胡雯媚,王思宇,樊高瓊,劉運(yùn)軍,鄭 文,王強(qiáng)生,馬宏亮
( 四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,四川成都 611130)
?
西南麥區(qū)小麥品種苗期抗旱性鑒定及其指標(biāo)篩選
胡雯媚,王思宇,樊高瓊,劉運(yùn)軍,鄭 文,王強(qiáng)生,馬宏亮
( 四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,四川成都 611130)
摘要:為了解西南麥區(qū)小麥品種苗期抗旱性和篩選適宜鑒定指標(biāo),利用盆栽和大田干旱棚2種栽培方式,對(duì)西南地區(qū)42個(gè)小麥品種進(jìn)行自然干旱脅迫。盆栽試驗(yàn)測(cè)定苗期葉面積(X1)、苗高(X2)、根長(zhǎng)(X3)、地上部干重(X4)、地下部干重(X5)、全株干重(X6)、根冠比(X7)、植株含水率(X8)、離體葉片失水速率(X9)、葉綠素含量(X10)等10個(gè)指標(biāo),大田控水試驗(yàn)于收獲期測(cè)定株高(X11)、小穗數(shù)(X12)、穗長(zhǎng)(X13)、單株成穗數(shù)(X14)、單穗重(X15)、單株產(chǎn)量(X16)等6個(gè)指標(biāo)。以各指標(biāo)的抗旱系數(shù)作為衡量抗旱性的依據(jù),運(yùn)用加權(quán)隸屬函數(shù)、聚類分析、逐步回歸等方法對(duì)小麥抗旱性進(jìn)行綜合評(píng)價(jià)及分類。結(jié)果表明,42個(gè)小麥品種可劃分為水分敏感、弱抗旱、中度抗旱和強(qiáng)抗旱4種抗旱類型,分別包括3、23、13和 3個(gè)品種。以苗期和收獲期16個(gè)指標(biāo)的抗旱系數(shù)為基礎(chǔ),利用逐步回歸方法建立了小麥苗期抗旱性評(píng)價(jià)回歸模型:D1=-1.593+0.152X1+0.293X2+0.256X3+0.151X5+0.426X6+0.107X7+0.958X12+0.085X14+0.056X15+0.205X16,R2=0.998 8,平均擬合精度99.23%;利用苗期10個(gè)指標(biāo)的抗旱系數(shù)進(jìn)行逐步回歸分析建立小麥苗期抗旱性評(píng)價(jià)回歸模型:D2=-0.677+0.218X1+0.481X3-0.803X4+0.230X5+1.232X6,R2=0.674 0,平均擬合精度88.50%,表明用苗期性狀結(jié)合產(chǎn)量性狀評(píng)判小麥抗旱性更為可靠準(zhǔn)確。
關(guān)鍵詞:小麥;苗期;抗旱性;隸屬函數(shù);聚類分析;逐步回歸
西南麥區(qū)是我國(guó)第三大麥區(qū),小麥主要分布于丘陵旱地,干旱是其生產(chǎn)面臨的主要問(wèn)題。丘陵區(qū)基礎(chǔ)設(shè)施差,灌溉條件缺乏,選育抗旱品種是應(yīng)對(duì)干旱的最便利途徑。但關(guān)于西南麥區(qū)小麥抗旱種質(zhì)資源的研究鮮見報(bào)道,不僅影響小麥良種科學(xué)布局,也影響該區(qū)域小麥抗旱性的深入研究。
前人從形態(tài)、發(fā)育、生理、生化等方面對(duì)小麥抗旱性進(jìn)行了研究,認(rèn)為相對(duì)含水率[1]、離體葉片失水速率、根系性狀、光合參數(shù)[2]、生育期、滲透調(diào)節(jié)物質(zhì)、抗氧化酶活性[3-4]、脫落酸含量[5-6]等性狀是作物苗期抗旱性鑒定及品種篩選的重要指標(biāo)。但有關(guān)小麥苗期抗旱性的研究多局限于相關(guān)生理生化指標(biāo)測(cè)定與分析,忽略了苗期干旱對(duì)產(chǎn)量的影響,難以全面客觀地反映其抗旱性。本研究采用苗期盆栽和大田干旱棚試驗(yàn)相結(jié)合的方法,綜合苗期及收獲期形態(tài)、發(fā)育、生理生化指標(biāo),對(duì)西南地區(qū)育成的42個(gè)小麥品種抗旱性進(jìn)行綜合評(píng)價(jià),同時(shí)利用逐步回歸方法,建立小麥抗旱性評(píng)價(jià)回歸模型,以期為該地區(qū)小麥抗旱育種及品種抗旱性鑒定的指標(biāo)選擇提供科學(xué)依據(jù)。
1材料與方法
1.1供試材料
