王宏天 綜述 鄭春霞 審校
·腎臟病基礎(chǔ)·
纖維蛋白原與腎臟疾病
王宏天1,2綜述 鄭春霞2審校
研究表明,纖維蛋白原與凝血、炎癥、動(dòng)脈粥樣硬化、心腦血管疾病密切相關(guān)。在腎臟疾病中,纖維蛋白原參與了腎小球病變、足細(xì)胞損傷及腎小管間質(zhì)纖維化等。尿纖維蛋白原還可作為早期診斷急性腎損傷的標(biāo)志物。體外研究發(fā)現(xiàn)纖維蛋白原可通過(guò)Toll樣受體(TLRs)通路介導(dǎo)足細(xì)胞釋放某些趨化因子和細(xì)胞因子。本文主要就纖維蛋白原在腎臟疾病中的作用進(jìn)展作一總結(jié),為其臨床和基礎(chǔ)研究奠定基礎(chǔ)。
纖維蛋白原 足細(xì)胞 纖維化 炎癥 急性腎損傷
纖維蛋白原(Fg)是一種主要由肝臟合成的糖蛋白(α2β2γ2),部分由肺上皮細(xì)胞合成。纖維蛋白原參與腎臟疾病、炎癥、心腦血管疾病等多種疾病,可與巨噬細(xì)胞、成纖維細(xì)胞、腎臟足細(xì)胞表達(dá)的Toll樣受體 (TLRs)等不同的受體結(jié)合,介導(dǎo)系列的病理生理作用。本文總結(jié)纖維蛋白原與腎小球病變、急性腎損傷(AKI)、足細(xì)胞損傷、腎小管間質(zhì)纖維化等疾病的最新研究成果,闡述纖維蛋白原參與腎臟疾病的機(jī)制,為進(jìn)一步研究提供理論依據(jù)。
結(jié)構(gòu) Fg包括Aα、Bβ、γ多肽鏈,每條肽鏈分別由610、461及411個(gè)氨基酸殘基構(gòu)成。Fg的分子量是340 kD,血漿濃度為2~4 g/L,半衰期近4天[1]。Fg的中心結(jié)構(gòu)域稱為“E結(jié)構(gòu)域”,末端形成膨大球狀結(jié)構(gòu)域稱為“D結(jié)構(gòu)域”[2](圖1)。
圖1 纖維蛋白原的模式圖[3]
Fg由三個(gè)獨(dú)立基因編碼。編碼Aα、Bβ鏈、γ多肽鏈的基因分別位于4號(hào)染色體的長(zhǎng)臂端(4q23-4q32),長(zhǎng)度約為50kb;其中Aα基因有5個(gè)外顯子,Bβ基因和γ基因均有8個(gè)外顯子[1]。
生理作用 其重要的生理功能是參與止血。此外,在組織修復(fù)、促進(jìn)傷口愈合、抗感染中亦發(fā)揮重要作用[4]。
病理作用
參與炎癥 巨噬細(xì)胞等炎癥細(xì)胞和免疫細(xì)胞表達(dá)TLR4。Fg可結(jié)合TLR4等受體調(diào)節(jié)炎癥過(guò)程。Fg可以活化核因子κB(NFκB),介導(dǎo)局部細(xì)胞因子的釋放。Fg及其降解的E片段等可以促進(jìn)白細(xì)胞溢出血管,到達(dá)炎癥區(qū)域。Fg還可促進(jìn)巨噬細(xì)胞分泌巨噬細(xì)胞炎性蛋白1α/1β、單核細(xì)胞趨化蛋白1(MCP-1)、白細(xì)胞介素6(IL-6)、IL-8、腫瘤壞死因子α(TNF-α)、基質(zhì)金屬蛋白酶1和9[5-8]。在多發(fā)性硬化、阿爾茨海默病、類風(fēng)濕性關(guān)節(jié)炎、杜氏肌營(yíng)養(yǎng)不良、結(jié)腸炎、癌癥中,F(xiàn)g通過(guò)結(jié)合整合素受體或細(xì)胞間黏附分子1(ICAM-1)等發(fā)揮促炎作用[8]。
促細(xì)胞增殖 Fg可結(jié)合成纖維細(xì)胞生長(zhǎng)因2和血管內(nèi)皮細(xì)胞生長(zhǎng)因子促進(jìn)內(nèi)皮細(xì)胞增生。Fg及其降解片段X、D可與ICAM-1結(jié)合,促進(jìn)成纖維細(xì)胞、T/B淋巴細(xì)胞等增殖[9-10]。
