會變大,栽植穴口尺寸會先變小再變大。
3.4 擺桿OA初始相位角Φ1對栽植軌跡的影響
取L1=118 mm,L2=52 mm,L5=310 mm,Φ2=316°,研究Φ1對栽植軌跡曲線的影響,如圖7所示。
圖7 擺桿OA初始相位角(Φ1)對栽植軌跡的影響規(guī)律Fig.7 Effects of crack Φ1on transplanting trajectory
通過對圖7中栽植軌跡曲線比較分析得出,OA初始相位角的變化對栽植深度、軌跡高度和栽植穴口有較大的影響;當OA初始相位角增大時,栽植深度增加,栽植軌跡高度下降;隨著OA初始相位角的增加,栽植穴口尺寸由大變小再變大,其栽植機構最佳栽植株距由大變小。
3.5 平行連桿AG長度L5對栽植軌跡的影響
取L5=118 mm,L2=52 mm,Φ1=256°,Φ2=316°,研究L5對栽植軌跡曲線的影響,如圖8所示。
通過對圖8所示栽植曲線比較分析得知,平行連桿AG長度尺寸L5的變化主要影響栽植深度和栽植軌跡高度,對接苗軌跡和栽植穴口尺寸變化的影響很?。浑S著AG桿尺寸的變長,栽植深度和栽植軌跡高度都增加。
圖8 平行連桿AG長度(L5)尺寸對栽植軌跡的影響規(guī)律Fig.8 Effects of crack L5on transplanting trajectory
基于仿生學原理,模擬人工移栽動作。以提高缽苗的栽植直立度為目標,則栽植機構軌跡(圖9所示)需滿足:
1)栽植軌跡下端有一段尖嘴形,且尖嘴形具有一定長度,確保缽苗栽植深度要求;
2)軌跡尖嘴形有一定的后傾角,以改善缽苗垂直移栽后鎮(zhèn)壓輪擠土鎮(zhèn)壓造成的缽苗前傾問題;
3)軌跡入土ab段和出土bc段應有較高的重合度,減小穴口的尺寸;
4)軌跡應有一定的高度,避免缽苗栽植后被栽植器掛帶;
5)軌跡接苗de段曲線沿前進方向應變化平穩(wěn),利于栽植器接苗穩(wěn)定。
圖9 正交試驗結果分析圖Fig.9 Analysis graph of orthogonal test result
采用正交試驗法,選取對栽植軌跡影響比較顯著的參數(shù)L1、L2、Φ1、Φ2作為研究因素,并根據(jù)栽植軌跡要求進行優(yōu)化,優(yōu)選出一組參數(shù)組合。其正交試驗因素水平編碼表如表3所示。在栽植深度同為60 mm的條件下進行仿真分析,試驗結果分析圖如圖9所示,入土角λ為栽植入土點K處的傾斜角,并規(guī)定其與水平位移正方向夾角為正。該試驗方案及結果見表4所示。
表3 因素水平編碼表Table 3 Levels of coded design factors
表4 正交試驗方案和結果表Table 4 Timing table of orthogonal experiment and result
由栽植軌跡要求可知,軌跡對栽深abc段的曲線重合度要求較高。以平均殘差為主要研究重點,其值越小越好,其次為后傾入土角,其值在軌跡要求范圍內越大越好。最大殘差為輔助分析,數(shù)值越小越好。平均殘差極差分析如表5所示。
表5 平均殘差極差分析表Table 5 Analysis of range on average residual
對表5進行分析可知,因素較優(yōu)組合為A1B2C3D2,然而在試驗方案表中沒有此組合,又由于因素影響主次為B>A>C>D,故首選A1和B2,符合要求的試驗號為第2號試驗,即在試驗中最優(yōu)組合為A1B2C2D2,此因素組合栽植段曲線重合度為最高,入土角優(yōu)于其他各組,軌跡高度滿足要求。
基于正交試驗方法對擺桿OA、曲柄CD的長度和擺桿OA與曲柄CD的初始相位角進行研究分析,得到優(yōu)化的參數(shù)組合:L1=118 mm,L2=52 mm,L3=150 mm,L4=125 mm,L5= 310 mm,L6=58 mm,L7=35 mm,L8=240 mm,L9=82 mm,L10= 104 mm,L11=48 mm,Lx0=21.85 mm,R=32 mm;Φ1=256°,Φ2= 316°,Φ3=237.5°,Φ4=354.3°,Φx=345°,ξ=56°,θ1=90.07°,θ2= 94.4°,θ3=4.47°。在栽植頻率為60株/min,栽植株距為550 mm時,該參數(shù)組合下栽植機構運動栽植軌跡如圖10所示。該栽植軌跡頂部de段變化比較平穩(wěn),有利于栽植器接苗。軌跡總高度約256 mm,超出栽植壟高約190 mm,高出缽苗約120 mm,能夠有效地避免栽植器栽苗后對缽苗的掛帶現(xiàn)象。栽苗abc段曲線最大殘差為0.465 mm,平均殘差為0.253 mm,說明在滿足栽植深度60 mm條件下栽苗穴口尺寸和栽植器尺寸接近,對已鋪地膜造成破壞很小。入土點處傾斜角為81.05°,能夠較好地改善擠土鎮(zhèn)壓輪的扶正效果。
圖10 較優(yōu)參數(shù)下的栽植機構栽植軌跡Fig.10 Planting trajectory of transplanting mechanism under optional parameters
