劉金建 蔡改改 謝鋒 黃偉國(guó) 李成
(蘇州大學(xué)城市軌道交通學(xué)院,蘇州 215131)
軸向運(yùn)動(dòng)功能梯度粘彈性梁橫向振動(dòng)的穩(wěn)定性分析*
劉金建 蔡改改 謝鋒 黃偉國(guó) 李成?
(蘇州大學(xué)城市軌道交通學(xué)院,蘇州 215131)
基于Euler梁理論研究了軸向運(yùn)動(dòng)功能梯度粘彈性梁橫向振動(dòng)的穩(wěn)定性問(wèn)題.基于問(wèn)題的數(shù)學(xué)模型和控制方程,利用微分求積法求得了軸向勻速運(yùn)動(dòng)功能梯度粘彈性梁亞臨界區(qū)域內(nèi)橫向振動(dòng)的復(fù)頻率,分析其隨著軸向運(yùn)動(dòng)速度、材料梯度指數(shù)等參數(shù)的變化情況,探討上述參數(shù)對(duì)超臨界區(qū)域失穩(wěn)形式的影響.然后應(yīng)用多尺度法結(jié)合邊界條件分析了軸向速度帶有周期擾動(dòng)成分的變速運(yùn)動(dòng)功能梯度粘彈性梁的失穩(wěn)問(wèn)題,重點(diǎn)討論了當(dāng)速度擾動(dòng)頻率為固有頻率二倍或者為兩固有頻率之和/差時(shí)所發(fā)生的次諧波共振及組合共振所導(dǎo)致的失穩(wěn).數(shù)值算例表明,隨著梯度指數(shù)的增大,勻速運(yùn)動(dòng)功能梯度粘彈性梁的臨界發(fā)散速度、耦合速度以及變速運(yùn)動(dòng)功能梯度粘彈性梁的穩(wěn)定區(qū)域減小,且粘彈性系數(shù)的影響逐漸變?nèi)酰葪l件下,軸向運(yùn)動(dòng)功能梯度粘彈性固支梁比簡(jiǎn)支梁更為穩(wěn)定.
軸向運(yùn)動(dòng), 功能梯度粘彈性梁, 穩(wěn)定性, 次諧波共振, 組合共振
軸向運(yùn)動(dòng)梁是一種重要的工程構(gòu)件,在動(dòng)力傳送帶、磁帶、紡織纖維、帶鋸、空中纜車索道、升降機(jī)纜繩等工程系統(tǒng)中應(yīng)用廣泛.軸向運(yùn)動(dòng)梁的橫向振動(dòng)會(huì)帶來(lái)某些影響,比如帶鋸的橫向振動(dòng)會(huì)影響到切割質(zhì)量,其穩(wěn)定性值得關(guān)注.關(guān)于軸向運(yùn)動(dòng)梁的動(dòng)力學(xué)與控制問(wèn)題已經(jīng)得到了廣泛的研究[1-8].比如,?z等[1]基于多尺度法研究了軸向變速運(yùn)動(dòng)梁的振動(dòng)及穩(wěn)定性.羅炳華等[5]建立了軸向運(yùn)動(dòng)梁受移動(dòng)載荷作用的有限元模型,并提出了描述運(yùn)動(dòng)梁節(jié)點(diǎn)約束狀態(tài)的節(jié)點(diǎn)生死方法.Yang和Zhang[8]考慮縱橫向耦合情況下軸向運(yùn)動(dòng)梁的非線性振動(dòng),應(yīng)用多尺度法得到了系統(tǒng)在內(nèi)外共振時(shí)的穩(wěn)態(tài)響應(yīng).