調(diào)節(jié)血管舒縮活動(dòng),參與血管疾病 Fg與血管內(nèi)皮細(xì)胞相互作用引起血管舒縮:通過(guò)α5β1或αvβ3整合素受體可引起血管的舒張;而通過(guò)細(xì)胞外調(diào)節(jié)激酶1或2和釋放增多的內(nèi)皮素1則可引起血管的收縮。不僅如此,F(xiàn)g還可通過(guò)ICAM-1和整合素信號(hào)途徑影響內(nèi)皮層的完整性和增強(qiáng)血管壁的通透性。
Fg除與內(nèi)皮細(xì)胞間的作用,其亦與平滑肌細(xì)胞、血小板、白細(xì)胞協(xié)同作用,促進(jìn)血管動(dòng)脈粥樣硬化的發(fā)生發(fā)展。Fg可結(jié)合血小板表面整合素受體,橋接血小板,促其聚集。循環(huán)中的Fg與動(dòng)脈粥樣硬化、心肌梗死和中風(fēng)具有強(qiáng)相關(guān)性。因此Fg是外周動(dòng)脈疾病、缺血性心、腦血管事件的高危因素[11-16]。另外,F(xiàn)g的C末端序列可與分布于血管組織的肥大細(xì)胞結(jié)合,引起脫顆粒反應(yīng),釋放組胺,導(dǎo)致系統(tǒng)性血壓的降低[17]。
此外,在杜氏肌營(yíng)養(yǎng)不良疾病中,骨骼肌積聚的Fg刺激局部的巨噬細(xì)胞釋放轉(zhuǎn)化生長(zhǎng)因子β(TGF-β),促進(jìn)成纖維細(xì)胞合成細(xì)胞外基質(zhì),導(dǎo)致纖維化。Ryu等[18]發(fā)現(xiàn),F(xiàn)g可結(jié)合β3整合素或ICAM-1,調(diào)控神經(jīng)元、肺上皮細(xì)胞的修復(fù)過(guò)程。在慢性呼吸道疾病中Fg結(jié)合ICAM-1,促進(jìn)上皮細(xì)胞過(guò)多分泌黏液。
文獻(xiàn)報(bào)道Fg參與膜增生性腎小球腎炎(MPGN)、新月體腎炎、糖尿病腎病(DN)、狼瘡性腎炎的進(jìn)展。Fg可通過(guò)結(jié)合足細(xì)胞上的TLRs參與腎臟損害。TLRs最初被發(fā)現(xiàn)是機(jī)體先天免疫系統(tǒng)的感應(yīng)器。TLRs的內(nèi)源性配體大分子物質(zhì)除了Fg,還有熱休克蛋白、透明質(zhì)酸低聚糖等。
Banas等[19]發(fā)現(xiàn),在體外實(shí)驗(yàn)中Fg可通過(guò)結(jié)合TLR4刺激小鼠足細(xì)胞分泌CCL2、CCL7、CXCL1、CXCL5增多;而轉(zhuǎn)染TLR4-siRNA可以抑制這些趨化因子的表達(dá)水平。并且在MPGN動(dòng)物模型發(fā)現(xiàn)Fg在腎小球沉積增加。該研究認(rèn)為Fg可通過(guò)內(nèi)源性配體TLR4參與MPGN進(jìn)展。
Motojima等[20]亦報(bào)道Fg可以通過(guò)足細(xì)胞TLRs信號(hào)通路介導(dǎo)損傷。在CD25轉(zhuǎn)基因NEP小鼠(人CD25分子選擇性表達(dá)在小鼠的部分足細(xì)胞上)模型中,包囊腔中出現(xiàn)Fg等大分子物質(zhì),實(shí)驗(yàn)表明Fg可結(jié)合在病變的CD25+或CD25-的足細(xì)胞上。體外實(shí)驗(yàn)證實(shí),F(xiàn)g可刺激小鼠足細(xì)胞表達(dá)MCP-1、TNF-α、TLR2增多。而利用TLR2 siRNA和(或)TLR4 siRNA或MyD88 siRNA轉(zhuǎn)染后發(fā)現(xiàn),F(xiàn)g刺激引起的MCP-1mRNA表達(dá)上調(diào)受到抑制,TLR2mRNA、TLR4mRNA和MyD88mRNA的表達(dá)亦被其相應(yīng)的siRNA抑制。該研究認(rèn)為Fg可通過(guò)TLR4/2-MyD88途徑介導(dǎo)足細(xì)胞釋放細(xì)胞因子參與病變進(jìn)展。