為了檢驗參數(shù)優(yōu)化后的栽植機構移栽性能,根據(jù)以上優(yōu)化參數(shù)加工出具有凸輪擺桿式栽植機構的試驗樣機,并以缽苗直立度為主要檢測指標對該試驗樣機進行田間試驗。該試驗于2015年3月在河南省宜陽縣工業(yè)園區(qū)進行,試驗前對土地進行耕整并起壟覆膜,試驗動力為東方紅300拖拉機,試驗對象為自制缽苗,缽苗的基質高度在40~60 mm之間,基質上端直徑平均為30 mm,基質下端直徑平均為20 mm,缽苗總高度在140~150 mm之間。試驗按照相關檢測方法和標準[26-27]對樣機移栽性能進行測定,并根據(jù)農藝要求[26]規(guī)定知缽苗栽植直立狀態(tài)為:缽苗莖稈與地面夾角大于70°為優(yōu)良,夾角小于45度為不合格,其余為合格。試驗過程中拖拉機拖帶機組前進速度為0.556 m/s,移栽機栽植頻率為60.7株/min,試驗樣機田間試驗如圖11所示,缽苗栽植直立度和株距測試數(shù)據(jù)統(tǒng)計結果如表6和表7所示,由表中數(shù)據(jù)可知,缽苗栽植直立度優(yōu)良率為95%且其變異系數(shù)為2.03%,倒伏率為1.67%,株距誤差率[21]為0.22%,無缺苗和漏栽現(xiàn)象,能夠很好地滿足缽苗農藝栽植要求。
圖11 試驗樣機及田間試驗Fig.11 Prototype and field test
表6 直立度測量結果表Table 6 Measured results table of upright degree
表7 株距測量結果表Table 7 Measured results table of plant spacing
1)設計了一套凸輪擺桿式栽植機構,建立了該機構的運動數(shù)學模型,并基于MATLAB/GUI建立了該模型的一種輔助分析工具,得到栽植機構主要參數(shù)變化對栽植軌跡的影響規(guī)律。
2)在移栽株距為550 mm時,基于正交試驗方法優(yōu)選出一組最優(yōu)參數(shù)組合:L1=118 mm、L2=52 mm、L3=150 mm、L4=125 mm、L5=310 mm、L6=58 mm、L7=35 mm、L8=240 mm、L9=82 mm、L10=104mm、L11=48 mm、Lx0=21.85 mm、R=16 mm;Φ1=256°、Φ2=316°、Φ3=237.5°、Φ4=354.3°、Φx=345°、ξ= 56°、θ1=90.07°、θ2=94.4°、θ3=4.47°。
3)加工出該栽植機構部件并組裝成試驗樣機,以缽苗直立度為主要檢測指標對該樣機進行田間試驗,結果表明:該移栽機能夠在拖拉機0.556m/s,栽植頻率為60.7株/min的工作條件下滿足缽苗農藝栽植要求,且在該條件下,缽苗栽植直立度優(yōu)良率為95%且其變異系數(shù)為2.03%,倒伏率為1.67%,株距誤差率為0.22%,無缺苗和漏栽現(xiàn)象。
[1]張冕,姬江濤,杜新武.國內外移栽機研究現(xiàn)狀與展望[J].農業(yè)工程,2012,2(2):21-23.Zhang Mian,Ji Jiangtao,Du Xinwu.Status and prospect of transplanter at home and abroad[J].Agricultural Engineering, 2012,2(2):21-23.(in Chinese with English abstract)
[2]于向濤,胡良龍,胡志超,等.我國旱地移栽機械概況與發(fā)展趨勢[J].安徽農業(yè)科學,2012,40(1):614-616.Yu Xiangtao,Hu Lianglong,Hu Zhichao,et al.Development trend and general situation of nonirrigated farmland transplanting mechanizationinChina[J].JournalofAnhuiAgriculturalSciences, 2012,40(1):614-616.(in Chinese with English abstract)
[3] 賀智濤,鄭治華,劉劍君,等.膜上移栽機的發(fā)展現(xiàn)狀及存在的問題[J].農機化研究,2014,(9):252-255.He Zhitao,Zheng Zhihua,Liu Jianjun,et al.Development status of up-film transplanting mechanism and the problems[J].Journal of Agricultural Mechanization Research,2014,(9):252-255. (in Chinese with English abstract)
[4]周德義,孫裕晶,馬成林.移栽機凸輪擺桿式扶苗機構設計與分析[J].農業(yè)機械學報,2003,34(5):57-60.Zhou Deyi,Sun Yujing,Ma Chenglin.Design and analysis of a supporting-seedling mechanism with cam and combined rocker [J].Transactionsofthe Chinese Society ofAgricultural Machinery,2003,34(5):57-60.(inChinesewithEnglishabstract)
[5]王英.面向高立苗率要求的栽植機構參數(shù)優(yōu)化與試驗研究[D].杭州:浙江理工大學,2014.Wang Ying.Parameter Optimization and Experimental Study on High Seedling Erectness Rate Oriented Planting Mechanism[D]. Hang Zhou:Zhejiang Sci-Tech University,2014.(in Chinese with English abstract)