隨著科技的進(jìn)步,工程結(jié)構(gòu)中很多關(guān)鍵部件要求材料性能具有可設(shè)計(jì)性,以適應(yīng)其特殊的工作和受載環(huán)境.功能梯度材料[9-16]就是其中之一,它通常由兩種不同性能的材料組成,且組織成分和顯微結(jié)構(gòu)均呈連續(xù)性變化,這有利于集兩種材料的優(yōu)良特性于一體.這方面,Yang等[9]基于二維彈性理論研究了處于彈性地基上各向異性功能梯度梁的自由振動(dòng).Ansari等[12]基于應(yīng)變梯度Timoshenko梁理論研究了功能梯度微梁的自由振動(dòng),并與經(jīng)典理論、修正的偶應(yīng)力理論及應(yīng)變梯度理論的結(jié)果進(jìn)行了對(duì)比.尹碩輝等[14]基于一階剪切變形板理論,建立了分析功能梯度板自由振動(dòng)問(wèn)題的非均勻有理B樣條等幾何有限元格式,并采用等幾何有限元法討論了各個(gè)參數(shù)對(duì)功能梯度板的動(dòng)態(tài)響應(yīng)的影響. Aghazadeh等[16]基于修正的偶應(yīng)力理論分析了功能梯度小尺度梁的自由振動(dòng),其中分別考慮了Euler、Timoshenko和三階剪切變形梁模型.
功能梯度材料已經(jīng)被應(yīng)用到航空航天等大型工程結(jié)構(gòu)中,比如航天飛機(jī)燃燒室內(nèi)壁等,功能梯度材料的耐熱隔熱強(qiáng)韌性等特點(diǎn)解決了航天材料的熱應(yīng)力緩和問(wèn)題,因此研究軸向運(yùn)動(dòng)功能梯度材料梁很有必要.趙鳳群等[17]基于Timoshenko梁模型應(yīng)用微分求積法得到了簡(jiǎn)支功能梯度梁的特征方程及復(fù)頻率與軸向運(yùn)動(dòng)速度的關(guān)系,并且分析了梁隨軸向速度變化的失穩(wěn)形式,以及梯度指數(shù)、長(zhǎng)高比對(duì)梁的動(dòng)力穩(wěn)定性影響.李成等[18]研究了軸向運(yùn)動(dòng)功能梯度彈性梁的梯度指數(shù)、軸向速度、初始應(yīng)力等對(duì)振動(dòng)頻率、模態(tài)函數(shù)等的影響.然而,關(guān)于軸向變速運(yùn)動(dòng)功能梯度粘彈性梁的穩(wěn)定性分析目前還不多見(jiàn).本文以軸向運(yùn)動(dòng)Euler梁模型為切入點(diǎn),并假設(shè)功能梯度梁結(jié)構(gòu)及其性質(zhì)沿厚度方向呈現(xiàn)冪函數(shù)連續(xù)變化.考慮到Euler梁模型厚度遠(yuǎn)小于跨度,彎曲變形占主導(dǎo)地位,因此可以忽略剪切變形的影響.在勻速條件下,利用微分求積法分析了超臨界區(qū)域軸向運(yùn)動(dòng)功能梯度粘彈性梁的動(dòng)態(tài)特性及其失穩(wěn)形式,詳細(xì)討論了軸向運(yùn)動(dòng)速度和梯度指數(shù)對(duì)功能梯度粘彈性梁的橫向振動(dòng)特性以及失穩(wěn)形式的影響.對(duì)于軸向變速運(yùn)動(dòng)功能梯度粘彈性梁,采用多尺度法研究了前三階和型組合共振及其次諧波共振,并進(jìn)一步討論若干重要參數(shù)對(duì)穩(wěn)定性的影響.
考慮長(zhǎng)度為L(zhǎng),橫截面寬為b,厚為h,兩端受初始軸向應(yīng)力σ0作用的軸向運(yùn)動(dòng)功能梯度粘彈性梁,其控制方程為[2]
其中,W為橫向位移,T為時(shí)間,v為軸向速度,X為梁的軸向坐標(biāo),η為粘彈性系數(shù),,Z為厚度方向坐標(biāo).假設(shè)功能梯度材料彈性模量EZ和密度ρZ沿厚度方向按冪函數(shù)規(guī)律變化,即
1.1 勻速運(yùn)動(dòng)時(shí)的穩(wěn)定性分析
方程(6)應(yīng)用復(fù)模態(tài)法可以求得亞臨界區(qū)域內(nèi)軸向運(yùn)動(dòng)功能梯度梁橫向振動(dòng)頻率,但對(duì)于確定超臨界區(qū)域的失穩(wěn)原因,復(fù)模態(tài)法卻難以勝任,因此對(duì)超臨界區(qū)域內(nèi)的失穩(wěn)形式分析,本文采用了微分求積法.