另有研究在新月體腎炎小鼠模型觀察到:纖維蛋白(原)通過(guò)誘導(dǎo)巨噬細(xì)胞的聚集和浸潤(rùn)加重疾病,而通過(guò)降低Fg可減小新月體體積、減輕巨噬細(xì)胞的浸潤(rùn)和維持腎功能[21]。在2型糖尿病(T2DM)患者,高水平Fg可能是發(fā)生DN的危險(xiǎn)因素和尿蛋白進(jìn)展的預(yù)測(cè)指標(biāo)[22]。在系統(tǒng)性紅斑狼瘡患者,F(xiàn)g在腎小球形成透明血栓,或沉積在基底膜和在“洋蔥皮樣”病變的小動(dòng)脈,進(jìn)而促進(jìn)腎小球損傷[2]。另有報(bào)道,利用安克洛酶特異性降解Fg后,可以減少Fg在小鼠腎臟的沉積和緩解小鼠狼瘡性腎炎的進(jìn)展,改善其生存率[23]。
這些研究的成果表明,F(xiàn)g可能通過(guò)TLRs 信號(hào)通路或其他途徑加重足細(xì)胞的損傷及腎小球病情的進(jìn)展。這些研究加深了Fg參與腎臟疾病的機(jī)制認(rèn)識(shí)。
多項(xiàng)研究表明Fg在AKI中的作用具有多樣性。Hoffmann等[24]利用急性缺血再灌注模型、順鉑中毒小鼠實(shí)驗(yàn)及臨床試驗(yàn)證實(shí):尿Fg可以作為早期診斷AKI的敏感標(biāo)志物,其價(jià)值可與N-乙酰-β-D-葡萄糖苷酶、腎損傷分子1相媲美。在另一項(xiàng)研究中發(fā)現(xiàn),F(xiàn)g降解產(chǎn)生的生物活性肽段Bβ15-42(28個(gè)氨基酸組成)可促進(jìn)腎小管上皮細(xì)胞再生,抑制其凋亡,保護(hù)小鼠急性缺血性腎損傷[25]。Bβ15-42肽段亦有保護(hù)心肌細(xì)胞的作用[26]。
S?rensen等[27]研究發(fā)現(xiàn),在缺血再灌注小鼠模型中循環(huán)的Fg在腎臟沉積增多;同時(shí),腎小管上皮細(xì)胞亦被誘導(dǎo)表達(dá)Fg。體外實(shí)驗(yàn)中IL-6可以誘導(dǎo)腎小管上皮細(xì)胞表達(dá)Fg;但是Fg可抑制腎小管上皮細(xì)胞的黏附和遷移。在該小鼠模型中,F(xiàn)g雜合子小鼠(Fg+/-)的生存狀況與野生小鼠相似,但是Fg+/-小鼠早期的腎功能保持得更好。Fg完全缺失(Fg-/-)小鼠的腎功能和生存狀況劣于Fg+/-小鼠。Fg完全缺失不利于小鼠腎臟的恢復(fù),而部分減低可以改善腎功能和總體預(yù)后。
腎臟纖維化與巨噬細(xì)胞等浸潤(rùn)、固有細(xì)胞 (腎小管上皮細(xì)胞、足細(xì)胞、系膜細(xì)胞)、效應(yīng)細(xì)胞(成纖維細(xì)胞、肌成纖維細(xì)胞等)均相關(guān);而且JAK/STAT通路可介導(dǎo)巨噬細(xì)胞、肌成纖維細(xì)胞和腎小管上皮細(xì)胞的病理性活化[28-32]。血漿Fg水平較高與腎功能快速降低有關(guān)。血漿Fg水平是CKD 3~4期、終末期腎病(ESRD)患者全因病死率的危險(xiǎn)因素[33-35]。
