伊麗娜包俊東 套格圖桑
(內(nèi)蒙古師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,呼和浩特 010022)
廣義Fitzhugh-Nagumo方程的無窮序列新解*
伊麗娜?包俊東 套格圖桑
(內(nèi)蒙古師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,呼和浩特 010022)
利用輔助方程的幾種結(jié)論,構(gòu)造了廣義Fitzhugh-Nagumo方程的多種無窮序列新解.步驟一,利用函數(shù)變換與首次積分,給出了輔助方程的新解、B?cklund變換和解的非線性疊加公式.步驟二,通過函數(shù)變換,將廣義Fitzhugh-Nagumo方程的求解問題轉(zhuǎn)化為非線性常微分方程的求解問題.步驟三,利用符號計算系統(tǒng)Mathematica與輔助方程的幾種結(jié)論,構(gòu)造了廣義Fitzhugh-Nagumo方程的多種無窮序列新解.
廣義Fitzhugh-Nagumo方程, 輔助方程, 首次積分, 無窮序列新解
在孤立子理論中給出試探函數(shù)法、輔助方程法、同倫映射法和B?cklund變換法等方法,構(gòu)造了具任意次非線性項的非線性發(fā)展方程的新精確解[1-7].比如:文獻(xiàn)[1]用試探函數(shù)法,構(gòu)造了廣義mKdV方程(1)的新解.文獻(xiàn)[2]用同倫映射法,構(gòu)造了任意次非線性項的非線性發(fā)展方程(2)的新精確解
這里α,β,γ是任意非零常數(shù),p,q,r非負(fù)常數(shù),n是非零任意常數(shù).
文獻(xiàn)[3-6]用輔助方程法與B?cklund變換法,構(gòu)造了廣義BBM方程和廣義Zakharov-Kuzentsov方程的新精確解
這里α,β,γ,s,δ,ρ是常數(shù),p是非零常數(shù).
文獻(xiàn)[7]用試探函數(shù)法,構(gòu)造了廣義Fitzhugh-Nagumo方程(6)的指數(shù)函數(shù)型新解這里v,k和p是任意非零常數(shù).
本文用一種輔助方程的幾種結(jié)論,構(gòu)造了廣義Fitzhugh-Nagumo方程的多種無窮序列新解.步驟一,利用函數(shù)變換與首次積分,給出了輔助方程的新解、B?cklund變換和解的非線性疊加公式.步驟二,通過函數(shù)變換,將廣義Fitzhugh-Nagumo方程的求解問題轉(zhuǎn)化為非線性常微分方程的求解問題.步驟三,利用符號計算系統(tǒng)Mathematica與輔助方程的幾種結(jié)論,構(gòu)造了廣義Fitzhugh-Nagumo方程的由雙曲函數(shù)、Jacobi橢圓函數(shù)、Riemannθ函數(shù)、三角函數(shù)和有理函數(shù)組成的多種無窮序列新解.這些解包括了光孤立子解、尖鋒孤立子解和緊孤立子解.
下面給出輔助方程的幾種新結(jié)論,并構(gòu)造廣義Fitzhugh-Nagumo方程的多種無窮序列新解
其中a,b,c是常數(shù).
1.1 輔助方程與首次積分
通過函數(shù)變換,可以把二階非線性常微分方程(7)轉(zhuǎn)化為一階常微分方程組
通過函數(shù)變換(9),把一階常微分方程組(8)轉(zhuǎn)化為一階常微分方程組(8)
經(jīng)計算獲得了一階常微分方程組(10)的如下首次積分
這里m是任意常數(shù).
把(11)式代入常微分方程組(10)的第一方程后得到下列常微分方程
1.2 輔助方程的解與B?cklund變換
下面在三種情況下,獲得了輔助方程(12)的新結(jié)論.
情況1.當(dāng)b=0時,方程(12),通過下列變換,轉(zhuǎn)化為Riccati方程(14)
情況2.Riccati方程(15)的解
經(jīng)計算獲得了Riccati方程(15)的下列解
這里d1,d2是任意常數(shù).
