張 進(jìn),劉景源,張彬乾
微型渦流發(fā)生器對(duì)超臨界翼型減阻機(jī)理實(shí)驗(yàn)與數(shù)值分析
張 進(jìn)1,*,劉景源1,張彬乾2
(1.南昌航空大學(xué)飛行器工程學(xué)院,南昌 330036;2.西北工業(yè)大學(xué)航空學(xué)院,西安 710072)
針對(duì)安裝在超臨界翼型后部的微型渦流發(fā)生器減阻問題,先用風(fēng)洞實(shí)驗(yàn)測出微型渦流發(fā)生器對(duì)超臨界翼型升阻特性的影響,然后采用RANS方程和κ-ε湍流模型進(jìn)行數(shù)值模擬,分析安裝在超臨界翼型后部的微型渦流發(fā)生器減阻原因。研究發(fā)現(xiàn):微型渦流發(fā)生器使下游近壁面處低能氣體向上卷起與外層高能氣體摻混,近壁面平均湍動(dòng)能增加、翼型后部脈動(dòng)壓強(qiáng)增大,壓差阻力減小;湍流應(yīng)力由速度梯度、湍流粘性系數(shù)和脈動(dòng)壓強(qiáng)共同決定,雖然氣流摻混,弦向速度法向梯度減小、湍流粘性系數(shù)減小,但展向速度法向梯度和脈動(dòng)壓強(qiáng)增大,湍流應(yīng)力增大,摩擦阻力增大;微型渦流發(fā)生器尺寸很小,完全浸沒于附面層內(nèi),僅摻混與它高度相當(dāng)?shù)母矫鎸觾?nèi)流體,對(duì)附面層厚度影響小,對(duì)翼型升力影響小。
微型渦流發(fā)生器;超臨界翼型;平均湍動(dòng)能;脈動(dòng)壓強(qiáng);湍流應(yīng)力
飛機(jī)設(shè)計(jì)或改型時(shí),如能采用低速增升減阻技術(shù),使飛機(jī)在同樣的動(dòng)力下,速度提升很快,就能提高飛機(jī)短距離起降性能。超臨界翼型自NASA工程師Whitcomb提出以來[1],其在跨聲速方面的氣動(dòng)特性得到國內(nèi)外廣泛研究[2-5]。在低速超臨界翼型增升減阻技術(shù)研究方面,近年,張攀峰、陳迎春等采用在超臨界翼型上安裝Gurney襟翼來實(shí)現(xiàn)增升減阻[6],何雨薇、劉沛清等采用在翼面開孔吸氣推遲轉(zhuǎn)捩,減小阻力[]。
渦流發(fā)生器是一種可以用于飛機(jī)后期精細(xì)設(shè)計(jì)中進(jìn)一步改善飛機(jī)氣動(dòng)性能的被動(dòng)控制技術(shù),可分為常規(guī)尺寸渦流發(fā)生器和微型渦流發(fā)生器(又稱亞附面層渦流發(fā)生器)。常規(guī)尺寸渦流發(fā)生器是高度h與附面層厚度δ相當(dāng)(h/δ~1)的小平板或機(jī)翼,在氣流作用下產(chǎn)生尾渦,使下游附面層外高能氣體與附面層內(nèi)低能氣體摻混,抑制附面層分離[8],使附面層變薄[9],提高機(jī)翼升力[10]。微型渦流發(fā)生器尺寸?。╤/δ<50%),如果安裝位置合適同樣具有常規(guī)尺寸渦流發(fā)生器的優(yōu)點(diǎn),而且產(chǎn)生的廢阻相對(duì)要?。?1-12]。
研究微型渦流發(fā)生器對(duì)超臨界翼型升阻特性影響的實(shí)驗(yàn)[13-14]發(fā)現(xiàn):位于超臨界翼型上表面后部的微型渦流發(fā)生器能有效地減小阻力,但對(duì)翼型升力影響不大。這與常規(guī)尺寸渦流發(fā)生器提高機(jī)翼升力結(jié)論不同。風(fēng)洞實(shí)驗(yàn)中,常采用熱線測量方法研究附面層,但熱線及其支架本身也會(huì)對(duì)附面層產(chǎn)生干擾;采用數(shù)值模擬不但可以避免干擾,而且還可以降低成本。