選取非均勻網(wǎng)點(diǎn)共N個(gè),則網(wǎng)點(diǎn)的坐標(biāo)為
方程(16)有非零解的充分必要條件是系數(shù)矩陣的行列式為零.對(duì)于邊界條件為兩端固支的情況,將利用式(11)和式(13)同樣可推得式(16)的形式,其中僅M,G,K有所不同.
1.2 變速運(yùn)動(dòng)時(shí)的參數(shù)振動(dòng)及穩(wěn)定性分析
利用式(7)可以分析軸向變速運(yùn)動(dòng)功能梯度粘彈性梁的參數(shù)穩(wěn)定性,為表示脈動(dòng)頻率ω在ωm+ωn附近變化,引入調(diào)諧參數(shù)σ,即
其中,符號(hào)上的點(diǎn)和撇分別表示對(duì)時(shí)間T1和x求導(dǎo),NST表示不會(huì)給解帶來(lái)永年項(xiàng)部分.若要使得解不存在永年項(xiàng),則可解性條件要求非齊次微分方程(19)的非齊次部分與其伴隨方程的齊次解正交,即有
其中,φj、φk分別為第j階和第k階模態(tài)函數(shù),且由方程(6)的模態(tài)函數(shù)所決定,與軸向速度的脈動(dòng)量無(wú)關(guān).
將(20)式轉(zhuǎn)換為自治方程,考慮其自治方程的非零解,得穩(wěn)定性判斷條件
其中λ是待定復(fù)數(shù).如果λ有正實(shí)部解,則系統(tǒng)不穩(wěn)定,如果λ全部為負(fù)實(shí)部,則系統(tǒng)穩(wěn)定.經(jīng)過(guò)數(shù)值計(jì)算分析知合型共振的失穩(wěn)區(qū)域?yàn)?/p>
進(jìn)一步地,當(dāng)軸向速度簡(jiǎn)諧脈動(dòng)頻率ω接近兩階固有頻率之差時(shí),就會(huì)發(fā)生差型組合參數(shù)共振.同樣用調(diào)諧參數(shù)σ來(lái)表示ω偏離ωm-ωn的程度,則此時(shí)ω為
類比和型組合參數(shù)共振分析過(guò)程知,式(23)也是系統(tǒng)差型組合共振穩(wěn)定性邊界條件,只是其系數(shù)pkk和qkj不同于和型組合.
最后,當(dāng)軸向速度簡(jiǎn)諧脈動(dòng)頻率ω接近n階固有頻率ωn的2倍時(shí),就會(huì)發(fā)生次諧波共振.此時(shí),調(diào)諧參數(shù)σ用來(lái)表示ω偏離2ωn的程度,即有
令(23)式中m=n,即得n階次諧波共振的穩(wěn)定性邊界條件為
為了具體描述橫向振動(dòng)穩(wěn)定性受功能梯度指數(shù)的影響,對(duì)軸向勻速、變速運(yùn)動(dòng)功能梯度粘彈性梁分別提供了兩個(gè)算例,算例中梁的參數(shù)如下:Ec=390GPa,ρc=3960kg/m3,Em=210GPa,ρm=7800kg/m3,則ηE=Ec/Em=1.86,ηρ=Ec/Em=0.51.