情況3.Riccati方程(15)的B?cklund變換.
若Z(τ)是Riccati方程(15)的非常數(shù)解,則下列也是Riccati方程(15)的解
這里A,B,C,d是不全為零的任意常數(shù).
情況4.當(dāng)b=0時,方程(12)存在如下解
情況5.當(dāng)b=0時,若G(τ)是輔助方程(12)的非常數(shù)解,則下列也是輔助方程(12)的解
這里f,h,s是不全為零的任意常數(shù).
情況6.當(dāng)b=a時,若G(τ)是第二種輔助方程(12)的解,則下列也是第二種輔助方程(12)的解
情況7.當(dāng)b=a時,方程(12)存在如下Jacobi橢圓函數(shù)解
情況9.當(dāng)a=-2b時,方程(12)通過下列變換(35),轉(zhuǎn)化為Riccati方程(36)
情況10.Riccati方程(36)的B?cklund變換.
若U(τ)是Riccati方程(36)的解,則也是Riccati方程(36)的解
其中P,Q,S是不全為零的任意常數(shù).
情況11.Riccati方程(36)的解
這里d1是任意常數(shù).
1.3 輔助方程與Riccati方程的B?cklund變換
輔助方程(7)通過函數(shù)變換(39),轉(zhuǎn)化為Riccati方程(40)
根據(jù)文獻(xiàn)[9]~[11]中給出的有關(guān)結(jié)論,可以獲得Riccati方程(40)的解、B?cklund變換和解的非線性疊加公式(未列出).因而,通過函數(shù)變換(39),獲得輔助方程(7)的無窮序列解.
下面用輔助方程的幾種結(jié)論,構(gòu)造廣義Fitzhugh-Nagumo方程的由Jacobi橢圓函數(shù)和Riemannθ函數(shù)等函數(shù)構(gòu)成的多種無窮序列新解.
將u(x,t)=u(ξ),ξ=μx+ωt(這里μ和ω是待定常數(shù)),代入廣義Fitzhugh-Nagumo方程(6)后得到下列非線性常微分方程
在非線性常微分方程(41)中進(jìn)行如下函數(shù)變換(42)后得到非線性常微分方程(43).
選擇非線性常微分方程(43)的如下形式解,構(gòu)造廣義Fitzhugh-Nagumo方程(6)的新解
這里g0,g1和g2是待定常數(shù).
將形式解(44)與輔助方程(7)一起代入非線性常微分方程(43),并令Gj(ξ)(G′(ξ))i(i=0,1,2,3,…,7,8;j+i=8)的系數(shù)為零后得到一個g0,g1,g2,a,b,c,μ,ω為未知量的非線性代數(shù)方程組(未列出).利用符號計算系統(tǒng)Mathematica求出該方程組的如下解
在(45)~(50)中(a+b)c<0.
將代數(shù)方程組的解(45)~(50)分別與形式解(44)一起代入(42)式后獲得Fitzhugh-Nagumo方程(6)的如下形式解
2.1 無窮序列光滑孤立子新解
根據(jù)文獻(xiàn)[9]~[11]中給出的有關(guān)結(jié)論,可以獲得Riccati方程(40)的解、B?cklund變換和解的非線性疊加公式(未列出).利用這些結(jié)論與關(guān)系式(39)和(40),構(gòu)造Fitzhugh-Nagumo方程的無窮序列新解.這里包括雙曲函數(shù)、三角函數(shù)和有理函數(shù)組成的光滑孤立子解.比如:通過下列疊加公式,可以獲得雙曲函數(shù)無窮序列新解
這里A,B,C,d是不全為零的任意常數(shù).
2.2 無窮序列類孤子新解
當(dāng)b=0,b=a和a=-2b時,通過形式解(51)~(56),獲得Fitzhugh-Nagumo方程的Riemannθ函數(shù)型、Jacobi橢圓函數(shù)型、雙曲函數(shù)型、三角函數(shù)型和有理函數(shù)型無窮序列新解.下面用形式解(55),構(gòu)造無窮序列類孤子新解.