在微型渦流發(fā)生器數(shù)值模擬研究方面,國外Tai通過數(shù)值模擬研究了微型渦流發(fā)生器安裝位置和安裝偏角對(duì)V-22飛機(jī)氣動(dòng)力的影響[11];國內(nèi)褚胡冰、張彬乾等采用數(shù)值模擬研究了在后緣襟翼上安裝微型渦流發(fā)生器的超臨界翼型增升減阻情況[15],劉剛、劉偉等針對(duì)渦流發(fā)生器的數(shù)值計(jì)算專門進(jìn)行了研究[16],提出為避免網(wǎng)格節(jié)點(diǎn)不同帶來數(shù)值誤差,采用同一套網(wǎng)格不同邊界條件處理方法。
盡管國內(nèi)外對(duì)微型渦流發(fā)生器的風(fēng)洞實(shí)驗(yàn)或數(shù)值模擬研究取得了很大發(fā)展,并得到實(shí)際應(yīng)用,但結(jié)合數(shù)值模擬從湍動(dòng)能、脈動(dòng)壓強(qiáng)和速度梯度等方面對(duì)微型渦流發(fā)生器的減阻機(jī)理研究至今可見參考文獻(xiàn)少。本文采用風(fēng)洞實(shí)驗(yàn)和數(shù)值模擬相結(jié)合的方法,從湍動(dòng)能、脈動(dòng)壓強(qiáng)和速度梯度等方面研究了微型渦流發(fā)生器對(duì)超臨界翼型的減阻機(jī)理,為微型渦流發(fā)生器在超臨界機(jī)翼上的應(yīng)用提供有益的參考。
1.1風(fēng)洞實(shí)驗(yàn)
1.1.1風(fēng)洞及測量儀器
實(shí)驗(yàn)在西北工業(yè)大學(xué)NF-3低速直流風(fēng)洞中進(jìn)行,其實(shí)驗(yàn)段尺寸(長×高×寬)為8m×1.6m× 3.0m,風(fēng)速10~130m/s。氣動(dòng)力測量采用中國空氣動(dòng)力研究與發(fā)展中心設(shè)備設(shè)計(jì)與測試技術(shù)研究所研制加工的三分量(阻力、升力和俯仰力矩)小量程盒式應(yīng)變天平:升力設(shè)計(jì)載荷600N,絕對(duì)誤差1.8N,靜校準(zhǔn)度0.3%,極限誤差0.9%;阻力設(shè)計(jì)載荷100N,絕對(duì)誤差0.3N,靜校準(zhǔn)度0.3%,極限誤差0.9%。該實(shí)驗(yàn)直接測力的重復(fù)性試驗(yàn)結(jié)果得CL、CD精度分別為δCL=0.005,δCD=0.0006[17]。
1.1.2超臨界翼型和渦流發(fā)生器
風(fēng)洞實(shí)驗(yàn)速度為60m/s,雷諾數(shù)Re=3.23×106(基于翼型弦長)。研究所用渦流發(fā)生器為鋼質(zhì)材料,厚1mm,埋入翼型深度為2mm。如圖1(a)所示,對(duì)應(yīng)參數(shù)為:L=15mm,H=2.5mm,β=20°。由文獻(xiàn)[13-14]得:雷諾數(shù)Re=3.23×106,迎角為8°時(shí),干凈超臨界翼型在相對(duì)位置x/c=0.82處,附面層厚度δ為12.596mm,本實(shí)驗(yàn)中的渦流發(fā)生器相對(duì)這一附面層厚度H/δ≈0.2,該渦流發(fā)生器為微型渦流發(fā)生器。如圖1(b)所示,渦流發(fā)生器在超臨界翼型上表面為同向安裝,距后緣109mm,安裝間隔為20mm,安裝角相對(duì)來流方向偏轉(zhuǎn)30°。
圖1 渦流發(fā)生器參數(shù)及安裝示意圖Fig.1 Parameters of VG and the model installation
如圖2所示。整個(gè)模型沿展向采用3段布局,中段為鋼質(zhì)測力部分,展長為200mm,弦長為800mm;兩側(cè)為木質(zhì)模型保障整個(gè)模型表面流動(dòng)的二維性。兩側(cè)木模和中間模型間的縫采用軟材料填充使其縫隙小于1mm[17],使3段模型相互間既不傳力又無氣流從縫中流過,確保實(shí)驗(yàn)的準(zhǔn)確可靠。
圖2 超臨界翼型及安裝圖Fig.2 Supercritical airfoil and model installation in wind tunnel