以下兩項(xiàng)研究證實(shí)Fg參與腎纖維化的進(jìn)展。S?rensen等[36]研究認(rèn)為腎間質(zhì)區(qū)Fg的沉積減少可以保護(hù)間質(zhì)和小管;Fg呈劑量依賴性方式直接刺激腎成纖維細(xì)胞增殖,這種效應(yīng)至少由受體TLR2 、TLR4和ICAM-1介導(dǎo)。但是Fg不能誘導(dǎo)成纖維細(xì)胞轉(zhuǎn)分化為肌成纖維細(xì)胞。該研究證實(shí),間質(zhì)區(qū)沉積的Fg通過(guò)與TLR2 、TLR4和ICAM-1結(jié)合導(dǎo)致腎間質(zhì)成纖維細(xì)胞增殖、1型膠原蛋白增多、腎小管萎縮和間質(zhì)區(qū)增寬,促進(jìn)腎纖維化進(jìn)展。
Craciun等[37]研究發(fā)現(xiàn)在腎臟纖維化中產(chǎn)生的IL-6能調(diào)控信號(hào)傳導(dǎo)與轉(zhuǎn)錄激活因子3(STAT3)的活化,磷酸化的STAT3結(jié)合腎臟的Fgα、β、γ的啟動(dòng)子,從而調(diào)控Fgα、β、γ轉(zhuǎn)錄。Fg可協(xié)同TGF-β1介導(dǎo)成纖維細(xì)胞增殖,并能活化TGF-β1/pSMAD2信號(hào)通路(圖2),從而導(dǎo)致慢性腎臟病不斷進(jìn)展。而應(yīng)用安克洛酶降解Fg后可減輕間質(zhì)纖維化3倍以上。該研究加深了Fg與TGF-β1間相互作用導(dǎo)致腎纖維化的理解。同時(shí)安克洛酶特異性降解Fg為腎纖維化的防治開(kāi)辟了新思路。
圖2 纖維蛋白原參與腎纖維化的可能機(jī)制[37]IL-6:白細(xì)胞介素6;TGF-β1:轉(zhuǎn)化生長(zhǎng)因子β1;STAT3:轉(zhuǎn)化激活因子3
小結(jié):Fg通過(guò)TLRs和JAK/STAT等信號(hào)通路,在腎小球疾病、足細(xì)胞損傷和腎小管間質(zhì)纖維化中發(fā)揮了重要作用。尿Fg不僅是腎臟病變的表型之一,而且其進(jìn)一步加重了腎臟損害。同時(shí)有學(xué)者證實(shí)Fg有助于早期診斷AKI。實(shí)驗(yàn)研究發(fā)現(xiàn),安克洛酶降低Fg可減輕腎纖維化病變和改善狼瘡性腎炎小鼠生存率,但是尚需臨床研究證實(shí)。
1 Hoffmann D,Bijol V,Krishnamoorthy A,et al.Fibrinogen Excretion in the Urine and Immunoreactivity in the Kidney Serves as a Translational Biomarker for Acute Kidney Injury.Am J Pathol,2012,181 (3):818-828.
2 Mosesson MW.Fibrinogen and fibrin structure and functions.J Thromb Haemost,2005,3(8):1894-1904.
3 Herrick S,Blanc-Brude O,Gray A,et al.Fibrinogen.Int J Biochem Cell Biol,1999,31(7):741-746.
4 Miesbach W,Scharrer I,Henschen A,et al.Inherited dysfibrinogenemia:clinical phenotypes associated with five different fibrinogen structure defects.Blood Coagulation and Fibrinolysis,2010,21(1):35-40.
