齊興源,周志艷,2※,楊 程,羅錫文,2,谷秀艷,臧 禹,劉武蘭
(1.華南農(nóng)業(yè)大學(xué)工程學(xué)院/廣東省農(nóng)業(yè)航空應(yīng)用工程技術(shù)研究中心,廣州 510642;2.南方糧油作物協(xié)同創(chuàng)新中心,長沙 410128)
稻田氣力式變量施肥機(jī)關(guān)鍵部件的設(shè)計(jì)與試驗(yàn)
齊興源1,周志艷1,2※,楊 程1,羅錫文1,2,谷秀艷1,臧 禹1,劉武蘭1
(1.華南農(nóng)業(yè)大學(xué)工程學(xué)院/廣東省農(nóng)業(yè)航空應(yīng)用工程技術(shù)研究中心,廣州 510642;2.南方糧油作物協(xié)同創(chuàng)新中心,長沙 410128)
目前在水稻的機(jī)械追肥作業(yè)中以離心圓盤式撒肥機(jī)為主,該方式在作業(yè)幅寬方向上的撒施均勻性不穩(wěn)定,且難以實(shí)現(xiàn)作業(yè)幅寬方向上的變量施肥。為了滿足水稻變量追肥作業(yè)的需要,達(dá)到化肥減施增收的目的,設(shè)計(jì)了一種外槽輪式排肥、以空氣流為肥料輸送和撒播動(dòng)力的稻田氣力式變量施肥機(jī)。文章對(duì)該機(jī)器的關(guān)鍵部件進(jìn)行了仿真和測試試驗(yàn),研究了排肥輪轉(zhuǎn)速與排肥量之間的相關(guān)關(guān)系,并對(duì)排肥管道長度對(duì)排肥出口風(fēng)速與排肥滯后時(shí)間的影響、排肥管出口相對(duì)高差對(duì)排肥滯后時(shí)間的影響進(jìn)行了試驗(yàn)。試驗(yàn)結(jié)果表明:排肥輪轉(zhuǎn)速與排肥量之間存在極顯著的線性相關(guān)關(guān)系,相關(guān)系數(shù)R2=0.998,調(diào)節(jié)排肥輪轉(zhuǎn)速可以較精確的調(diào)節(jié)施肥量的大小,在變量作業(yè)時(shí),結(jié)合施肥量的需求及施肥機(jī)具的前進(jìn)速度,對(duì)排肥輪的轉(zhuǎn)速進(jìn)行實(shí)時(shí)調(diào)節(jié),從而達(dá)到變量施肥的目的。當(dāng)機(jī)具前進(jìn)速度為1 m/s,排肥輪轉(zhuǎn)速在10~40 r/min之間變化時(shí),單憑轉(zhuǎn)速調(diào)節(jié)可實(shí)現(xiàn)每公頃施肥量在40~200 kg范圍內(nèi)的變量調(diào)節(jié),此外,各排肥口的排肥量誤差小于±5%,基本上達(dá)到了施肥均勻性的要求。文章還研究了排肥管道長度及安裝高差對(duì)排肥滯后時(shí)間的影響,結(jié)果表明:排肥管道長度對(duì)排肥出口風(fēng)速有顯著影響,排肥管長度和出口安裝的高差對(duì)排肥滯后性亦有顯著的影響,因此,為了盡可能減小因排肥滯后對(duì)排肥均勻性的影響,應(yīng)避免排肥管過長,并盡量使排肥管出口不高于入口。該研究為進(jìn)一步的樣機(jī)制造和優(yōu)化提供了依據(jù)。
作物;農(nóng)業(yè)機(jī)械;設(shè)計(jì);稻田;氣力式;變量施肥;外槽輪排肥;肥料輸送
齊興源,周志艷,楊 程,羅錫文,谷秀艷,臧 禹,劉武蘭.稻田氣力式變量施肥機(jī)關(guān)鍵部件的設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):20-26.doi:10.11975/j.issn.1002-6819.2016.06.003 http://www.tcsae.org
Qi Xingyuan,Zhou Zhiyan,Yang Cheng,Luo Xiwen,Gu Xiuyan,Zang Yu,Liu Wulan.Design and experiment of key parts of pneumatic variable-rate fertilizer applicator for rice production[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2016,32(6):20-26.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.003 http://www.tcsae.org
水稻是中國南方的主要糧食作物,在水稻生長的不同階段,都需要依據(jù)作物情況進(jìn)行追肥作業(yè),在整個(gè)生長季中,水稻通常需要追肥2次以上,分別為分蘗期[1]與幼穗形成期[2]為佳。而水稻在分蘗期以后,水稻逐漸封行,植株較高,進(jìn)行入土施肥、側(cè)入深施肥等入土性施肥作業(yè)比較困難,通常施行地表追肥作業(yè)[3]。傳統(tǒng)追肥作業(yè)方式以人工撒施為主,行走不方便,播撒不均勻,并且勞動(dòng)強(qiáng)度大。目前機(jī)械追肥主要以離心圓盤式撒肥機(jī)為主[4],以高速旋轉(zhuǎn)的圓盤為動(dòng)力,肥料在離心力作用下被撒出[5]。如律凱等設(shè)計(jì)的拋撒式水稻苗期施肥機(jī)[6],可用于常用的尿素、氮素、復(fù)合肥和專用肥等肥料撒施,但由于肥料自身物料特性,容易受田間環(huán)境影響(尤其是風(fēng)),追肥作業(yè)進(jìn)行施肥量的精準(zhǔn)控制比較困難,同時(shí)在作業(yè)幅寬方向上的均勻性得不到保證[7]。高靜華設(shè)計(jì)了擺管式撒肥機(jī)[8],李鵬[9]和張李嫻[10]對(duì)其進(jìn)行了仿真與撒肥機(jī)理的研究,模擬人手臂擺動(dòng)進(jìn)行撒施,有效的結(jié)合了機(jī)具前進(jìn)速度進(jìn)行撒施速度控制,均勻性比圓盤式撒肥機(jī)有所提升,但作業(yè)幅寬不太理想[11]。按需施肥是精準(zhǔn)農(nóng)業(yè)的重要內(nèi)容[12-13],國外已有一些比較成熟的變量施肥作業(yè)機(jī)械[14-15]。約翰迪爾開發(fā)了一款氣吹式種肥車,主要用于種肥撒施[16]。國內(nèi)對(duì)稻田氣力式變量施肥機(jī)械的研究較少[17]。謝宇峰等人研制了高速寬幅氣送式集排精量播種施肥機(jī),利用了氣流進(jìn)行輸肥與分肥作業(yè),但該機(jī)型需配套300馬力以上的拖拉機(jī),在稻田尤其是南方小面積的水田中使用受到較大限制[18]。