情形1.當(dāng)b=0時,通過下列疊加公式,構(gòu)造雙曲函數(shù)型無窮序列類孤子新解
這里A,B,C,d是不全為零的任意常數(shù).
情形2.通過下列疊加公式,構(gòu)造Fitzhugh-Nagumo方程的指數(shù)函數(shù)型無窮序列尖鋒孤立子新解
這里f,s,h是不全為零的任意常數(shù).
情形3.當(dāng)b=a時,通過下列疊加公式,構(gòu)造Fitzhugh-Nagumo方程的Jacobi橢圓函數(shù)型無窮序列新解
情形4.當(dāng)b=a時,通過下列疊加公式,構(gòu)造Fitzhugh-Nagumo方程的Riemannθ函數(shù)型無窮序列新解
情形5.當(dāng)a=-2b時,通過下列疊加公式,構(gòu)造Fitzhugh-Nagumo方程的有理函數(shù)型無窮序列新解
其中P,Q,S是不全為零的任意常數(shù),d1是任意常數(shù).
文獻(xiàn)[1]~[7]用輔助方程法和試探函數(shù)法,獲得了具任意次非線性項發(fā)展方程的由雙曲函數(shù)、三角函數(shù)和有理函數(shù)組成的有限多個新解.本文在輔助方程法[3-15]的基礎(chǔ)上,給出二階非線性常微分方程的相關(guān)結(jié)論,構(gòu)造了廣義Fitzhugh-Nagumo方程的由雙曲函數(shù)、Jacobi橢圓函數(shù)、Riemannθ函數(shù)、三角函數(shù)和有理函數(shù)組成的多種無窮序列新解.這些解包括了光孤立子解、尖鋒孤立子解和緊孤立子解.
1 Fu Z T,Chen Z,Liu SK,Liu SD.New solutions to Generalized mKdV equation.Communnications in Theoretical Physics(Beijing),2004,42(1):25~28
2 莫嘉琪,張偉江,陳賢峰.強(qiáng)非線性發(fā)展方程孤波同倫解法.物理學(xué)報,2007,56(11):6169~6172(Mo JQ,ZhangW J,Chen X F.The homotopic solving method of solitary wave for strong nonlinear evolution equation.Acta Physica Sinica,2007,56(11):6169~6172(in Chinese))
3 Zheng X D,Chen Y,Li B,Zhang H Q.A new Generalization of extended tanh-function method for solving nonlinear evolution equations.Communnications in Theoretical Physics(Beijing),2003,39:647~652
4 Taogetusang,Sirendaoerji.New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov-Kuzentsov equation.Chinese Physics B,2006,15(6):1143~1148
5 Chen Y,Li B,Zhang H Q.B?cklund transformation and exact solutions for a new Generalized Zakharov-Kuzentsov equation with nonlinear terms of any order.Communnications in Theoretical Physics(Beijing),2003,39(2):135~140
6 Chen Y,Li B.New exact travellingwave solutions for Generalized Zakharov-Kuzentsov equations Using general pro-jective Riccatiequationmethod.Communnications in Theoretical Physics(Beijing),2004,41(1):1~6
7 Liu C P,Chen JK,Cai F.A direct algebraicmethod finding particular solutions to some nonlinear evolution equations.Communnications in Theoretical Physics(Beijing),2004,42(1):74~78
8 王軍民.修正的Korteweg de Vries-正弦Gordon方程的Riemannθ函數(shù)解.物理學(xué)報,2012,61(8):080201(1~5)(Wang JM.Riemannθfunction solutions to modified Korteweg de Vries-sine-Gordon equation.Acta Physica Sinica,2012,61(8):080201(1~5)(in Chinese))
9 套格圖桑,白玉梅.非線性發(fā)展方程的Riemann theta函數(shù)等幾種新解.物理學(xué)報,2013,62(10):100201(1~9)(Taogetusang,Bai Y M.Riemann theta function and other several kinds of new solutions of nonlinear evolution equations.Acta Physica Sinica,2013,62(10):100201(1~9))(in Chinese))
10 Taogetusang,Sirendaoerji,Li SM.Infinite Sequence Soliton-like Exact Solutions of The(2+1)-dimensional Breaking Soliton Equation.Communnications in Theoretical Physics(Beijing),2011,55(6):949~954
11 Taogetusang,Sirendaoerji,Li S M.New application to Riccatiequation.Chinese Physics B,2010,19(8):080303(1~8)