2.1 勻速運(yùn)動(dòng)時(shí)的穩(wěn)定性
本例取δ=10-6,N=19,k分別為0.01,1,100,研究軸向運(yùn)動(dòng)功能梯度梁橫向振動(dòng)的前三階復(fù)頻率隨軸向運(yùn)動(dòng)速度的變化.雖然復(fù)模態(tài)法能夠準(zhǔn)確地求得亞臨界區(qū)域內(nèi)軸向運(yùn)動(dòng)功能梯度梁的橫向振動(dòng)頻率隨著各個(gè)參數(shù)的變化,但對(duì)于超臨界區(qū)域尤其是發(fā)散失穩(wěn)現(xiàn)象及耦合顫振現(xiàn)象發(fā)生區(qū),復(fù)模態(tài)法很難確定各階頻率的具體取值.因此本文應(yīng)用微分求積法重點(diǎn)探討超臨界區(qū)域功能梯度指數(shù)對(duì)失穩(wěn)形式的影響.
為驗(yàn)證本文計(jì)算方法的有效性,表1給出了亞臨界區(qū)域內(nèi)一階頻率復(fù)模態(tài)結(jié)果與微分求積結(jié)果的對(duì)比.不難發(fā)現(xiàn)亞臨界區(qū)域軸向運(yùn)動(dòng)功能梯度梁的橫向振動(dòng)頻率隨著梯度指數(shù)的增大而減小,亦可看出微分求積結(jié)果與復(fù)模態(tài)結(jié)果十分吻合.
表1 一階頻率微分求積結(jié)果與復(fù)模態(tài)結(jié)果的對(duì)比Table 1 Comparisonof the results obtained from the differential quadrature and complexmodalmethods for the first order natural frequency
圖1~3反映了功能梯度簡(jiǎn)支梁復(fù)頻率隨著k、γ0的變化情況.
從圖1可見(jiàn),當(dāng)k=0.01時(shí),頻率的虛部(固有頻率)在γ0=2.6處第一階模態(tài)出現(xiàn)發(fā)散失穩(wěn),即臨界發(fā)散速度.復(fù)頻率虛部的發(fā)散在實(shí)部上相應(yīng)的表現(xiàn)形式為實(shí)頻率從零開始向正負(fù)兩個(gè)方向?qū)ΨQ發(fā)散,即出現(xiàn)正負(fù)兩個(gè)值,且其絕對(duì)值先增大后減小.圖2給出了k=1的情況,當(dāng)1.9<γ0<3.8時(shí),此時(shí)第一階模態(tài)處于發(fā)散失穩(wěn)狀態(tài),當(dāng)3.8<γ0<3.9時(shí),第一階頻率迅速增大,此時(shí)一階頻率處于再穩(wěn)定狀態(tài),當(dāng)γ0>3.9時(shí),第一、二階頻率耦合在一起,即此時(shí)第一、二階頻率發(fā)生耦合顫振失穩(wěn).當(dāng)k=100時(shí)的結(jié)果如圖3所示,第一階模態(tài)在γ0=1.5處即出現(xiàn)發(fā)散失穩(wěn),當(dāng)2.9<γ0<4時(shí),為第一、二階模態(tài)耦合顫振區(qū)域,與圖1、2不同的是當(dāng)γ0=4.4的時(shí)候?qū)l(fā)生第二、三階耦合顫振失穩(wěn).總之,隨著材料梯度指數(shù)和軸向運(yùn)動(dòng)速度的增大,軸向運(yùn)動(dòng)功能梯度梁橫向振動(dòng)的臨界速度和失穩(wěn)形式表現(xiàn)出較強(qiáng)的材料敏感性及速度依賴性.
類似地,兩端固支的情形如圖4~6所示.在其他條件相同的情況下,軸向運(yùn)動(dòng)功能梯度固支梁的橫向振動(dòng)前三階復(fù)頻率變化規(guī)律與兩端簡(jiǎn)支時(shí)相似.不同的是,兩端固支的穩(wěn)定區(qū)域大于簡(jiǎn)支時(shí)的穩(wěn)定區(qū)域,且各階固有頻率的發(fā)散速度均大于兩端簡(jiǎn)支時(shí)的情形,這也表明軸向運(yùn)動(dòng)功能梯度固支梁比簡(jiǎn)支邊界條件下更穩(wěn)定.