在風(fēng)洞實(shí)驗(yàn)中,其他實(shí)驗(yàn)條件不變,僅僅因?yàn)闇u流發(fā)生器的安裝引起阻力改變,而且該改變量大于天平測量精度,這表明天平能捕捉到渦流發(fā)生器的作用,安裝與未安裝渦流發(fā)生器的阻力差就是扣除風(fēng)洞振動(dòng)等各種干擾后渦流發(fā)生器引起的阻力增量。
1.2數(shù)值模擬
采用數(shù)值模擬進(jìn)一步探索微型渦流發(fā)生器對(duì)附面層內(nèi)湍動(dòng)能、速度剖面和湍流粘性系數(shù)的影響。
使用ICEM CFD軟件生成繞超臨界翼型的粘性結(jié)構(gòu)網(wǎng)格??紤]到計(jì)算中的渦流發(fā)生器高度只有2.5mm,其上邊緣在附面層內(nèi),而附面層網(wǎng)格非常密,如果在有無微型渦流發(fā)生器的2種構(gòu)型上分別生成網(wǎng)格,則難保證2套網(wǎng)格的節(jié)點(diǎn)數(shù)、節(jié)點(diǎn)位置以及網(wǎng)格密度一致,從而引入數(shù)值誤差。為了排除網(wǎng)格因素引入的數(shù)值誤差,參考文獻(xiàn)[15-16],本文在同一套網(wǎng)格上使用了2種邊界條件。具體做法為:對(duì)安裝有微型渦流發(fā)生器的狀態(tài),渦流發(fā)生器表面網(wǎng)格使用物面邊界。網(wǎng)格如圖3所示,計(jì)算條件同實(shí)驗(yàn)。
圖3 繞翼型網(wǎng)格及局部放大圖Fig.3 The grid around the airfoil(The inset shows enlarged images)
干凈翼型和安裝微型渦流發(fā)生器翼型實(shí)驗(yàn)與計(jì)算的升力系數(shù)比較如圖4所示,在迎角α<10°時(shí),升力系數(shù)的計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果吻合較好,微型渦流發(fā)生器對(duì)翼型升力影響很小。
圖4 干凈翼型和安裝渦流發(fā)生器的翼型實(shí)驗(yàn)與計(jì)算升力曲線比較Fig.4 Comparison of lift coefficients of the airfoil between experiment and calculation with and without MVG
如表1所示,安裝微型渦流發(fā)生器產(chǎn)生的阻力系數(shù)增量隨迎角的變化趨勢實(shí)驗(yàn)與計(jì)算結(jié)果一致。這說明可以采用該計(jì)算方法對(duì)微型渦流發(fā)生器對(duì)超臨界翼型減阻機(jī)理做進(jìn)一步分析。此外,表1中計(jì)算結(jié)果顯示:安裝渦流發(fā)生器使翼型壓差阻力減小,摩擦阻力增大,總阻力是減小。
表1 安裝微型渦流發(fā)生器產(chǎn)生的阻力系數(shù)增量實(shí)驗(yàn)與計(jì)算結(jié)果比較(!Cx_p為壓差阻力增量,!Cx_v為摩擦阻力增量)Table 1 Comparation of drag coefficient increments caused by MVG between experiment and calculation
取渦流發(fā)生器上游壁面處(660mm,29.1378mm)為上游研究點(diǎn),取渦流發(fā)生器下游壁面處(720mm,16.8711mm)為下游研究點(diǎn)。
圖5 未安裝和安裝MVG時(shí),機(jī)翼壓力分布Fig.5 Pressure distribution with and without MVG