5 Smiley ST,King JA,Hancock WW.Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4.J Immunol,2001,167(5):2887-2894.
6 Hodgkinson CP,Patel K,Ye S.Functional Toll-like receptor 4 mutations modulate the response to fibrinogen.Thromb Haemost,2008,100(2):301-307.
7 Kuhns DB,Priel DA,Gallin JI.Induction of Human Monocyte Interleukin (IL)-8 by Fibrinogen through the Toll-Like Receptor Pathway.Inflammation,2007,30 (5):178-188.
8 Jennewein C,Tran N,Paulus P,et al.Novel aspects of fibrin(ogen) fragments during inflammation.Mol Med,2011,17(5-6):568-573.
9 Davalos D,Akassoglou K.Fibrinogen as a key regulator of inflammation in disease.Semin Immunopathol,2012,34(1):43-62.
10 Flick MJ,LaJeunesse CM,Talmage KE,et al.Fibrin(ogen) exacerbates inflammatory joint disease through a mechanism linked to the integrin αMβ2binding motif.J Clin Invest,2007,117(11):3224-3235.
11 Bini A,Fenoglio JJ Jr,Mesa-Tejada R,et al.Identification and distribution of fibrinogen,fibrin,and fibrin(ogen) degradation products in atherosclerosis.Arteriosclerosis,1989,9(1):109-121.
12 Patibandla PK,Tyagi N,Dean WL,et al.Fibrinogen induces alterations of endothelial cell tight junction proteins.J Cell Physiol,2009,221(1):195-203.
13 Tyagi N,Roberts AM,Dean WL,et al.Fibrinogen induces endothelial cell permeability.Mol Cell Biochem,2008,307(1-2):13-22.
14 Kakafika AI,Liberopoulos EN,Mikhailidis DP.Fibrinogen:a predictor of vascular disease.Curr Pharm Des,2007,13 (16):1647-1659.
15 Paraskevas KI,Baker DM,Vrentzos GE,et al.The role of fibrinogen and fibrinolysis in peripheral arterial disease.Thromb Res,2008,122(1):1-12.
16 Ridker PM.Inflammation,atherosclerosis,and cardiovascular risk:an epidemiologic view.Blood Coagul Fibrinolysis,1999,10(Suppl 1):S9-S12.
17 Basheer M,Schwalb H,Nesher M,et al.Mast cell activation by fibrinogen-related homologous c-terminal peptides Modulates systemic blood pressure.J Allergy Clin Immunol,2010,126(5):1041-1048.
18 Ryu JK,Davalos D,Akassoglou K.Fibrinogen signal transduction in the nervous system.J Thromb Haemost,2009,7(Suppl 1):151-154.
19 Banas MC,Banas B,Hudkins KL,et al.TLR4 Links Podocytes with the Innate Immune System to Mediate Glomerular Injury.J Am Soc Nephrol,2008,19(4):704-713.
20 Motojima M,Matsusaka T,Kon V,et al.Fibrinogen That Appears in Bowman’s Space of Proteinuric Kidneys in vivo Activates Podocyte Toll-Like Receptors 2 and 4 in vitro.Nephron Exp Nephrol,2010,114(2):e39-e47.
21 Drew AF,Tucker HL,Liu H,et al.Crescentic glomerulonephritis is diminished in fibrinogen-deficient mice.Am J Physiol Renal Physiol,2001,281(6):F1157-F1163.
22 YANG Yi-ping,YANG Ju-hong,CHANG Bao-cheng,et al.Fibrinogen is a predictor for progressive proteinuria in type 2 diabetes.Chin J Endocrinol Metab,2012,28:726-728.
23 Cole EH,Glynn MF,Laskin CA,et al.Ancrod improves survival in murine systemic lupus erythematosus.Kidney Int,1990,37 (1):29-35.