圖1 兩端簡(jiǎn)支前三階復(fù)頻率虛部/實(shí)部隨軸向速度的變化曲線(k=0.01)Fig.1 First three order complex frequencies axial speed relationships for H-H FGM beam(k=0.01)
圖2 兩端簡(jiǎn)支前三階復(fù)頻率虛部/實(shí)部隨軸向速度的變化曲線(k=1)Fig.2 First three order complex frequencies the axial speed relationship for H-H FGM beam(k=1)
圖3 兩端簡(jiǎn)支前三階復(fù)頻率虛部/實(shí)部隨軸向速度的變化曲線(k=100)Fig.3 First three order complex frequencies the axial speed relationship for H-H FGM beam(k=100)
圖4 兩端固支前三階復(fù)頻率虛部/實(shí)部隨軸向速度的變化曲線(k=0.01)Fig.4 First three order complex frequencies the axial speed relationship for C-C FGM beam(k=0.01)
圖5 兩端固支前三階復(fù)頻率虛部/實(shí)部隨軸向速度的變化曲線(k=1)Fig.5 First three order complex frequencies the axial speed relationship for C-C FGM beam(k=1)
圖6 兩端固支前三階復(fù)頻率虛部/實(shí)部隨軸向速度的變化曲線(k=100)Fig.6 First three order complex frequencies the axial speed relationship for C-C FGM beam(k=100)
2.2 變速運(yùn)動(dòng)時(shí)的穩(wěn)定性
對(duì)于軸向運(yùn)動(dòng)功能梯度粘彈性梁的和型組合共振、差型組合共振和次諧波共振的穩(wěn)定性邊界來(lái)說(shuō),穩(wěn)定性邊界方程中的系數(shù)qjk,pkk可由方程(6)的模態(tài)函數(shù)和固有頻率確定.因此,軸向運(yùn)動(dòng)功能梯度粘彈性梁參數(shù)共振的不穩(wěn)定性區(qū)域?yàn)?/p>
為討論各主要參數(shù)對(duì)軸向變速運(yùn)動(dòng)功能梯度粘彈性梁的穩(wěn)定性的影響,選取α=0.0001,γ0=1.圖7~9分別給出了當(dāng)k=0.01、1、100時(shí),兩端簡(jiǎn)支梁第1、2階組合共振,第1、3階組合共振,第2、3階組合共振在σ-γ1平面上的失穩(wěn)區(qū)域.
圖7 兩端簡(jiǎn)支軸向運(yùn)動(dòng)功能梯度梁第1和第2階組合共振失穩(wěn)區(qū)域Fig.7 Unstable regions for summation resonances of the 1stand 2ndmodes(H-H)
圖8 兩端簡(jiǎn)支軸向運(yùn)動(dòng)功能梯度梁第1和第3階組合共振失穩(wěn)區(qū)域Fig.8 Unstable regions for summation resonances of the 1stand 3rdmodes(H-H)
由圖7~9可見(jiàn),增大梯度指數(shù)將使得失穩(wěn)區(qū)域增大,即在給定σ時(shí),增大梯度指數(shù)將導(dǎo)致失穩(wěn)脈動(dòng)振幅的γ1閥值減小,反之當(dāng)給定γ1時(shí),增大梯度指數(shù)將使得失穩(wěn)的頻率范圍增大.圖10~12分別作出了當(dāng)k=0.01,1,100時(shí),兩端簡(jiǎn)支梁前三階次諧波共振的失穩(wěn)區(qū)域.前三階次諧波共振隨梯度指數(shù)的變化表現(xiàn)出相似的規(guī)律,即增大梯度指數(shù),失穩(wěn)范圍變寬.對(duì)比圖7~12可知,k越小,粘彈性系數(shù)對(duì)穩(wěn)定性的影響越明顯.