[6]張為政,王君玲,張祖立.懸杯式蔬菜移栽機的設計[J].農機化研究,2011,33(8):104-106.ZhangWeizhang,WangJunling,ZhangZuli.Design of cantilever cup vegetable transplanter[J].Journal of Agricultural Mechanization Research,2011,33(8):104-106.(in Chinese with English abstract)
[7]胡建平,張建兵,何俊藝,等.移栽機行星輪轉臂式栽植器運動分析與試驗[J].農業(yè)機械學報,2013,44(10):57-61.Hu Jianping,Zhang Jianbing,He Junyi,et al.Motion analysis and experiment for planting mechanism with planetary gears of transplanting machine[J].Transactions of the Chinese Society of Agricultural Machinery,2013,44(10):57-61.(in Chinese with English abstract)
[8]Ji Jiangtao,He Yakai,Du Xinwu,et al.Design of the up-film transplanter and kinematic analysis of its planting devices[C].// ICAMechS,2013 International Conference on.IEEE,2013: 312-316.
[9]崔巍,趙亮,宋建農,等.吊杯式移栽機栽植器運動學分析與試驗[J].農業(yè)機械學報,2012,43(Z1):35-38,34.Cui Wei,Zhao Liang,Song Jiannong,et al.Kinematic analysis and experiment of dibble-type planting devices[J].Transactions of the Chinese Society for Agricultural Machinery,2012,43(S1): 35-38,34.(in Chinese with English abstract)
[10]封俊,秦貴,宋衛(wèi)堂,等.移栽機的吊杯運動分析與設計準則[J].農業(yè)機械學報,2002,33(5):48-50.Feng Jun,Qin Gui,Song Weitang,et al.The kinematic analysis anddesigncriteriaofthedibble-typetransplanters[J].Transactions of the Chinese Society for Agricultural Machinery,2002,33(5): 48-50.(in Chinese with English abstract)
[11]陳建能,趙勻.高速插秧機橢圓齒輪行星系分插機構的參數(shù)優(yōu)化[J].農業(yè)機械學報,2003,34(5):46-49.Chen Jianneng,Zhao Yun.Parameters optimization of transplanting mechanism with planetary elliptic gears for highspeed transplanter[J].Transactions of the Chinese Society of Agricultural Machinery,2003,34(5):46-49.(in Chinese with English abstract)
[12]鄭治華.膜上高速移栽機構試驗研究[D].洛陽:河南科技大學,2014.Zheng Zhihua.Experimental Research of Up-film Transplanting Mechanism[D].Luoyang:Henan University of Science and Technology,2014.(in Chinese with English abstract)
[13]陳建能,王伯鴻,張翔,等.多桿式零速度缽苗移栽機植苗機構運動學模型與參數(shù)分析[J].農業(yè)工程學報,2011,27(9):7-12.Chen Jianneng,Wang Bohong,Zhang Xiang,et al.Kinematics modeling and characteristic analysis of multi-linkage transplanting mechanism of pot seeding transplanter with zero speed[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2011,27(9):7-12.(in Chinese with English abstract)
[14]Ji Jiangtao,Jin Xin,Du Xinwu,et al.Motion trajectory analysis and performance test of up-film punch transplanting mechanism [J].International Agricultural Engineering Journal,2015,24(2): 30-38.