上述地表追肥機(jī)械的排肥器主要有外槽輪式[19]、離心圓盤式[20-22]、鏈條式[23]、螺旋式、振動(dòng)式以及星輪式等[24-25],其中外槽輪式應(yīng)用最廣泛[26]。該排肥器結(jié)構(gòu)簡單、施肥均勻較好[27],但目前的施肥機(jī)大都采用所有排肥輪聯(lián)動(dòng)的方式,沒有實(shí)現(xiàn)單個(gè)排肥輪的排肥量獨(dú)立控制[28-30],以及作業(yè)幅寬方向上的遠(yuǎn)距離輸送。此外,肥料輸出后,其輸送方式多以重力自流為主,肥料進(jìn)入地表的位姿較難控制[4,31]。
為了滿足水稻變量追肥作業(yè)的需要,設(shè)計(jì)了一種外槽輪式排肥、以空氣流為肥料輸送和撒播動(dòng)力的稻田氣力式變量施肥機(jī),并對(duì)關(guān)鍵部件進(jìn)行了仿真和測試試驗(yàn),以期為進(jìn)一步的樣機(jī)制造和優(yōu)化提供依據(jù)。
氣力式變量施肥機(jī)主要由肥箱、外槽輪排肥器、氣流肥料混合接頭、氣流分流箱、排肥管等部件組成,其結(jié)構(gòu)如圖1所示。
圖1 氣力式施肥原理示意圖Fig.1 Principle diagram of pneumatic variable-rate fertilizer applicator
空氣流由風(fēng)機(jī)提供,如圖1中箭頭所示方向,從氣流入口進(jìn)入分流箱,由C處將氣流分流后經(jīng)過小孔流向D。打開肥料擋板開關(guān)后,肥料從肥箱進(jìn)入A腔,由順時(shí)針旋轉(zhuǎn)的排肥輪將肥料排出,通過通道B落入氣流肥料混合接頭,在D處高速的氣流作用下,肥料和氣流的二相混合物經(jīng)過排肥管排出,完成施肥過程。
為了防止肥料從排肥輪側(cè)邊流出,在每個(gè)排肥輪兩側(cè)各加一個(gè)擋板,施肥機(jī)整體由多個(gè)排肥輪組成,排肥管可以水平延伸至4 m外,在保證排肥均勻性的前提下,實(shí)現(xiàn)寬幅作業(yè),提升作業(yè)效率。
為了方便測試施肥機(jī)的性能,本文所用的試驗(yàn)裝置共設(shè)計(jì)了4個(gè)排肥口,以便于進(jìn)行對(duì)比試驗(yàn)。
2.1 交錯(cuò)直齒式排肥輪的設(shè)計(jì)
傳統(tǒng)的外槽輪式排肥器主要是采用直通齒型[32-33],通過改變工作齒寬的大小來改變排肥量[34]。本文設(shè)計(jì)采用改變排肥輪轉(zhuǎn)速的方式來改變排肥量,要求排肥輪在進(jìn)行排肥作業(yè)時(shí)具有良好的連續(xù)性,其結(jié)構(gòu)如圖2所示。
該槽輪采用固定工作寬度,在傳統(tǒng)外槽輪的基礎(chǔ)上,設(shè)計(jì)兩排排肥齒,并呈交替排列,工作時(shí),交替排列的排肥齒能夠有效的減小排肥時(shí)的波動(dòng)性[35],從而使排肥量更加均勻。傳統(tǒng)直齒外槽輪排肥器排肥時(shí)的波動(dòng)呈現(xiàn)波峰波谷周期性變化[36],改為交錯(cuò)直齒外槽輪后,左右兩側(cè)的排肥齒單獨(dú)呈現(xiàn)的波形圖相差半個(gè)周期,疊加后極大值與極小值的差值明顯減小。
圖2 交錯(cuò)直齒式排肥輪Fig.2 Staggered straight-tooth fertilization wheel
2.2 氣流肥料混合接頭的設(shè)計(jì)
氣力式施肥機(jī)的肥料傳送過程依靠氣流高速流動(dòng)產(chǎn)生動(dòng)力,將肥料水平輸送一段距離后排出,同時(shí),肥料在具有一定速度的情況下排出排肥管,利用出口處的擋肥板可以將肥料按一定的形態(tài)散落。肥料在與氣流混合的過程中,首先在氣流作用下加速運(yùn)動(dòng),達(dá)到平衡時(shí),隨氣流流動(dòng)排出,肥料和氣流混合的節(jié)點(diǎn)設(shè)計(jì)關(guān)系到肥料是否能夠順利排出以及氣流是否損失。其結(jié)構(gòu)如圖3所示。
圖3 氣流肥料混合接頭Fig.3 Mixed joint of air and fertilizer
氣流從入口經(jīng)過小孔進(jìn)入混合接頭,在固定流量下,流體的流速與管道橫截面積成反比,即:
式中v為氣流流動(dòng)速度,m/s;Q為氣體總流量,m3;S為氣體通過管道的橫截面積,m2。