圖9 兩端簡(jiǎn)支軸向運(yùn)動(dòng)功能梯度梁第2和第3階組共振失穩(wěn)區(qū)域Fig.9 Unstable regions for summation resonances of the 2ndand 3rdmodes(H-H)
圖10 兩端簡(jiǎn)支軸向運(yùn)動(dòng)功能梯度梁第1階次諧波合共振失穩(wěn)區(qū)域Fig.10 Unstable regions for sub-harmonic resonances of the 1stmode(H-H)
圖11 兩端簡(jiǎn)支軸向運(yùn)動(dòng)功能梯度梁第2階次諧波共振失穩(wěn)區(qū)域Fig.11 Unstable regions for sub-harmonic resonances of the 2ndmode(H-H)
兩端固支梁第1、2階,1、3階及2、3階組合共振隨材料梯度指數(shù)變化的情況分別由圖13~15給出.由圖13~15可知,隨著梯度指數(shù)的增大失穩(wěn)范圍變寬.此外,兩端固支梁前三階次諧波共振穩(wěn)定區(qū)域隨功能梯度指數(shù)的變化如圖16~18所示,可見(jiàn)前三階次諧波共振隨梯度指數(shù)的變化規(guī)律一致,即隨著梯度指數(shù)增大失穩(wěn)范圍變寬.進(jìn)一步對(duì)比圖16~18可見(jiàn),在其他參數(shù)給定的條件下,隨著k的增大,粘彈性系數(shù)對(duì)參數(shù)穩(wěn)定性的影響逐漸削弱.
圖12 兩端簡(jiǎn)支軸向運(yùn)動(dòng)功能梯度梁第3階次諧波共振失穩(wěn)區(qū)域Fig.12 Unstable regions for sub-harmonic resonances of the 3rdmode(H-H)
圖13 兩端固支軸向運(yùn)動(dòng)功能梯度梁第1和第2階組合共振失穩(wěn)區(qū)域Fig.13 Unstable regions for summation resonances of the 1stand 2ndmodes(C-C)
圖14 兩端固支軸向運(yùn)動(dòng)功能梯度梁第1和第3階組合共振失穩(wěn)區(qū)域Fig.14 Unstable regions for summation resonances of the 1stand 3rdmodes(C-C)
圖15 兩端固支軸向運(yùn)動(dòng)功能梯度梁第2和第3階組合共振失穩(wěn)區(qū)域Fig.15 Unstable regions for summation resonances of the 2ndand 3rdmodes(C-C)
圖16 兩端固支軸向運(yùn)動(dòng)功能梯度梁第1階次諧波共振失穩(wěn)區(qū)域Fig.16 Unstable regions for sub-harmonic resonances of 1stmode(C-C)
圖17 兩端固支軸向運(yùn)動(dòng)功能梯度梁第2階次諧波共振失穩(wěn)區(qū)域Fig.17 Unstable regions for sub-harmonic resonances of the 2ndmode(C-C)
圖18 兩端固支軸向運(yùn)動(dòng)功能梯度梁第3階次諧波共振失穩(wěn)區(qū)域Fig.18 Unstable regions for sub-harmonic resonances of 3rdmode(C-C)
針對(duì)軸向運(yùn)動(dòng)功能梯度粘彈性梁所存在的軸向速度與橫向振動(dòng)的相互耦合,研究了其運(yùn)動(dòng)穩(wěn)定性問(wèn)題.利用微分求積法分析了軸向勻速運(yùn)動(dòng)功能梯度梁的動(dòng)態(tài)特性及其失穩(wěn)形式.隨著軸向運(yùn)動(dòng)速度的增大,功能梯度梁橫向振動(dòng)的前三階復(fù)頻率的虛部逐漸減小,當(dāng)速度增大到一定值時(shí)復(fù)頻率的虛部開始出現(xiàn)發(fā)散失穩(wěn)和耦合顫振失穩(wěn).隨著材料梯度指數(shù)的增大,軸向運(yùn)動(dòng)功能梯度梁的臨界發(fā)散速度和耦合速度明顯減小.當(dāng)材料梯度指數(shù)增大到一定值時(shí),材料更接近金屬材料,此時(shí)隨著梯度指數(shù)的增大復(fù)頻率不再顯著變化.