試驗(yàn)采用盆栽和大田干旱棚兩種栽培方式。供試材料為42個(gè)小麥品種,分別來(lái)自四川省、重慶市、云南省、貴州省相關(guān)育種單位(表1)。
1.2試驗(yàn)設(shè)計(jì)
盆栽試驗(yàn)于2014年11-12月在遮雨棚內(nèi)進(jìn)行,每個(gè)品種設(shè)自然干旱(植株在正常澆水條件下生長(zhǎng)至1葉1心期,停止?jié)菜帘硇兔黠@時(shí)進(jìn)行自然干旱處理)和水分充足(生長(zhǎng)期間正常澆水,相對(duì)含水量控制在田間持水量的60%~70%)兩種水分處理。每個(gè)小麥品種挑選大小均勻、飽滿整齊的種子16粒,均勻播種在花盆(直徑為15 cm,高25 cm)土壤中,重復(fù)3次,共計(jì)252盆。以混合均勻的營(yíng)養(yǎng)土和沙石(1∶3)為栽培介質(zhì),每盆6 kg,不額外施肥,播種后置于遮雨棚內(nèi)(頂部用白色塑料做成的拱棚,高2.0 m,四面無(wú)遮擋),于干旱脅迫表型明顯時(shí)期(約干旱后20 d)取樣測(cè)定離體葉片失水速率、苗高、葉面積、植株含水率、根長(zhǎng)、葉綠素含量、地上部分干重、地下部分干重、全株干重、根冠比等10個(gè)指標(biāo)。經(jīng)稱重法測(cè)定,取樣時(shí)干旱脅迫處理土壤相對(duì)含水量為35%~40%,對(duì)照土壤相對(duì)含水量為60%~70%。
大田干旱棚試驗(yàn)于2014年10月至2015年5月在四川農(nóng)業(yè)大學(xué)溫江試驗(yàn)基地進(jìn)行,每個(gè)品種也設(shè)自然干旱(播種后至開花前進(jìn)行遮雨處理)、水分充足(露天栽培,播種至開花前累計(jì)降雨36.5 mm,屬于平水年份。并于拔節(jié)期澆水一次,澆水量按每平米10 L計(jì)算)。采用單粒播種,株距3 cm,行距20 cm,每品種播種2行,行長(zhǎng)1 m,重復(fù)3次。試驗(yàn)地施N 120 kg·hm2、P2O560 kg·hm2和K2O 60 kg·hm2,磷和鉀連同60%氮作為底肥施用,剩余40%氮作為拔節(jié)肥施用。
大田干旱棚試驗(yàn)于收獲期每小區(qū)取15株小麥進(jìn)行室內(nèi)考種,測(cè)定株高、穗長(zhǎng)、小穗數(shù)、單株成穗數(shù)、單穗重和單株產(chǎn)量。
表1 供試小麥品種編號(hào)及來(lái)源
1.3數(shù)據(jù)統(tǒng)計(jì)與分析
數(shù)據(jù)整理與分析采用Microsoft Excel 2010,采用DPS軟件進(jìn)行相關(guān)、聚類分及逐步回歸等分析??购迪禂?shù)及其隸屬函數(shù)值和綜合評(píng)價(jià)值(D)計(jì)算公式如下:
抗旱系數(shù)=干旱脅迫測(cè)定值/對(duì)照測(cè)定值
U(Xj)=(Xj-Xjmin)/(Xjmax-Xjmin),j=1,2,…,n
2結(jié)果與分析
2.1小麥品種各項(xiàng)指標(biāo)的抗旱系數(shù)
由表2可以看出,在干旱脅迫下,小麥各指標(biāo)大多較對(duì)照有不同程度的下降(抗旱系數(shù)小于1),不僅不同小麥品種同一指標(biāo)的變化幅度不盡相同,而且同一品種不同指標(biāo)的變化也存在差異,說(shuō)明單一指標(biāo)抗旱系數(shù)不能準(zhǔn)確地反映小麥品種的抗旱性,因此需要通過(guò)多指標(biāo)綜合分析方法來(lái)評(píng)價(jià)。
表2 干旱脅迫條件下小麥不同指標(biāo)的抗旱系數(shù)
X1:葉面積;X2:苗高;X3:根長(zhǎng);X4:地上部分干重;X5:地下部分干重;X6:全株干重;X7:根冠比;X8:植株含水率;X9:離體葉片失水速率;X10:葉綠素含量;X11:株高;X12:小穗數(shù);X13:穗長(zhǎng);X14:?jiǎn)沃瓿伤霐?shù);X15:?jiǎn)嗡胫?;X16:?jiǎn)沃戤a(chǎn)量。下同