將氣流入口處設(shè)計(jì)為錐形小孔,減小壁面對(duì)氣流的阻力。首先,氣流通過小孔后,由公式(1)可知,氣流獲得較大的初速度,從落肥口落入的肥料能在更短的時(shí)間內(nèi)獲得較大速度,如圖4a相對(duì)圖4b混合腔內(nèi)氣流速度明顯提升,有效的防止了混合接頭的堵塞;其次,氣流在通過小孔流入較寬敞的混合腔時(shí),由于氣流速度大,巨大的速度差和壓力差,使得落肥口的氣流被吸入混合腔,肥料從落肥口進(jìn)入混合腔更加容易,而圖4b所示直通管道還會(huì)有氣流從落肥口反向流出,不利于肥料落入混合腔;此外,由于每個(gè)氣流入口都是分流箱的氣流出口,對(duì)于整個(gè)分流箱來說,氣流入口與氣流出口相差較大,并且入口氣流源源不斷的供應(yīng),在分流箱內(nèi)部就形成了一個(gè)氣壓略高于外界的相對(duì)高壓場,讓分流箱內(nèi)部的流體在各個(gè)出口的流量達(dá)到平衡,保證了每個(gè)出口氣流場的穩(wěn)定性。
圖4 小孔對(duì)氣流肥料混合接頭氣流場的影響對(duì)比Fig.4 Influence of small hole to airflow field in mixed joint
2.3 氣流分流箱的設(shè)計(jì)
分流箱的目的是能夠?qū)饬鞅M可能均勻的在各個(gè)出口排出,如圖1中所示,氣流分流箱的氣流入口處厚度尺寸大于各分流口的尺寸,而如圖5中所示,在寬度上,入口處寬度又遠(yuǎn)小于分流口寬度,寬度和厚度協(xié)同作用下,氣流能夠初步進(jìn)行分流。其中,圖5中所示氣流分流箱的入口內(nèi)徑為55 mm,圖5a中的小孔即為氣流肥料混合接頭小孔結(jié)構(gòu),小孔出口內(nèi)徑為12 mm,圖5b中出口即為無小孔結(jié)構(gòu)氣流混合接頭,出口內(nèi)徑為21 mm。
如圖5a所示,氣流肥料混合接頭采用小孔結(jié)構(gòu)時(shí),分流箱腔體中的平均壓力達(dá)到110 400 Pa,最大壓力與最小壓力差為3 000 Pa。如圖5b所示,氣流肥料混合接頭未采用小孔結(jié)構(gòu)時(shí),分流腔中的平均壓力為101 550 Pa,最大壓力與最小壓力差小于100 Pa。壓力差越大,越能夠使各出口出風(fēng)量趨于平均[37]。從流動(dòng)跡線來看,有小孔時(shí)分流腔腔體內(nèi)流跡線更規(guī)整,形成的回流場更少,氣流均勻性相對(duì)較好,對(duì)氣體流動(dòng)的阻礙更小。
圖5 混合接頭小孔對(duì)氣流分流箱流動(dòng)跡及內(nèi)部氣壓影響圖Fig.5 Influence of small hole in mixed joint to pressure of air divider box
3.1 測試方法
試驗(yàn)所用肥料為復(fù)合肥(氮磷鉀含量質(zhì)量比值為15∶6∶15,總養(yǎng)分≥36%,深圳市芭田生態(tài)工程股份有限公司),容質(zhì)量為10 023 N/m3,粒徑2~4 mm大于90%。通過測試試驗(yàn)分別測量無肥料時(shí)不同長度排肥管道出口風(fēng)速、排肥輪不同轉(zhuǎn)速下對(duì)應(yīng)的排肥量、不同管長對(duì)應(yīng)的排肥滯后時(shí)間以及不同高度對(duì)應(yīng)的排肥滯后時(shí)間。參照標(biāo)準(zhǔn)《NJ/ T 2013-0608氣力式肥料變量播撒系統(tǒng)技術(shù)及評(píng)價(jià)方法》進(jìn)行試驗(yàn)[38]。
試驗(yàn)中均采用750 W漩渦風(fēng)機(jī)正壓輸出作為空氣動(dòng)力源,恒流輸出量110 m3/h,氣流分流箱中壓為110 kPa,風(fēng)機(jī)出口內(nèi)徑55 mm。
3.2 結(jié)果及分析
3.2.1 不同長度排肥管道出口風(fēng)速
為了保證肥料撒施的均勻性,需要把管道的排肥口均勻分布在兩側(cè)的桁架上,不同管道出口到施肥機(jī)的氣流肥料混合接頭距離不等,因此每條排肥管的長度也不相同。
首先對(duì)未安裝排肥管時(shí)氣流肥料混合接頭對(duì)應(yīng)的4個(gè)出口的風(fēng)速(用v1表示)進(jìn)行測試,隨后對(duì)安裝排肥管之后的出口風(fēng)速(用v2表示)進(jìn)行測試,試驗(yàn)結(jié)果見表1。
綜上所述,全面有效的護(hù)理干預(yù),能夠提高支氣管哮喘的臨床治療效果,緩解無力、呼吸困難等癥狀,改善睡眠,提高護(hù)理滿意度,提高患者的生活質(zhì)量,具有臨床價(jià)值。
表1 不同長度排肥管道出口風(fēng)速Table 1 Air velocity of pipeline outlet in different length
由表1可以看出,由于氣流肥料混合接頭中小孔的出口的設(shè)計(jì),使得在出口處的風(fēng)速達(dá)到較大值,并且風(fēng)速在氣流肥料混合接頭處各個(gè)出口的分布比較均勻。
對(duì)安裝排肥管之后的風(fēng)速進(jìn)行線性回歸分析,以風(fēng)速v2為因變量,以管長l為自變量,分析結(jié)果的顯著性值sig.=0.006,R2=0.989。因此,管長與風(fēng)速之間存在線性關(guān)系,關(guān)系式為:
式中v2為管道出口風(fēng)速,m/s,l為管道長度,m。
經(jīng)分析,在未安裝排肥管時(shí),各出口風(fēng)速的均值為20.08 m/s,方差值為0.043,各出口風(fēng)速均勻性良好。安裝排肥管之后,各出口風(fēng)速與管長度呈現(xiàn)出線性變化關(guān)系,其顯著性值小于0.01,說明管長對(duì)出口風(fēng)速產(chǎn)生極顯著影響。
3.2.2 排肥輪轉(zhuǎn)速與排肥量的關(guān)系