圖5 為各迎角的壓力分布,除渦流發(fā)生器安裝位置附近壓強(qiáng)系數(shù)增大外,微型渦流發(fā)生器對(duì)壓強(qiáng)系數(shù)分布影響很小。流線如圖6(a)所示,近壁面氣流流過微型渦流發(fā)生器時(shí),向上翻卷與外層流體摻混,但從圖6(b)中距離微型渦流發(fā)生器頂部2mm處流體受到擾動(dòng)小看出:流體摻混強(qiáng)度小,對(duì)附面層厚度影響小。由附面層法向動(dòng)量方程數(shù)量級(jí)分析結(jié)果[18]=0可知,繞翼型壁面的壓力分布與繞翼型附面層外邊界的壓力分布相同,因此,微型渦流發(fā)生器對(duì)整個(gè)翼面壓強(qiáng)分布影響小,對(duì)翼型升力影響小。
圖6 迎角8°時(shí),繞渦流發(fā)生器的流線Fig.6 The streamlines around MVGs whenα=8°
渦流發(fā)生器對(duì)上下游湍動(dòng)能影響如圖7所示,渦流發(fā)生器對(duì)上游流體湍動(dòng)能影響很??;而在下游近壁面處,湍動(dòng)能增加,脈動(dòng)速度所造成的壓強(qiáng)(pt=ρκ)增大,因此,在微型渦流發(fā)生器下游(上翼面尾部),脈動(dòng)壓強(qiáng)增大,翼型壓差阻力減小。
圖7 干凈翼型和安裝MVG時(shí),上下游研究點(diǎn)湍動(dòng)能隨高度變化Fig.7 Dependence of the turbulence kinetic energy at the upstream and downstream location on the height with and without MVG
仿層流本構(gòu)方程構(gòu)造湍流脈動(dòng)所造成應(yīng)力:
所研究的流動(dòng)為低速流,密度變化很小,方程(1)右式中第3項(xiàng)為0。安裝微型渦流發(fā)生器使下游近壁面弦向速度法向梯度減小,展向速度法向梯度增大(見圖8),使下游湍流粘性系數(shù)有減小趨勢(見圖9(b)),但脈動(dòng)造成的壓強(qiáng)增量更大,摩擦阻力增大。
圖8 干凈翼型和安裝MVG時(shí),下游弦向和展向速度剖面Fig.8 Dependence of the chord and span velocity at the downstream location on the height with and without MVG
圖9 干凈翼型和安裝MVG時(shí),上下游研究點(diǎn)湍流粘性系數(shù)隨高度變化Fig.9 Dependence of the turbulent viscosity at the upstream and downstream location on the height with and without MVG
2.5 mm(0.2δ)高的微型渦流發(fā)生器同向安裝在超臨界翼型上翼面后部,安裝角相對(duì)來流方向偏轉(zhuǎn)30°。實(shí)驗(yàn)和數(shù)值計(jì)算結(jié)果表明:
(1)微型渦流發(fā)生器僅可摻混下游與它高度相當(dāng)?shù)母矫鎸觾?nèi)流體,對(duì)附面層厚度影響很小,對(duì)翼型升力系數(shù)影響小;
(2)附面層內(nèi)流體摻混,近壁面處湍動(dòng)能增加,翼型上翼面尾部脈動(dòng)壓強(qiáng)增大,壓差阻力減??;
(3)附面層內(nèi)流體摻混,使近壁面弦向速度法向梯度減小,展向速度法向梯度增大,湍流粘性系數(shù)有所減小,但脈動(dòng)壓強(qiáng)的增量更大,摩擦阻力增大。
[1]Whitcomb,Richard T,Clark Larry R.An airfoil shape for efficient flight at supercritical Mach number[R].NASA TM 1109,1965.