X1:Leaf area;X2:Seedling height;X3:Root length;X4:Shoot dry weight;X5:Root dry weight;X6:The whole plant dry weight;X7:Root shoot ratio;X8:Plant water content;X9:Excised-leaf water loss rate;X10:Chlorophyll content;X11:Plant height;X12:Spikelet number;X13:Spike length;X14:Panicle number per plant;X15:Single spike weight;X16:Yield per plant.The same as following tables
2.2供試小麥品種抗旱性綜合評(píng)價(jià)
以各品種各抗旱系數(shù)為依據(jù),得出其隸屬函數(shù)值,并利用加權(quán)隸屬函數(shù)法計(jì)算出不同小麥品種的綜合評(píng)價(jià)值(D值)(表3)??梢姽┰?2份小麥品種的D值變化范圍為0.254~0.813。根據(jù)D值的大小,品種抗旱能力排序?yàn)閂1>V10>V8>V38>V23>V40>V11>V16>V15>V19>V18>V27>V5>V4>V26> V14>V41>V13>V20>V9>V34>V12>V30>V21>V3>V17>V2>V35>V17>V32>V35>V42>V25>V29>V33>V7>V6>V39>V31>V28>V24>V22。采用最長(zhǎng)距離法對(duì)D值進(jìn)行聚類分析,結(jié)果(圖1)表明,42個(gè)小麥品種可聚為4類:蜀萬(wàn)8號(hào)、川農(nóng)16、蜀麥482為強(qiáng)抗旱品種,占供試材料的7.14%;川麥44、綿雜麥168、綿農(nóng)4號(hào)等13個(gè)小麥品種為中等抗旱品種,占供試材料的30.95%;內(nèi)麥9號(hào)、川麥39、川麥51等23個(gè)小麥品種為弱抗旱型品種,占供試材料的54.56%;川育23、綿麥367、蜀麥969為水分敏感型品種,占供試材料的7.14%。
表3 干旱脅迫條件下小麥品種各指標(biāo)抗旱系數(shù)的隸屬函數(shù)值
圖1 小麥品種抗旱性聚類分析
2.3小麥品種的抗旱性回歸模型及鑒定指標(biāo)
把抗旱性綜合評(píng)價(jià)值(D值)作因變量,苗期和收獲期共16項(xiàng)指標(biāo)的抗旱系數(shù)作自變量進(jìn)行逐步回歸分析,得到回歸方程D1=-1.593+0.152X1+0.293X2+0.256X3+0.151X5+0.426X6+0.107X7+0.958X12+0.085X14+0.056X15+0.205X16,R2=0.998 8,P=0.000 1;把抗旱性綜合評(píng)價(jià)值(D值)作因變量,對(duì)苗期10個(gè)指標(biāo)的抗旱系數(shù)進(jìn)行逐步回歸分析,得到小麥苗期抗旱性評(píng)價(jià)回歸模型D2=-0.677+0.218X1+0.481X3-0.803X4+0.230X5+1.232X6,R2=0.674 0,P= 0.0001。由方程D1可知,苗期和收獲期16個(gè)單項(xiàng)指標(biāo)中,苗期株高、葉面積、根長(zhǎng)、根干重、全株干重、根冠比及收獲期小穗數(shù)、單株成穗數(shù)、單穗重、單株產(chǎn)量等10個(gè)指標(biāo)對(duì)小麥抗旱性有顯著影響; 由方程D2可知,苗期10個(gè)單項(xiàng)指標(biāo)中葉面積、根長(zhǎng)、苗干重、根干重、全株干重等5個(gè)指標(biāo)對(duì)小麥抗旱性有顯著影響?;貧w方程D1平均擬合精度達(dá)99.23%,回歸方程D2平均擬合精度為88.50%(表4),說(shuō)明方程中的指標(biāo)對(duì)小麥抗旱性影響顯著,兩方程均可用于小麥品種抗旱性評(píng)價(jià)。
表4 小麥品種抗旱性回歸方程的精度
(續(xù)表4Continued table 4)