測定排肥輪轉(zhuǎn)速與排肥量之間的對(duì)應(yīng)關(guān)系,是實(shí)現(xiàn)施肥變量控制的基礎(chǔ)數(shù)據(jù)。設(shè)計(jì)了4種不同的排肥輪轉(zhuǎn)速,同時(shí)對(duì)每個(gè)排肥口每分鐘對(duì)應(yīng)的排肥量進(jìn)行了測量,每次測量的結(jié)果取3次重復(fù)的平均值,測量結(jié)果如表2所示。
表2 不同排肥輪轉(zhuǎn)速對(duì)排肥量的影響Table 2 Fertilizer sowing amount in different rotational speed
表3是每個(gè)轉(zhuǎn)速下各排肥口的排肥量的t檢驗(yàn)結(jié)果,從表中可看出,所有檢驗(yàn)值均在差分的95%置信區(qū)間內(nèi),依據(jù)標(biāo)準(zhǔn)《NJ/T 2013-0608氣力式肥料變量播撒系統(tǒng)技術(shù)及評(píng)價(jià)方法》,說明各排肥口排肥量的均勻性滿足設(shè)計(jì)要求。
以排肥輪轉(zhuǎn)速作為自變量,排肥量作為因變量,進(jìn)行線性回歸分析,對(duì)相關(guān)參數(shù)進(jìn)行擬合,分析結(jié)果的顯著性值sig.<0.001,R2=0.998。因此,排肥輪轉(zhuǎn)速與排肥量的線性擬合結(jié)果為極顯著,擬合方程為:式中Q為單個(gè)排肥輪每分鐘的排肥量,g;n為排肥輪每分鐘轉(zhuǎn)速,r/min。
表3 各排肥口排肥量t檢驗(yàn)結(jié)果Table 3 T-test result of each outlet’s fertilizer sowing amount
式中M為每公頃施肥總量,g;T為指定作業(yè)條件下的作業(yè)時(shí)間,min。
在該條件下,本試驗(yàn)裝置共4個(gè)排肥口,若取b=1 m,v=1 m/s,則每公頃施肥量可通過排肥輪轉(zhuǎn)速實(shí)現(xiàn)40~200 kg范圍內(nèi)的變量調(diào)節(jié),結(jié)合不同機(jī)具前進(jìn)速度還可實(shí)現(xiàn)更大范圍的施肥量調(diào)節(jié)。
3.2.3 排肥管長度對(duì)排肥滯后時(shí)間的影響
肥料經(jīng)過輸肥管水平輸送一定距離后才能排出,不同長度的輸肥管道對(duì)于肥料排出后的滯后時(shí)間具有一定影響。測試時(shí),保持排肥管出口與入口在同一水平面,當(dāng)肥料從排肥槽落下進(jìn)入氣流肥料混合接頭時(shí),開始計(jì)時(shí),肥料從排肥管出口排出后碰到出口處的擋板時(shí)結(jié)束計(jì)時(shí),測試結(jié)果如表4所示。
表4 排肥管長度對(duì)排肥滯后時(shí)間的影響Table 4 Influence of pipeline length to fertilize delay time
排肥管道越長,肥料在管道中滯留的時(shí)間就越長,排肥時(shí)間的延遲,對(duì)于施肥的均勻性有一定影響。為便于后續(xù)進(jìn)行變量施肥控制時(shí)進(jìn)行修正,對(duì)排肥管長度與排肥滯后時(shí)間進(jìn)行線性回歸分析,分析結(jié)果的顯著性值sig.= 0.005,R2=0.990。因此排肥管長度與排肥滯后時(shí)間線性擬合結(jié)果為極其顯著,擬合方程為:
式中Δt1為排肥滯后時(shí)間,s;l為排肥管長度,m。
3.2.4 排肥管出口高差對(duì)排肥滯后時(shí)間的影響
前文已經(jīng)驗(yàn)證當(dāng)排肥管出口與入口在同一水平面時(shí),排肥管長度與排肥滯后時(shí)間之間呈顯著線性關(guān)系。由于排肥管安裝過程中,難免出現(xiàn)出口與入口出現(xiàn)高差的現(xiàn)象,需要測試排肥管出口高差(即排肥管出口與入口之間的高度差)對(duì)排肥滯后時(shí)間是否有影響。為了保證因素單一,也為了便于計(jì)時(shí)更準(zhǔn)確,將排肥管長度固定為4 m進(jìn)行測試試驗(yàn),排肥管出口高差設(shè)置了5個(gè)梯度,測試結(jié)果如表5所示。
表5 排肥管出口高差對(duì)排肥滯后時(shí)間影響Table 5 Influence of outlet height difference to fertilize delay time
表6是對(duì)排肥管出口高差與排肥滯后時(shí)間進(jìn)行線性與二次回歸分析的結(jié)果。
表6 排肥口相對(duì)高度與滯后時(shí)間分析結(jié)果Table 6 Analysis result of outlet height and fertilize delay time
從表6可看出,排肥管出口高差與排肥滯后時(shí)間之間的二次回歸擬合度非常高,擬合結(jié)果為極顯著,其擬合方程為:
式中Δt2為排肥滯后時(shí)間,s;h為排肥管出口高差,cm。
隨著排肥管出口高差的加大,氣流對(duì)肥料做功增多,管內(nèi)的肥料顆粒對(duì)氣流的阻力變大,導(dǎo)致排肥滯后時(shí)間增加。因此,在排肥管道的安裝過程中,盡量保持出肥口高度不要高于入口是降低排肥滯后時(shí)間的有效途徑,本機(jī)設(shè)計(jì)的排肥管布置以水平輸送肥料為主,可以有效地降低排肥管高度對(duì)排肥滯后時(shí)間的影響。
設(shè)計(jì)了一種外槽輪式排肥、以空氣流為肥料輸送和撒播動(dòng)力的稻田氣力式變量施肥機(jī),通過對(duì)關(guān)鍵部件進(jìn)行仿真和測試試驗(yàn),得出如下結(jié)論:
1)排肥輪轉(zhuǎn)速與排肥量之間存在極顯著的線性相關(guān)關(guān)系,相關(guān)系數(shù)R2=0.998,因此,可以通過排肥輪轉(zhuǎn)速來控制排肥量,在變量作業(yè)時(shí),結(jié)合施肥量的需求及施肥機(jī)具的前進(jìn)速度對(duì)排肥輪的轉(zhuǎn)速進(jìn)行實(shí)時(shí)調(diào)節(jié),從而達(dá)到變量施肥的目的。當(dāng)機(jī)具前進(jìn)速度為1 m/s,排肥輪轉(zhuǎn)速在10~40 r/min之間變化時(shí),單憑轉(zhuǎn)速調(diào)節(jié)可實(shí)現(xiàn)每公頃施肥量在40~200 kg范圍內(nèi)的變量調(diào)節(jié),此外,各排肥口的排肥量誤差小于±5%。對(duì)照標(biāo)準(zhǔn)《NJ/T 2013-0608氣力式肥料變量播撒系統(tǒng)技術(shù)及評(píng)價(jià)方法》,各排肥口排肥量的均勻性能滿足設(shè)計(jì)要求。
2)排肥管道長度對(duì)排肥出口風(fēng)速有顯著影響,排肥管長度和出口安裝的高差對(duì)排肥滯后性亦有顯著的影響,因此,為了盡可能減小因排肥滯后對(duì)排肥均勻性的影響,應(yīng)避免排肥管過長,并盡量使排肥管出口不高于入口。
3)通過在氣流肥料混合接頭的氣流入口處采用小孔結(jié)構(gòu),所形成的氣流場更有利于肥料下落和加速,同時(shí)也有利于提高分流箱內(nèi)的壓力,保證氣流的分配更均勻。
采用本文所設(shè)計(jì)的氣力式變量施肥機(jī),可實(shí)現(xiàn)單個(gè)排肥輪的排肥量獨(dú)立控制,借助氣流可在作業(yè)幅寬方向上實(shí)現(xiàn)肥料的遠(yuǎn)距離輸送,相對(duì)于離心圓盤式撒肥機(jī),即能保證在幅寬方向上肥料撒施的變量控制,又能確保在特定施肥量要求下具有較好的均勻性,具有良好應(yīng)用前景。當(dāng)然,影響肥料出口散落均勻性的因素還有很多,例如出口處促進(jìn)肥料散落的擋板形狀的設(shè)計(jì)、管道長度以及排肥量等,這些因素的影響以及最佳作業(yè)參數(shù)的確定還有待進(jìn)一步研究。
[1]舒暢,唐春江,湯洪,等.水稻機(jī)插秧栽培的生育特性及最適追肥時(shí)間的研究[J].湖南農(nóng)業(yè)科學(xué),2014(3):34-36. Shu Chang,Tang Chunjiang,Tang Hong,et al.Growing characteristics of machine-transplanted rice seedlings and the optimum time for topdressing[J].Hunan Agricultural Sciences, 2014(3):34-36.(in Chinese with English abstract)
[2]李中青,高橋政夫,小田中溫美,等.追肥與收獲時(shí)期對(duì)水稻產(chǎn)量和品質(zhì)影響的研究[J].湖南農(nóng)業(yè)科學(xué),2008(1):67-68,77. Li Zhongqing,Masao Takahashi,Atsumi Odanaka,et al.Effects of dressing and harvest time on the yield and quality of rice[J]. Hunan Agricultural Sciences,2008(1):67-68,77.(in Chinese with English abstract)
[3] 王吉亮,王序儉,曹肆林,等.中耕施肥機(jī)械技術(shù)研究現(xiàn)狀及發(fā)展趨勢[J].安徽農(nóng)業(yè)科學(xué),2013(4):1814-1816. Wang Jiliang,Wang Xujian,Cao Silin,et al.The status and development trend of cultivator and fertilizer mechanization technique[J].Anhui Agricultural Sciences,2013(4):1814-1816. (in Chinese with English abstract)
[4]陳書法,張石平,孫星釗,等.水田高地隙自走式變量撒肥機(jī)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(11):16-21. Chen Shufan,Zhang Shiping,Sun Xingzhao,et al.Design and experiment of self-propelled high-ground-clearance spreader for paddy variable-rate fertilization[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012,28(11):16-21.(in Chinese with English abstract)
[5]宋德慶,黃正明,薛忠,等.我國追肥施布機(jī)械及技術(shù)研究現(xiàn)狀與展望[J].農(nóng)機(jī)化研究,2014(2):241-244. Song Deqing,Huang Zhengming,Xue Zhong,et al.Present research situation and perspective of topdressing machine and technology in China[J].Journal of Agricultural Mechanization Research,2014(2):241-244.(in Chinese with English abstract)