12張文玲,馬松華,陳晶晶.(2+1)維Korteweg-de Vries方程的復(fù)合波解及局域激發(fā).物理學(xué)報,2014,63(8):080506(1~7)(ZhangW L,Ma SH,Chen JJ.Complex wave solutions and localized excitations of(2+1)-dimensional korteweg-de Vries system.Acta Physica Sinica,2014,63(8):080506(1~7)(in Chinese))
13 Khaled A.Gepreel,Saleh Omran.Exact solutions for nonlinear partial fractional differential equations.Chinese Physics B,2012,21(11):110204(1~7)
14 Md Nur Alam,Md Ali Akbar,Syed Tauseef Mohyud Din.A novel G′(ξ)/G(ξ)-expansion method and its application to the Boussinesq equation.Chinese Physics B,2014,23(2):020203(1-10)
15 Xie F D,Chen J,LüZ S.Using symbolic computation to exactly solve the integrable Broer-Kaup equations in(2+1)-dimensional spaces.Communnications in Theoretical Phys-ics,2005,43(4):585~590
NEW INFINITE SEQUENCE SOLUTIONSOF THE GENERALIZED FITZHUGH-NAGUMO EQUATION*
Yi Lina?Bao Jundong Taogetusang
(The College of Mathematical Science,Inner Mongolia Normal University,Huhhot010022,China)
According to several conclusions of auxiliary equation,the new infinite sequence solutions of the generalized Fitzhugh-Nagumo equation is constructed in this paper.Firstly,the function transformation and the first integral are presented to obtain the new solutions,B?cklund transformation and the nonlinear solution superposition formula of the auxiliary equation.Secondly,through the function transformation,the problem to gain the solutions of the generalized Fitzhugh-Nagumo equation is changed to the problem of obtaining the solutions of the nonlinear ordinary differential equations.Thirdly,some conclusions of the auxiliary equation are employed to construct various new infinite sequence solutions of the generalized Fitzhugh-Nagumo equation with the help of symbolic computation system‘Mathematica’.
generalized Fitzhugh-Nagumo equation, auxiliary equations, first integral, new infinite sequence solutions
10.6052/1672-6553-2015-77
2015-9-28收到第1稿,2015-10-20收到修改稿.
*國家自然科學(xué)基金(11361040)、內(nèi)蒙古自治區(qū)自然科學(xué)基金(2015MS0128)、內(nèi)蒙古自治區(qū)高等學(xué)??茖W(xué)研究基金(NJZY16180)、內(nèi)蒙古自治區(qū)2016年碩士研究生科研創(chuàng)新項目(S20161013502)和內(nèi)蒙古師范大學(xué)研究生科研創(chuàng)新基金項目(CXJJS16081)資助的課題
?通訊作者E-mail:573028703@qq.com
Received 28 September 2015,revised 20 October 2015.
*The project supported by the Natural Natural Science Foundation of China(11361040),the Natural Science Foundation of Inner Mongolia Autonomous Region,China(2015MS0128),the Science Research Foundation of Institution of Higher Education of InnerMongolia Autonomous Region,China(NJZY16180),the Inner Mongolia autonomous region in 2016 graduate student scientific research innovation projects(S20161013502)and the Inner Mongolia normal university graduate student scientific research innovation fund projects(CXJJS16081)
?Corresponding author E-mail:573028703@qq.com