[15]Cui Wei,Liu Shuangxi,Gao Lijuan,et al.Development of 2ZFS-1A multifunctional tobacco transplanting machine[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28 (S2):36-41.
[16]武科,畢新勝,陳永成.吊籃式移栽機栽植器的研究[J].農機化研究,2010,32(6):73-75,79.Wu Ke,Bi Xinsheng,Chen Yongcheng.The research of the dibble-type transplanter[J].Journal of Agricultural Mechanization Research,2010,32(6):73-75,79.(in Chinese with English abstract)
[17]王文明,竇衛(wèi)國,王春光,等.2ZT-2型甜菜移栽機移植系統(tǒng)的參數(shù)分析[J].農業(yè)機械學報,2009,40(1):69-73.Wang Wenming,Dou Weiguo,Wang Chunguang,et al.Parameter analysis of the planting process of 2ZT-2 beet transplanter[J]. Transactions of the Chinese Society of Agricultural Machinery, 2009,40(1):69-73.(in Chinese with English abstract).
[18]陳建能,黃前澤,王英,等.缽苗移栽機橢圓齒輪行星系植苗機構運動學建模與分析[J].農業(yè)工程學報,2012,28(5):6-12.Chen Jianneng,Huang Qianze,Wang Ying,et al.Kinematics modeling and analysis of transplanting mechanism with planetary elliptic gears for pot seedling transplanter[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2012,28(5):6-12.(in Chinese with English abstract)
[19]肖名濤,孫松林,羅海峰,等.雙平行多桿栽植機構運動學分析與試驗[J].農業(yè)工程學報,2014,30(17):25-33.Xiao Mingtao,Sun Songlin,Luo Haifeng,et al.Kinematic analysis and experiment of dual parallelogram multi-pole planting mechanism[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30 (17):25-33.(in Chinese with English abstract)
[20]金鑫,李樹君,楊學軍,等.膜上移栽缽苗栽植機構運動分析與參數(shù)優(yōu)化[J].農業(yè)機械學報,2012,43(Z1):29-34.Jin Xin,Li Shujun,Yang Xuejun,et al.Motion analysis and parameter optimization for pot seedling planting mechanism based on up-film transplanting[J].Transactions of the Chinese Society for Agricultural Machinery,2012,43(S1):29-34.(in Chinese with English abstract)
[21]付鵬洋,胡建平,劉發(fā),等.齒輪連桿凸輪組合式栽植機構仿真與試驗[J].農業(yè)機械學報,2014,45(S1):52-56.Fu Pengyang,Hu Jianping,Liu Fa,et al.Simulation analysisand experiment for gear-linkage-cam combination planting mechanism[J].Transactions of the Chinese Society of Agricultural Machinery,2014,45(S1):52-56.(in Chinese with English abstract)
[22]陳建能,王伯鴻,任根勇,等.蔬菜移栽機放苗機構運動學模型建立與參數(shù)分析[J].農業(yè)機械學報,2010,41(12):48-53.Chen Jianneng,Wang Bohong,Ren Genyong,et al.Kinematics modeling and parameters analysis of seven-linkage vegetable seedling transplanting mechanism[J].Transactions of the Chinese Society of Agricultural Machinery,2010,41(12):48-53.(in Chinese with English abstract).
[23]張祖立,王君玲,張為政,等.懸杯式蔬菜移栽機的運動分析與性能試驗[J].農業(yè)工程學報,2011,27(11):21-25.Zhang Zuli,Wang Junling,Zhang Weizheng,et al.Kinematic analysis and performance experiment of cantilever cup vegetable transplanter[J].TransactionsoftheChineseSocietyofAgricultural Engineering(Transactions of the CSAE),2011,27(11):21-25. (in Chinese with English abstract)
[24]劉浩,韓晶.MATLAB R2012a完全自學一本通[M].北京:電子工業(yè)出版社,2013.
[25]陳杰.MATLAB寶典[M].北京:電子工業(yè)出版社,2013.
[26]封俊,顧世康,曾愛軍,等.導苗管式栽植機的試驗研究(Ⅱ)栽植機的性能評價指標與檢測方法[J].農業(yè)工程學報,1998,14(2):73-77.Feng Jun,Gu Shikang,Zeng Aijun,et al.Study on transplanter with chute and seedling aid springs(PartⅡ)Judging-targets system fortransplanters[J].TransactionsoftheChineseSocietyofAgricultural Engineering(Transactions of the CSAE),1998,14(2):73-77.(in Chinese with English abstract)
[27]JB/T 10291-2013,旱地栽植機械[S].