[6] 律凱,楊春才.水稻苗期施肥機(jī)的設(shè)計(jì)與應(yīng)用[J].農(nóng)民致富之友,2014(6):186-187. Lü Kai,Yang Chuncai.Design and application of rice seedling stage machinery[J].Nong Min Zhi Fu Zhi You,2014(6):186-187.(in Chinese with English abstract)
[7] 王秀,趙春江,孟志軍,等.精準(zhǔn)變量施肥機(jī)的研制與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2004(5):114-117. Wang Xiu,Zhao Chunjiang,Meng Zhijun,et al.Design and experiment of variable rate fertilizer applicator[J].Transactionsof the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2004(5):114-117.(in Chinese with English abstract)
[8]高靜華.?dāng)[管式撒肥機(jī)的整機(jī)設(shè)計(jì) [J].農(nóng)機(jī)使用與維修,2014(2):11-12.Gao Jinghua.Design on fertilizer spreading machines of swing ture type[J].Farm Machinery Using&Maintenance,2014(2): 11-12.(in Chinese with English abstract)
[9]李鵬,夏俊芳.通用型擺管式撒肥機(jī)的設(shè)計(jì)[J].湖北農(nóng)業(yè)科學(xué),2013,52(21):5329-5333.Li Peng,Xia Junfang.Design on general fertilizer spreading machines of swing tube type[J].Hubei Agricultural Sciences, 2013,52(21):5329-5333.(in Chinese with English abstract)
[10]張李嫻.?dāng)[管式撒肥機(jī)的研究與設(shè)計(jì)[D].楊凌:西北農(nóng)林科技大學(xué),2009.Zhang Lixian.Research and Design on Dertilizer Spreading Machines of Swing Tube Type[D].Yangling:North West Agriculture and Forestry University,2009.(in Chinese with English abstract)
[11]李鵬.?dāng)[管式撒肥機(jī)機(jī)理與試驗(yàn)研究[D].武漢:華中農(nóng)業(yè)大學(xué),2013.Li Peng.Theoretical and Experimental Study on Fertilizer Spreading Machines of Swing Tube Type[D].Wuhan:Huazhong Agricultural University,2013.(in Chinese with English abstract)
[12]Ishola T A,Yahya A,Shariff A R M,et al.A novel variable rate pneumatic fertilizer applicator[J].Instrumentation Science& Technology,2014.
[13]Kim Y J,Kim H J,Ryu K H,et al.Fertiliser application performance of a variable-rate pneumatic granular applicator for rice production[J].Biosystems Engineering,2008,100(4):498-510.
[14]Yuan Jin,Liu Chengliang,Li Yanming,et al.Gaussian processes based bivariate control parameters optimization of variable-rate granular fertilizer applicator[J].Computers and Electronics in Agriculture,2010,1(70):33-41.
[15]Papadopoulos A,Kalivas D,Hatzichristos T.Decision support system for nitrogen fertilization using fuzzy theory[J].2011,78 (2):130-139.
[16]Flexi Coil Ltd.Method for controlling the flow rate of an air seeder:America,US09316136[P].19991207.