品種VarietyD1原始值Primaryvalue擬合值Fittedvalue擬合誤差Fittingerror擬合精度Accuracy/%D2原始值Primaryvalue擬合值Fittedvalue擬合誤差Fittingerror擬合精度Accuracy/%V210.4900.4890.0010.9980.4900.4330.0570.883V220.2500.2460.0040.9860.2500.316-0.0660.736V230.6700.6690.0010.9990.6700.6200.0510.925V240.2600.2520.0080.9680.2600.348-0.0880.662V250.4500.456-0.0060.9860.4500.606-0.1560.653V260.5700.5650.0050.9910.5700.612-0.0420.927V270.5900.592-0.0020.9970.5900.600-0.0100.984V280.2900.294-0.0040.9870.2900.391-0.1010.652V290.4300.4240.0070.9850.4300.4220.0080.982V300.4900.493-0.0030.9950.4900.3890.1010.793V310.3700.374-0.0040.9910.3700.2920.0780.789V320.4600.462-0.0020.9950.4600.476-0.0160.966V330.4300.4250.0050.9880.4300.435-0.0050.990V340.5100.5050.0050.9900.5100.4280.0820.839V350.4600.464-0.0040.9910.4600.4600.0001.000V360.4600.467-0.0070.9850.4600.472-0.0120.975V370.4600.4590.0010.9980.4600.479-0.0190.960V380.6900.691-0.0010.9980.6900.6840.0070.991V390.4000.3990.0010.9980.4000.490-0.0900.774V400.6600.6550.0060.9920.6600.6440.0160.976V410.5400.544-0.0040.9930.5400.617-0.0770.858V420.4600.462-0.0020.9950.4600.3840.0760.834AVG0.9920.885
2.4小麥品種各指標(biāo)抗旱系數(shù)與D值的相關(guān)性及抗旱性不同類別品種間的特征比較
相關(guān)性分析(表5)表明,除苗期葉片失水速率、相對(duì)含水率、葉綠素,收獲期株高外,其他鑒定指標(biāo)值均與D值呈極顯著正相關(guān)。結(jié)合聚類分析結(jié)果,比較與D值顯著相關(guān)的各鑒定指標(biāo)在小麥不同抗旱型類別間的表現(xiàn)特征(表6)可知,隨著小麥抗旱性的增強(qiáng),各指標(biāo)的抗旱系數(shù)呈增加趨勢(shì),其中單株產(chǎn)量的抗旱系數(shù)增幅最大;在苗期鑒定指標(biāo)中,隨小麥抗旱性的增強(qiáng),根干重抗旱系數(shù)增幅最大,達(dá)72.8%。水分敏感型和弱抗旱型小麥品種各鑒定指標(biāo)抗旱系數(shù)均小于1;強(qiáng)抗旱型小麥品種苗期各鑒定指標(biāo)抗旱系數(shù)略小于1,而收獲期各指標(biāo)抗旱系數(shù)均大于1,說(shuō)明強(qiáng)抗旱型小麥品種苗期受干旱脅迫影響較小。
表5 小麥品種各指標(biāo)抗旱系數(shù)與D值的相關(guān)性
*:P<0.05;**:P<0.01,n=42
表6 小麥品種聚類結(jié)果中各抗旱類別各顯著指標(biāo)的抗旱系數(shù)均值
3討 論
西南麥區(qū)冬、春季節(jié)性干旱嚴(yán)重,造成小麥幼苗生長(zhǎng)遲緩,分蘗減少,小麥苗期素質(zhì)降低,直接影響后期小麥生長(zhǎng)及產(chǎn)量的形成。篩選抗旱性強(qiáng)的品種,是應(yīng)對(duì)干旱脅迫最便利有效的途徑,而篩選標(biāo)準(zhǔn)則直接關(guān)系到篩選結(jié)果的可靠性。有關(guān)小麥品種抗旱性篩選,前人主要在苗期進(jìn)行,采用的鑒定指標(biāo)有反復(fù)干旱存活率、葉片數(shù)、葉面積、地上部分干重、根干重、植株干重、根冠比、株高、單株分蘗數(shù)等[7-9]。本試驗(yàn)以西南麥區(qū)有代表性的42個(gè)小麥品種為材料,綜合利用苗期和收獲期16個(gè)指標(biāo)的抗旱系數(shù)建立了小麥苗期抗旱性評(píng)價(jià)回歸模型,同時(shí)利用苗期10個(gè)指標(biāo)的抗旱系數(shù)進(jìn)行逐步回歸分析建立小麥苗期抗旱性評(píng)價(jià)回歸模型,兩個(gè)回歸模型的平均擬合精度高分別為99.23%和88.50%,表明將產(chǎn)量性狀納入評(píng)判小麥品種苗期抗旱性更為可靠。