24 Hoffmann D,Bijol V,Krishnamoorthy A,et al.Fibrinogen excretion in the urine and immunoreactivity in the kidney serves as a translational biomarker for acute kidney injury.Am J Pathol,2012,181(3):818-828.
25 Krishnamoorthy A,Ajay AK,Hoffmann D,et al.Fibrinogen-derived Bβ15-42 peptide protects against kidney ischemia/reperfusion injury.Blood,2011,118(7):1934-1942.
26 Dempfle CE,Argiriou S,Kucher K,et al.Analysis of fibrin formation and proteolysis during intravenous administration of ancrod.Blood,2000,96(8):2793-2802.
27 S?rensen-Zender I,Rong S,Susnik N,et al.Role of fibrinogen in acute ischemic kidney injury.Am J Physiol Renal Physiol,2013,305(5):F777-785.
28 Duffield JS.Cellular and molecular mechanisms in kidney fibrosis.J Clin Invest,2014,124(6):2299-2306.
29 LeBleu VS,Taduri G,O'Connell J,et al.Origin and function of myofibroblasts in kidney fibrosis.Nat Med,2013,19(8):1047-1053.
30 Campanholle G,Ligresti G,Gharib SA,et al.Cellular Mechanisms of Tissue Fibrosis 3 Novel mechanisms of kidney fibrosis.Am J Physiol Cell Physiol,2013,304(7):C591-C603.
31 Zheng G,Wang Y,Mahajan D,et al.The role of tubulointerstitial inflammation.Kidney Int Suppl,2005,94:S96-100.
32 Qin W,Chung AC,Huang XR,et a1.TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29.J Am Soc Nephrol,2011,22(8):1462-1474.
33 Goicoechea M,de Vinuesa SG,Gómez-Campderá F,et al.Serum fibrinogen levels are an independent predictor of mortality in patients with chronic kidney disease stages 3 and 4.Kidney Int Suppl,2008,(111),S67-S70.
34 Weiner DE,Tighiouart H,Elsayed EF,et al.The relationship between nontraditional risk factors and outcomes in individuals with stage 3 to 4 CKD.Am J Kidney Dis,2008,51(2):212-223.
35 Zoccali C,Mallamaci F,Tripepi G,et al.Fibrinogen,mortality and incident cardiovascular complications in end-stage renal failure.J Intern Med,2003,254(2):132-139.
36 S?rensen I,Susnik N,Inhester T,et al.Fibrinogen,acting as a mitogen for tubulointerstitial fibroblasts,promotes renal fibrosis.Kidney Int,2011,80(10):1035-1044.
37 Craciun FL,Ajay AK,Hoffmann D,et al.Pharmacologic and genetic depletion of fibrinogen protects from kidney fibrosis.Am J Physiol Renal Physiol,2014,307(4):F471-484.
(本文編輯 逸 沐)
Fibrinogen and kidney diseases
WANGHongtian1,2,ZHENGChunxia2
1SouthernMedicalUniversity,Guangzhou510515,China
2NationalClinicalResearchCenterofKidneyDiseases,JinlingHospital,NanjingUniversitySchoolofMedicine,Nanjing210016,China
T The fibrinogen is closely related with blood coagulation, inflammation, atherosclerosis, and cardiovascular disease. In the study field of kidney diseases, the increased fibrinogen in kidney tissues participates in the glomerular lesions and tubulointerstitial fibrosis. Urinary fibrinogen could be used as an early diagnostic marker for acute kidney injury (AKI). In vitro, fibrinogen may induce podocyte through TLRs pathway to secrete some chemokines and cytokines. This paper will summarize the latest research progresses, in order to expand the understanding about pathomechanism of the fibrinogen in nephropathy, and provide theoretical basis for deeper study in kidney diseases.
fibrinogen podocyte fibrosis inflammation acute kidney injury
10.3969/cndt.j.issn.1006-298X.2016.05.014
1南方醫(yī)科大學(xué)(廣州,510515);2南京軍區(qū)南京總醫(yī)院腎臟科 國(guó)家腎臟疾病臨床醫(yī)學(xué)研究中心 全軍腎臟病研究所
2016-08-18