Kinematic analysis and performance experiment of cam-swing link planting mechanism
He Yakai1,2,Li Shujun1※,Yang Xuejun2,Yan Hua2,Wang Wei2
(1.Chinese Academy of Agricultural Mechanization Sciences,Beijing 100083,China;2.Modern Agricultural Equipment Co.,Ltd.,Beijing 100083,China)
The application of mechanical transplanting on crops can effectively increase the product of crops and reduce the labor intense as modern cultivation techniques.But the popularization and application are limited by the problem of lower upright degree to some certain extent.A new type cam-swing link type transplanting machinewas designed to solve the problem of lower upright degree in current pot seedling planting machine.In addition,the receiving seedling stability of planting apparatus can be guaranteed well,owing to double parallel four-bar mechanism of this planting machine.In this paper,the kinematic model of the transplanting machine was established,including the equations of planting trajectory,planting velocity and planting acceleration for the planting device.For the purpose of high efficiency,interactive GUI design tool had been explored based on the MATLAB/GUI according to these mathematic equations.The influences on the transplanting trajectory of main parameters were analyzed based on MATLAB tool,including the length L1and original phase angle Φ1of crank CD,the length L2and original phase angle Φ2of swing AB,and the length L5of link AG.The system parameters which had great effects on the planting trajectory were L1,L2,Φ1and Φ2.These parameters were analyzed and optimized through the method of orthogonal experiment.The experimental scheme was designed according to orthogonal table off our factors and three levels.By analyzing the range table of residual,the parameter couldbe ranged as L2,L1,Φ1and Φ2from big to small,considering the degree of significant on upright degree of seedlings.The optimal combination could be selected that L1is 118 mm,L2is 52 mm,Φ1is 256°,and Φ2is 316°.Under the condition of this optimal combination,the motion model of transplanting machine was reestablished to generate a new optimized planting trajectory. The top of this trajectory was smooth to benefit the receiving seedling stability of planting device.As the total height of this trajectory was about 256 mm with 190 mm higher the ridge side,the planting device couldavoid touching down seedlings planted effectively.When the planting depth reached 60 mm,the maximum residual of curve at planting seedlings parts was 0.465 mm,the mean residual was 0.253 mm,and penetration angel was 81.05°.The simulation results indicated that this optimized planting trajectory can improved the anteversion problem of seedlings that caused by compaction wheel and ensured the seedling planted higher upright degree.In order to verify the reasonability and accuracy of the theoretical model,the prototype was processed with the optimized parameters.Based on the prototype,field tests were carried out according to relevant standards in Yiyang county industrial park of China in March 2015.No crops were planted and the ridge film was mulched in the test plot before the testing,for simply obtaining test results without effects of the other crops. During the course of experiment,30 horse-power tractor was selected as the only power.The total height of seedlings used was no more than 150 mm,and the height of seedlings substrate less than 60 mm.The plant vertical degree was considered as the main optimization indicator which influenced by the main parameter smentioned above.The data results showed that the mechanism proposed meet the requirements of pot seedling agricultural plant at the speed of 0.556 meter per second, and planting frequency was 60.7 plant percent minute.The qualified rate of upright degree with the variationco efficient of 2.03%was 95%,lodging rate was no more than 1.67%,and plant spacing error rate was only 0.22%with no lacking of seedlings.The results indicated that this machine had the good planting performances of high upright degree and low spacing error rate under the condition of high efficiency of planting.What this paper studied will provide theoretical reference for the subsequent transplanter research and development.
agricultural machinery;kinematics;optimization;cam-swing link;transplanter;transplanting mechanism; kinematic analysis;test
10.11975/j.issn.1002-6819.2016.06.005
S223.94
A
1002-6819(2016)-06-0034-08
2015-12-02
2016-01-29
國家高技術研究發(fā)展計劃(863計劃)資助項目(2012AA10A 501);國家科技基礎性工作專項(創(chuàng)新方法工作)項目(2013IM030700);“十二五”國家科技支撐計劃資助項目(2013BAD08B03)
何亞凱(1989-),博士生,主要從事智能化農業(yè)裝備技術研究。北京 中國農業(yè)機械化科學研究院,100083。
※通信作者:李樹君(1962-),研究員,博士生導師,主要從事高新技術裝備在農副產品和食品加工中的應用研究。北京 中國農業(yè)機械化科學研究院,100083。Email:lisj@caams.org.cn