同時(shí),對(duì)抗旱性不同類別品種間特征(表5,表6)進(jìn)行比較,發(fā)現(xiàn),單株產(chǎn)量抗旱系數(shù)隨小麥抗旱性增強(qiáng)的增幅最大;同時(shí),在苗期各鑒定指標(biāo)中,隨小麥抗旱性增強(qiáng),根干重抗旱系數(shù)增幅最大,達(dá)72.8%,因而認(rèn)為,強(qiáng)抗旱性品種產(chǎn)量受干旱影響小可能與其根系對(duì)干旱的適應(yīng)性相關(guān),在干旱條件下強(qiáng)抗旱型品種根系受干旱的影響較小,有利于在干旱條件下吸收土壤中的水分和養(yǎng)分,從而減少干旱的影響。
參考文獻(xiàn):
[1]單長(zhǎng)卷,湯菊香,郝文芳.水分脅迫對(duì)洛麥9133幼苗葉片生理特性的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),2006,22(3):229-232.
Shan C J,Tang J X,Hao W F.Effect of water stress on leaf physiological characteristics of Luomai 9133 seedling [J].JiangsuJournalofAgriculturalSciences,2006,22(3):229-232.
[2]田山君,楊世民,孔凡磊,等.西南地區(qū)玉米苗期抗旱品種篩選[J].草業(yè)學(xué)報(bào),2014,23(1):50-57.
Tian S J,Yang S M,Kong F L,etal.Screening in Southwest China of drought-resistant varieties of maize at the seedling stage [J].ActaPrataculturaeSinica,2014,23(1):50-57.
[3]張智猛,戴良香,宋文武,等.干旱處理對(duì)花生品種葉片保護(hù)酶活性和滲透物質(zhì)含量的影響[J].作物學(xué)報(bào),2013,39(1):133-141.
Zhang Z M,Dai L X,Song W W,etal.Effect of drought stresses at different growth stages on peanut leaf protective enzyme activities and osmoregulation substances content [J].ActaAgronomicaSinica,2013,39(1):133-141.
[4]Hassan N M,El-Bastawisy Z M,El-Basawisy Z M,etal.Roles of dehydrin genes in wheat tolerance to drought stress [J].JournalofAdvancedResearch,2015,6(2):179-188.
[5]郭貴華,劉海艷,李剛?cè)A,等.ABA緩解水稻孕穗期干旱脅迫生理特性的分析[J].中國(guó)農(nóng)業(yè)科學(xué),2014,47(22):4380-4391.
Guo G H,Liu H Y,Li G H,etal.Analysis of physiological characteristics about ABA alleviating rice booting stage drought stress [J].ScientiaAgriculturaSinica,2014,47(22):4380-4391.
[6]張 煒,高 巍,曹 振,等.干旱脅迫下小麥(TriticumaestivumL.)幼苗中ABA和IAA的免疫定位及定量分析[J].中國(guó)農(nóng)業(yè)科學(xué),2014,47(15):2940-2948.
Zhang W,Gao W,Cao Z,etal.Immunolocalization and quantitation of ABA and IAA in the organs of wheat (TriticumaestivumL.) under drought stress [J].ScientiaAgriculturaSinica,2014,47(15):2940-2948.