[17]楊盛琴.不同國家精準(zhǔn)農(nóng)業(yè)的發(fā)展模式分析[J].世界農(nóng)業(yè), 2014(11):43-46.Yang Shengqin.The development of precision agriculture pattern analysis different countries[J].World Agriculture,2014 (11):43-46.(in Chinese with English abstract)
[18]謝宇峰,許劍平,梁玉成.高速寬幅氣送式集排精量播種施肥機(jī)的研制[J].農(nóng)業(yè)科技與裝備,2013(5):19-21. Xie Yufeng,Xu Jianping,Liang Yucheng.Design of high-speed broad width pneumatic conveying concentration feeding precision seeding and fertilizing machine[J].Agricultural Science &Technology and Equipment,2013(5):19-21.(in Chinese with English abstract)
[19]田耘,趙亞祥.變量施肥機(jī)外槽輪排肥器的試驗(yàn)研究[J].農(nóng)業(yè)與技術(shù),2014,34(5):52-53.Tian Yun,Zhao Yaxiang.Experimental study of outer groovewheel fertilizer apparatus of variable rate fertilizer applicator[J]. Agriculture&Technology,2014,34(5):52-53.(in Chinese with English abstract)
[20]吳輝,王秀,張晉國,等.圓盤式施肥機(jī)拋撒模型中圓盤轉(zhuǎn)速的試驗(yàn)研究[J].農(nóng)機(jī)化研究,2007(7):136-139.Wu Hui,Wang Xiu,Zhang Jinguo,et al.Study on speed of spinning disc in model of spinning disc spreader[J].Journal of Agricultural Mechanization Research,2007(7):136-139.(in Chinese with English abstract)
[21]楊志杰.圓盤式變量施肥機(jī)的發(fā)展及其關(guān)鍵技術(shù)介紹[J].農(nóng)業(yè)機(jī)械,2007(10):67.Yang Zhijie.The development of wire rod type variable machinery and its key technology is introduced[J].Agricultural Machinery,2007(10):67.(in Chinese with English abstract)
[22]任素芬.2SF:18型離心式液壓撒肥機(jī)[J].新疆農(nóng)機(jī)化,2005 (3):33-34.Ren Sufen.The centrifugal hydraulic distributor fertilizer applicatorwith the type 2SF-18[J].Xinjiang Agricultural Mechanization,2005(3):33-34.(in Chinese with English abstract)
[23]張睿,王秀,趙春江,等.鏈條輸送式變量施肥拋撒機(jī)的設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(6):20-25.Zhang Rui,Wang Xiu,Zhao Chunjiang,et al.Design and experiment of variable rate fertilizer spreader with conveyor chain[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2012,28(6):20-25.(in Chinese with English abstract)
[24]侯蕊,朱瑞祥.變量撒肥機(jī)設(shè)計(jì)參數(shù)研究及控制系統(tǒng)設(shè)計(jì)[J].農(nóng)機(jī)化研究,2015(4):114-116.Hou Rui,Zhu Ruixiang.The research of design parameters of the variable manure spreader and the design of the control system[J].Journal of Agricultural Mechanization Research,2015 (4):114-116.(in Chinese with English abstract)
[25]王熙,王新忠.三種不同變量施肥執(zhí)行機(jī)構(gòu)的比較研究[J].農(nóng)機(jī)化研究,2006(1):122-124.Wang Xi,Wang Xinzhong.Comparing and study on three kinds of variable fertilization executing institution[J].Journal of Agricultural Mechanization Research,2006(1):122-124.(in Chinese with English abstract)
[26]吳愛兵,朱德文,趙國棟.我國固態(tài)肥料施肥機(jī)械現(xiàn)狀及發(fā)展對(duì)策[J].農(nóng)業(yè)開發(fā)與裝備,2014(2):27-28.Wu Aibing,Zhu Dewen,ZhaoGuodong.Solid fertilizer fertilization machinery presentsituation and development countermeasure of our country[J].Agricultural Development& Equipments,2014(2):27-28.(in Chinese with English abstract)
[27]劉陽春.變量配肥施肥精準(zhǔn)作業(yè)裝備關(guān)鍵技術(shù)研究[D].北京:中國農(nóng)業(yè)機(jī)械化科學(xué)研究院,2012.Liu Yangchun.Key Technology on Variable Rate Application System[D].Beijing:Chinese Academy of Agricultural Mechanization Sciences,2012.(in Chinese with English abstract)
[28]段潔利,李君,盧玉華.變量施肥機(jī)械研究現(xiàn)狀與發(fā)展對(duì)策[J].農(nóng)機(jī)化研究,2011,33(5):245-248.Duan Jieli,Li Jun,Lu Yuhua.Research status and development countermeasure of variable rate fertilization machinery[J]. Journal of Agricultural Mechanization Research,2011,33(5): 245-248.(in Chinese with English abstract)
[29]胡曉麗,閆鳳宇,金立波,等.小型變量施肥機(jī)變量施肥研究[J].安徽農(nóng)業(yè)科學(xué),2011(32):19836-19838.Hu Xiaoli,Yan Fengyu,Jin Libo,et al.Study of variable fertilization system with small variable rate fertilizer[J].Anhui Agricultural Sciences,2011(32):19836-19838.(in Chinese with English abstract)
[30]姜立明.變量施肥控制系統(tǒng)關(guān)鍵技術(shù)的研究[D].大慶:黑龍江八一農(nóng)墾大學(xué),2014.Jiang Liming.Research on Key Technologies of Variable Rate Fertilization Control System[D].Daqing:Heilongjiang August first land reclamation university,2014.(in Chinese with English abstract)
[31]陳遠(yuǎn)鵬,龍慧,劉志杰.我國施肥技術(shù)與施肥機(jī)械的研究現(xiàn)狀及對(duì)策[J].農(nóng)機(jī)化研究,2015(4):255-260.Chen Yuanpeng,Long Hui,Liu Zhijie.Actuality and measures of fertilization technology and machinery in China[J].Journal of Agricultural Mechanization Research,2015(4):255-260.(in Chinese with English abstract)
[32]王玉順,郭俊旺,聶永芳,等.外槽輪排種器性能檢測及分析[J].山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2004(3):256-258.Wang Yushun,Guo Junwang,Nie Yongfang,et al.Detecting and analyzing on performance of external force feed[J].Journal of Shanxi Agricultural University(Natural Science Edition),2004 (3):256-258.(in Chinese with English abstract)
[33]張濤,劉飛,劉月琴,等.離散元模擬外槽輪排肥器排量分析[J].農(nóng)機(jī)化研究,2015(9):198-201.Zhang Tao,Liu Fei,Liu Yueqin,et al.Discrete element simulation of outer groove wheel type fertilizer discharging device capacity analysis[J].Journal of Agricultural mechanization research,2015(9):198-201.(in Chinese with English abstract)
[34]呂昊.外槽輪排肥器優(yōu)化設(shè)計(jì)新方法研究[D].長春:吉林大學(xué),2014.Lü Hao.A New Kind of Method for the Optimizated Design of Outer Groove-wheel Fertilizer Apparatuses[D].Changchun:Jilin University,2014.(in Chinese with English abstract)
[35]劉忠軍,張晉國.斜槽輪式排種器工作長度的對(duì)比試驗(yàn)[J].農(nóng)機(jī)化研究,2009(4):137-138.Liu Zhongjun,Zhang Jinguo.Skewed slot wheeled seeding mechanism working length comparative trial research[J].Journal of Agricultural Mechanization Research,2009(4):137-138.(in Chinese with English abstract)
[36]北京農(nóng)業(yè)工程大學(xué).農(nóng)業(yè)機(jī)械學(xué)[M].北京:中國農(nóng)業(yè)出版社,1997.