[2]郝禮書,高超,張正科,等.超臨界翼型跨音速特性實(shí)驗(yàn)研究[J].實(shí)驗(yàn)流體力學(xué),2013,28(5):601-606.Hao L S,Gao C,Zhang Z K,et al.Experimental investigation of the supercritical airfoil transonic characteristics[J].Journal of Experiments in Fluid Mechanics,2013,28(5):601-606.
[3]牟讓科,楊永年,葉正寅.超臨界翼型的跨音速抖振特性[J].計(jì)算物理,2001,18(5):477-480.Mu R K,Yang Y N,Ye Z Y.Airfoil at transonic flow[J].Chinese Journal of Computational Physics,2001,18(5):477-480.
[4]Harris C D.NASA supercritical airfoil a matrix of family-related airfoil[R].NASA TP 2969,1990.
[5]李盈盈,周洲,甘文彪.多鼓包技術(shù)在超臨界翼型上的減阻特性研究[J].西北工業(yè)大學(xué)學(xué)報(bào),2013,31(4):517-520.Li Y Y,Zhou Z,Gan W B.Drag reduction research on multibump technology for supercritical airfoil[J].Journal of Northwestern Polytechnical University,2013.31(4):517-520.
[6]張攀峰,陳迎春,左林玄,等.超臨界翼型Gurney襟翼增升技術(shù)實(shí)驗(yàn)研究[J].實(shí)驗(yàn)流體力學(xué),2010,24(4):17-20.Zhang P F,Chen Y C,Zuo L X,et al.Experimental study on lift enhancement of supercritical airfoil in subsonic by Gurney flap[J].Journal of Experiments in Fluid Mechanics,2010,24(4):17-20.
[7]何雨薇,劉沛清,段會(huì)申,等.超臨界翼型吸氣層流減阻控制數(shù)值研究[J].航空動(dòng)力學(xué)報(bào),2010(11):2443-2449.He Y W,Liu P Q,Duan H S,et al.Numerical investigation of the laminar and drag reduction control by using suction technology on a supercritical airfoil[J].Journal of Aerospace Power,2010.25(11):2443-2449.
[8]Jukes T N,Segawa T,F(xiàn)urutani H.Flow control on a NACA 4418Using Dielectric-barrier-discharge Vortex Generators[J].AIAA Journal,2013,51(2):452-464.
[9]倪亞琴.渦流發(fā)生器研制及其對(duì)邊界層的影響研究[J].空氣動(dòng)力學(xué)學(xué)報(bào),1995,13(1):110-116.Ni Y Q.Development of thevortex generator and study on the effect of vortex generator on boundary layer[J].Acta Aerodynamica Sinica,1995,13(1):110-116.
[10]Bragg M B,Gregorek G M.Experimental study of aircraft performance with vortex generators[J].Journal of Aircraft,1987,24(5):305-309.
[11]Tai T C.Effect of micro-vortex generators on V-22aircraft forward-flight aerodynamics[R].AIAA-2002-0553,2002.
[12]John C Lin.Review of research on low-profile Vortex generators to control boundary-layer separation[J].Progress in Aerospace Sciences,2002,38:389-420.
[13]張進(jìn),張彬乾,閻文成,等.微型渦流發(fā)生器控制超臨界翼型邊界層分離實(shí)驗(yàn)研究[J].實(shí)驗(yàn)流體力學(xué),2005,19(3):58-60.Zhang J,Zhang B Q,Yan W C,et al.Investigation of boundary layer separation control for supercritical airfoil using micro vortex generator[J].Journal of Experiments in Fluid Mechanics,2005,19(3):58-60.