通過(guò)多尺度法分析給出了變速運(yùn)動(dòng)功能梯度粘彈性梁的六種共振失穩(wěn)區(qū)域,即前三階次諧波共振及其相互組合共振的失穩(wěn)區(qū)域.研究了梯度指數(shù)對(duì)失穩(wěn)范圍的影響.結(jié)果表明,六種共振失穩(wěn)區(qū)域隨著梯度指數(shù)的增大而增大,且隨著梯度指數(shù)的減小,粘彈性對(duì)參數(shù)穩(wěn)定性的影響更為明顯.研究結(jié)果對(duì)理解軸向勻速及變速運(yùn)動(dòng)功能梯度類梁結(jié)構(gòu)的穩(wěn)定性具有指導(dǎo)意義,并為該類構(gòu)件的工程應(yīng)用提供參考.
1 ?z H R,Pakdemirli M,Boyac?H.Non-linear vibrations and stability ofan axiallymoving beam with time-dependent velocity.International Journal of Non-Linear Mechanics,2001,36(1):107~115
2 Chen LQ,Yang X D.Stability in parametric resonance of axially moving viscoelastic beams with time-dependent speed.Journalof Sound and Vibration,2005,284(3):879~891
3 Ghayesh M H,Yourdkhani M,Balar S,Reid T.Vibrations and stability ofaxially traveling laminated beams.Applied Mathematics and Computation,2010,217(2):545~556
4 Ding H,Chen L Q.Galerkin methods for natural frequencies of high-speed axiallymoving beams.Journal of Sound and Vibration,2010,329(17):3484~3494
5 羅炳華,高躍飛,劉榮華等.軸向運(yùn)動(dòng)梁受移動(dòng)載荷作用的橫向動(dòng)力響應(yīng).振動(dòng)與沖擊,2011,30(12):59~63(Luo BH,Gao Y F,Liu R H,etal.A study on lateral dynamic response of an axially moving beam under a moving load.Journal of Vibration and Shock,2011,30(12):59~63(in Chinese))
6 胡超榮,丁虎,陳立群.混雜邊界軸向運(yùn)動(dòng)Timoshenko梁固有頻率數(shù)值解.振動(dòng)與沖擊,2011,30(7):245~249(Hu C R,Ding H,Chen L Q.Natural frequency numerical solution of an axiallymoving Timoshenko beam with hybrid boundary.Journal of Vibration and Shock,2011,30(7):245~249(in Chinese))
7 Wang L,Hu Z,Zhong Z.Non-linear dynamical analysis for an axiallymoving beam with finite deformation.International Journal of Non-Linear Mechanics,2013,54(3):5~21
8 Yang X D,ZhangW.Nonlinear dynamics of axiallymoving beam with coupled longitudinal-transversal vibrations.Nonlinear Dynamics,2014,78(4):2547~2556
9 Ying J,LüC F,Chen W Q.Two-dimensionalelasticity solutions for functionally graded beams resting on elastic foundations.Composite Structures,2008,84(3):209~219
10 Li X F.A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams.Journal of Sound and Vibration,2008,318(4):1210~1229
11吳曉,羅佑新.用Timoshenko梁修正理論研究功能梯度材料梁的動(dòng)力響應(yīng).振動(dòng)與沖擊,2011,30(10):245~248(Wu X,Luo Y X.Dynamic responses of a beam with functionally graded materials with Timoshenko beam correction theory.Journal of Vibration and Shock,2011,30(10):245~248(in Chinese))
12 Ansari R,GholamiR,Sahmani S.Free Vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory.Composite Structures,2011,94(1):221~228
13 Ke L L,Wang Y S,Yang J,et al.Nonlinear free vibration of size-dependent functionally graded microbeams.International Journal of Engineering Science,2012,50(1):256~267
14尹碩輝,余天堂,劉鵬.基于等幾何有限元法的功能梯度板自由振動(dòng)分析.振動(dòng)與沖擊,2013,32(24):180~186(Yin SH,Yu T T,Liu P.Free vibration analysis of functionally graded plates using isogeometric finite element method.Journal of Vibration and Shock,2013,32(24):180~186(in Chinese))
15 Tang A Y,Wu JX,Li X F,etal.Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams.International Journal of Mechanical Sciences,2014,89:1~11
16 Aghazadeh R,Cigeroglu E,Dag S.Static and free vibration analyses of small-scale functionally graded beams possessing a variable length scale parameter using different beam theories.European Journal of Mechanics-A/Solids,2014,46(1):1~11