[37]林建忠.流體力學(xué)[M].2.北京:清華大學(xué)出版社,2013.
[38]NJ/T 2013-0608,氣力式肥料變量播撒系統(tǒng)技術(shù)及評(píng)價(jià)方法[S].農(nóng)業(yè)裝備產(chǎn)業(yè)技術(shù)創(chuàng)新戰(zhàn)略聯(lián)盟,2013.
Design and experiment of key parts of pneumatic variable-rate fertilizer applicator for rice production
Qi Xingyuan1,Zhou Zhiyan1,2※,Yang Cheng1,Luo Xiwen1,2,Gu Xiuyan1,Zang Yu1,Liu Wulan1
(1.College of Engineering,South China Agricultural University/Engineering Research Center for Agricultural Aviation Application(ERCAAA), Guangzhou 510642,China;2.Collaborative Innovation Center for Grain and Oil Crops in South China,Changsha 410128,China)
Variable-rate fertilizer applicator is one of the most important machines of precision agriculture.Nowadays,the main machine for topdressing in rice is centrifugal disc distributor,and this machine has a better width,but has an unstable spread uniformity at the direction of working width,and most of them also cannot fertilize with a variable rate at the working width direction.In order to satisfy the needs of variable-rate fertilizer application in rice,and use less fertilizer to produce more yield,a pneumatic variable-rate fertilizer applicator for rice production,which used outer groove-fertilizer-wheel and pneumatic fertilizer spreader,was designed.Firstly,the simulation of the key components of the variable-rate fertilizer applicator was carried out to optimize the structure of the mixed joint and the air divider box under the following initial boundary conditions:the inlet gas velocity was 12 m/s,the inlet gas volumetric flow of air divider box was 0.03 m3/h,and all the testing components were under the same pressure in outlet and environment.The results indicated that the small keyhole structure not only improved the average pressure in air divider box and the uniformity of airflow dividing,but also promoted the fertilizer falling for mixed joint of air and fertilizer.Secondly,a series of testing experiments of the key components of the variable-rate fertilizer applicator were carried out to investigate the correlation between the rotating speed of fertilization wheel and the amount of fertilizer application under the following conditions:use the mixed joint with small keyhole structure, the inlet gas velocity was 12 m/s and the air divider box pressure was 110 kPa.The results showed that there was a significant linear relationship between the rotating speed of fertilization wheel and the amount of fertilization,and the correlation coefficient was up to 0.998.Adjusting the rotating speed of fertilization wheel could accurately adjust the amount of fertilization.In other words,it could achieve the purpose of variable fertilization by real-time control the rotating speed of fertilization wheel combined with the fertilization demand and the forward speed of fertilizing machine.The variable amount of fertilization could be reached in the range of 40-200 kg per hectare when the forward speed of fertilizing machine was 1 m/s and the rotating speed of fertilization wheel was in the range of 10-40 r/min.And the errors of fertilizer application amount for each fertilizer ejector′s outlet was less than±5%,which basically reached the requirements of fertilization uniformity.Finally, the impacts of the fertilizer pipeline length and installation height difference on the fertilization outlet velocity and lag time were studied when the inlet gas velocity was 12 m/s and the air divider box pressure was 110 kPa.The results showed that the fertilizer pipeline length and installation height difference had a significant effect on the fertilizer ejector′s outlet velocity and fertilization lag time.Therefore,in order to minimize the influence of fertilization lag time on fertilization uniformity,the fertilizer pipeline length should not be too long,and it is also suggested that the fertilizer ejector′s outlet is not higher than the inlet in order to reduce the impact of installation height difference.This study provides a basis for further prototyping and optimization of the pneumatic variable-rate fertilizer applicator.
crops;agricultural machinery;design;paddy field;pneumatic;variable rate fertilizer;fertilization wheel; fertilizer transport
10.11975/j.issn.1002-6819.2016.06.003
S
A
1002-6819(2016)-06-0020-07
2015-12-08
2016-02-02
“十二五”國家“863”計(jì)劃項(xiàng)目(2012AA101901-3)
齊興源,男(漢族),甘肅酒泉人,主要從事作物變量施肥機(jī)具的研究。廣州 華南農(nóng)業(yè)大學(xué)工程學(xué)院,510642。Email:529155434@qq.com※通信作者:周志艷,男(漢族),湖南永州人,博士,教授,主要從事精準(zhǔn)農(nóng)業(yè)關(guān)鍵技術(shù)研究。廣州 華南農(nóng)業(yè)大學(xué)工程學(xué)院,510642。
Email:zyzhou@scau.edu.cn。中國農(nóng)業(yè)工程學(xué)會(huì)會(huì)員(E042100021M)。