[14]張進(jìn).渦流發(fā)生器控制超臨界機(jī)翼附面層分離研究[D].西安:西北工業(yè)大學(xué),2005:42-46.Zhang J.Investigation ofboundary layer separation control for supercritical airfoil using vortex generator[D].Xi’an:Northwestern Polytechnical University,2005:42-46.
[15]褚胡冰,張彬乾,陳迎春,等.微型渦流發(fā)生器控制增升裝置流動(dòng)分離研究[J].西北工業(yè)大學(xué)學(xué)報(bào),2011,29(5):799-805.Chu H B,Zhang B Q,Chen Y C,et al.Controlling flow separation of high lift transport aircraft with micro vortex generators[J].Journal of Northwestern Polytechnical University,2011,29(5):799-805.
[16]劉剛,劉偉,牟斌,等.渦流發(fā)生器數(shù)值計(jì)算方法研究[J].空氣動(dòng)力學(xué)學(xué)報(bào),2007,25(2):241-244.Liu G,Liu W,Mou B,et al.CFD numerical simulation investigation of vortex generators[J].Acta Aerodynamica Sinica,2007,25(2):241-244.
[17]焦予秦,張彬乾,金承信,等.翼型氣動(dòng)力直接測量風(fēng)洞試驗(yàn)技術(shù)探索[J].實(shí)驗(yàn)流體力學(xué),2005,19(2):40-44.Jiao Y Q,Zhang B Q,Jin C X,et al.Experimental technique on direct measuring of aerodynamic forces of airfoil[J].Journal of Experiments in Fluid Mechanics,2005,19(2):40-44.
[18]Tuncer Cebeci,Jean Cousteix.Modeling and computation of boundary-layer flows[M].Berlin:Springer,1998:39-42.
Experimental and CFD study on the mechanism of supercritical airfoil drag reduction with micro vortex generators
Zhang Jin1,*,Liu Jingyuan1,Zhang Binqian2
(1.School of Aircraft Engineering,Nanchang Hangkong University,Nanchang 330063,China;2.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China)
Wind tunnel and CFD methods are used to investigate the mechanism of the airfoil drag reduction with Micro Vortex Generators(MVGs).RANS andκ-εturbulence model are used in CFD calculation.The results indicate that with MVGs,the bottom flow is directed to upper domains and thus the boundary layer flow is mixed.Therefore the averaged turbulence kinetic energy near the wall as well as the fluctuating pressure at the rear increases,so the pressure drag decreases.The gradient of the chord velocity and the turbulent viscosity decrease,but the gradient of the span velocity and fluctuating pressure increase more notably,so the turbulence stress increases and the frictional drag increases.MVGs are too small enough to be submerged in the boundary layer flow,and only mix the boundary layer flow.They have little influence on the height of boundary layer and the lift coefficient.
Micro Vortex Generator;supercritical airfoil;averaged turbulence kinetic energy;fluctuating pressure;turbulence stress
(編輯:楊 娟)
1672-9897(2016)04-0037-05
10.11729/syltlx20150157
2015-12-25;
2016-04-28
*通信作者E-mail:zhangjin_nchu@163.com
Zhang J,Liu J Y,Zhang B Q.Experimental and CFD study on the mechanism of supercritical airfoil drag reduction with micro vortex generators.Journal of Experiments in Fluid Mechanics,2016,30(4):37-41.張 進(jìn),劉景源,張彬乾.微型渦流發(fā)生器對(duì)超臨界翼型減阻機(jī)理實(shí)驗(yàn)與數(shù)值分析.實(shí)驗(yàn)流體力學(xué),2016,30(4):37-41.
:V224+.5
:A
張進(jìn)(1976-),男,貴州德江人,講師。研究方向:流動(dòng)控制和飛行器氣動(dòng)布局設(shè)計(jì)。通信地址:江西省南昌市豐和南大道696號(hào)(330063)。Email:zhangjin_nchu@163.com