[7]賴運(yùn)平,李 俊,張澤全,等.小麥苗期抗旱相關(guān)形態(tài)指標(biāo)的灰色關(guān)聯(lián)度分析[J].麥類作物學(xué)報(bào),2009,29(6):1055-1059.
Lai Y P,Li J,Zhang Z Q,etal.Grey correlation analysis of morphological traits related to drought tolerance of wheat at seedling stage [J].JournalofTriticeaeCrops,2009,29(6):1055-1059.
[8]衛(wèi)云宗,劉新月,張久剛.小麥苗期抗旱類型研究[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2008,16(6):1409-1412.
Wei Y Z,Liu X Y,Zhang J G.Types of drought resistance of wheat at seedling stage [J].ChineseJournalofEco-Agriculture,2008,16(6):1409-1412.
[9]田夢(mèng)雨,李丹丹,戴廷波,等.水分脅迫下不同基因型小麥苗期的形態(tài)生理差異[J].應(yīng)用生態(tài)學(xué)報(bào),2010,21(1):41-47.
Tian M Y,Li D D,Dai T B,etal.Morphological and physiological differences of wheat genotypes at seedling stage under water stress [J].ChineseJournalofAppliedEcology,2010,21(1):41-47.
Analysis on the Drought Resistance and Screening of Drought Resistance Appraisal Indexes of Wheat Cultivars in Seedling Stage in Southwest Area
HU Wenmei,WANG Siyu,FAN Gaoqiong,LIU Yunjun,ZHENG Wen,WANG Qiangsheng,MA Hongliang
(College of Agronomy,Sichuan Agricultural University/Key Laboratory of Crop Eco-physiology and Farming System in southwest China,Ministry of Agricultural,Chengdu,Sichuan 611130, China)
Abstract:The objectives of this study were to evaluate the drought resistance and screen indexes for 42 wheat cultivars seedlings in the southwest of China. Natural drought stress was performed by pot culture and field cultivation.Then 10 traits leaf area (X1), seedling height (X2), root length (X3), shoot dry weight (X4), root dry weight (X5), the whole plant dry matter accumulation (X6), root shoot ratio (X7), plant water content (X8), containing excised-leaf water loss rate (X9), chlorophyll content (X10) of wheat cultivars cultured in pot and 6 indicators obtaining plant height (X11), spikelet number (X12), spike length (X13), panicle number per plant (X14), single spike weight (X15), yield per plant (X16) of wheat cultivars cultivated in field in harvest time were measured. Comprehensive assessment on drought resistance and classification of these wheat cultivars were implemented by using weighted membership function, clustering analysis and stepwise regression based on every index of drought resistance coefficient. The results suggested that:42 wheat cultivars were divided into four drought-tolerant types by cluster analysis, 3 of the 42 varieties were drought-sensitive type, 23 varieties were weak drought-resistance type, 13 were medium drought-resistance type, and 3 were high drought-resistance type. A mathematical evaluation model for wheat drought tolerance was established that containing 16 drought resistance coefficients of seeding stage and harvest period by means of regression analysis, and D1=-1.593+0.152X1+0.293X2+0.256X3+0.151X5+0.426X6+0.107X7+0.958X12+0.085X14+0.056X15+0.205X16,R2=0.998 8. Average fittingaccuracy of all varieties were 99.23%.A mathematical evaluation model for wheat drought tolerance was established that containing 10 drought resistance coefficients of seeding stage by means of regression analysis, and D2=-0.677+0.218X1+0.481X3-0.803X4+0.230X5+1.232X6,R2=0.674 0. Average fittingaccuracy of all varieties were 88.50%. The drought resistance in wheat seedling stage significantly associated with the indexes in harvest period. It is more dependable to evaluate the drought resistance uniting the seeding and yield trait.
Key words:Wheat; Seedling stage; Drought resistance; Membership function; Cluster analysis; Regression analysis
中圖分類號(hào):S512.1;S311
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1009-1041(2016)02-0182-08
通訊作者:樊高瓊(E-mail:fangao20056@126.com)
基金項(xiàng)目:四川省育種攻關(guān)項(xiàng)目(2011NZ0098-15-3);國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503127)
收稿日期:2015-10-17修回日期:2015-11-11
網(wǎng)絡(luò)出版時(shí)間:2016-01-26
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160126.1945.016.html
第一作者E-mail:hwenmei1991@sina.com