17趙鳳群,王忠民,路小平.軸向運(yùn)動(dòng)功能梯度Timoshenko梁穩(wěn)定性分析.振動(dòng)與沖擊,2014,33(2):14~19(Zhao F Q,Wang Z M,Lu X P.Stability analysis of axially moving Timoshenko beam made of functionally graded material.Journal of Vibration and Shock,2014,33(2):14~19(in Chinese))
18李成,隨歲寒,楊昌錦.受初應(yīng)力作用的軸向運(yùn)動(dòng)功能梯度梁的動(dòng)力學(xué)分析.工程力學(xué),2015,32(10):226~232(Li C,SuiSH,Yang C J.Dynamic analysis ofaxially moving functionally graded beams subjected to initial stress.Engineering Mechanics,2015,32(10):226~232(in Chinese))
19 Sui SH,Chen L,Li C,Liu X P.Transverse vibration of axially moving functionally graded materials based on Timoshenko beam theory.Mathematical Problems in Engineering,2015
20張國(guó)策,丁虎,陳立群.復(fù)模態(tài)分析超臨界軸向運(yùn)動(dòng)梁橫向非線性振動(dòng).動(dòng)力學(xué)與控制學(xué)報(bào),2015,13(4):283~287(Zhang G C,Ding H,Chen L Q.Complex modal analysis of transversally non-linear vibration for supercritically axiallymoving beams.Journal of Dynamicsand Control,2015,13(4):283~287(in Chinese) )
STABILITY ANALYSISON TRANSVERSE VIBRATION OF AXIALLY MOVING FUNCTIONALLY GRADED VISCOELASTIC BEAMS*
Liu Jinjian Cai Gaigai Xie Feng Huang Weiguo Li Cheng?
(School of Urban Rail Transportation,Soochow University,Suzhou 215131,China)
The stability of the transverse vibration of an axially moving functionally graded viscoelastic beam(FGVB)is studied based on the Euler beam theory.The complex frequencies of FGVB are firstly investigated by the differential quadraturemethod,where themain parameters such as axial speed and gradient index are considered.The effects of the axial speed and gradient index on the vibration characteristics and instable forms in supercritical region are also examined.Subsequently,the instability behaviors of FGVB with periodic perturbational velocity are addressed using the method ofmultiple scales and specific boundary conditions.The discussion is then mainly focused on the instable regions caused by summation resonance and sub-harmonic resonance,respectively,where the resonance occurs when the harmonic frequency approaches the sum or difference of any two mode natural frequencies.It is shown that the critical divergence and flutter velocities of the uniformly moving beam,aswell as the stability regions of non-uniform lymoving beam decrease with the increase of gradient index,and the viscoelastic effect becomesweakerwith increasing gradient index.Moreover,the stability regions of axiallymoving FGVB for fully clamped boundary condition are larger than those for the simply supported case.
axialmoving, functionally graded viscoelastic beam, stability, sub-harmonic resonance,summation resonance
10.6052/1672-6553-2016-013
2016-01-05收到第1稿,2016-01-21收到修改稿.
*國(guó)家自然科學(xué)基金資助項(xiàng)目(51405320,51405321),江蘇省自然科學(xué)基金(BK20140339,BK20130303),江蘇省高校自然科學(xué)研究面上項(xiàng)目(14KJB460023),蘇州市科技計(jì)劃項(xiàng)目(SYG201537)
?通訊作者E-mail:licheng@suda.edu.cn
Received 5 January 2016,revised 21 January 2016.
*The project supported by the National Natural Science Foundation of China(51405320,51405321),Natural Science Foundation of Jiangsu Province(BK20140339,BK20130303),Natural Science Foundation of the Jiangsu Higher Education Institutions of China(14KJB460023),and Natural Science Foundation of Suzhou(SYG201537)
?Corresponding author E-mail:licheng@suda.edu.cn