国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

CO2在驅(qū)油過程中的作用機(jī)理綜述

2016-07-05 07:58:46袁海云藺江濤楊云博
石油化工應(yīng)用 2016年6期
關(guān)鍵詞:機(jī)理二氧化碳

梁 萌,袁海云,楊 英,藺江濤,楊云博

(1.俄羅斯國立古勃金石油天然氣大學(xué),俄羅斯莫斯科 119991;2.中國石油長慶油田分公司第三采氣廠,陜西西安 710021)

?

專論與綜述

CO2在驅(qū)油過程中的作用機(jī)理綜述

梁萌1,袁海云2,楊英1,藺江濤2,楊云博2

(1.俄羅斯國立古勃金石油天然氣大學(xué),俄羅斯莫斯科119991;2.中國石油長慶油田分公司第三采氣廠,陜西西安710021)

摘要:綜述了CO2驅(qū)油過程中存在的幾種作用機(jī)理,地層條件下CO2在原油中的溶解導(dǎo)致了原油組成與性質(zhì)的變化,具體表現(xiàn)在原油黏度降低、體積膨脹、油氣界面張力改善和瀝青質(zhì)沉積等方面;CO2在地層水中的溶解為巖石的腐蝕提供了弱酸環(huán)境,水中陽離子濃度的增大和CO2的過量導(dǎo)致了碳酸鹽的溶解/析出平衡。受以上因素影響,注CO2過程中發(fā)生了巖石潤濕性和滲透率的改變。上述各個(gè)現(xiàn)象和作用機(jī)理并不是孤立存在,它們之間相互聯(lián)系相互影響,在不同程度上影響著驅(qū)替過程和最終的采收率,所以在油藏開發(fā)工藝制定、優(yōu)化時(shí),必須充分比較、衡量各自的影響作用。

關(guān)鍵詞:二氧化碳;提高采收率;機(jī)理;驅(qū)替

氣體驅(qū)油在油田開發(fā)領(lǐng)域的應(yīng)用日益廣泛,常用的有N2、CH4、石油伴生氣和CO2。CO2的特殊性質(zhì)以及CO2兼具驅(qū)油、減排的雙贏效果使CO2驅(qū)儼然成為開發(fā)領(lǐng)域的最大熱點(diǎn)。針對不同地質(zhì)特征的油藏及原油特性,開發(fā)出了多種工藝,如CO2非混相驅(qū)和混相驅(qū)、CO2段塞+N2驅(qū)、CO2水交替工藝以及CO2吞吐等。地層內(nèi)CO2可與原油以及巖石和地層水發(fā)生作用,其結(jié)果導(dǎo)致促進(jìn)驅(qū)油過程或者不利影響。CO2的溶解降低原油黏度、體積溶脹、改善油氣界面張力、瀝青質(zhì)沉積等;在地層水中的溶解降低了地層環(huán)境的pH,碳酸鹽發(fā)生溶解,改變巖層表面潤濕性與地層滲透率等。所有上述作用無不直接或間接的影響著最終采收率,所以為了合理開發(fā)驅(qū)油工藝,必須清楚CO2/原油/巖石/水間的作用機(jī)理。

1 與原油的作用

CO2作為一種活性流體在原油中具有優(yōu)良的溶解度(55m3/m3)[1]。CO2的溶解通常導(dǎo)致以下幾方面:原油黏度降低、原油溶脹、降低油氣界面張力、原油中瀝青質(zhì)沉積等。

1.1原油黏度降低

CO2對原油具有稀釋作用,使原油內(nèi)烴類分子間的內(nèi)摩擦力減小,原油黏度降低。在溶解的初始階段原油黏度降低幅度非常大,溶解達(dá)到一定程度后,進(jìn)一步降黏效果減弱[1]。降黏效果很大程度上取決于原油的初始黏度,初始黏度越高,溶解CO2后黏度降低幅度越大[2],艾柏迪重油飽和CO2后黏度由1 080 cp和4 900 cp分別降到47 cp和82 cp[3]。黏度降低增加了原油的流動(dòng)性,優(yōu)化了油氣流度比,提高了地層中油相相對滲透率。

1.2原油溶脹

CO2的溶解還促使原油體積膨脹,幅度一般可達(dá)10%~60%[4]。通常用膨脹系數(shù)來描述CO2溶脹原油的能力。隨著溫度升高而膨脹系數(shù)增加[1],隨著壓力的增加,膨脹系數(shù)隨之升高,當(dāng)壓力增加到一定值時(shí),油中輕烴揮發(fā)的量超過CO2在油中的溶解量,導(dǎo)致原油體積下降,使膨脹系數(shù)減小甚至小于1[5]。Haishui等[6]發(fā)現(xiàn)正構(gòu)烷烴的膨脹系數(shù)一般介于1.2~1.4,最高可達(dá)2.16,其隨著碳原子數(shù)的增加而減小。這說明,對于原油的溶脹效果高碳數(shù)烷烴的貢獻(xiàn)并不大,所以CO2對重質(zhì)油的溶脹效應(yīng)遠(yuǎn)遠(yuǎn)弱于輕質(zhì)油[7]。剩余油飽和度與膨脹系數(shù)成反比,原油的膨脹迫使油滴從孔道中遷移出來,分散的油滴更容易發(fā)生聚集,提高驅(qū)油效果[8]。

1.3改善油氣界面張力

隨著滲透率減小,毛細(xì)管力逐漸顯著,制約著低滲油藏的開發(fā),為此最直接最有效的手段就是降低界面張力。諸多研究表明,CO2可明顯改善油氣界面張力。隨著壓力增加,CO2-原油界面張力下降,達(dá)到最小混相壓力時(shí),界面張力維持在極低范圍或零[9,10]。關(guān)于溫度對CO2-原油界面張力的影響較復(fù)雜,一些研究[11-13]表明存在著轉(zhuǎn)折點(diǎn)壓力,當(dāng)壓力小于該值時(shí)體系界面張力隨溫度增加而減小,當(dāng)壓力高于該壓力時(shí),體系界面張力隨溫度升高而增加。不同CO2-原油/烴類體系的轉(zhuǎn)折點(diǎn)壓力(見表1)。

表1 轉(zhuǎn)折點(diǎn)壓力*

溫度升高,分子平均動(dòng)能增加,分子更加活躍,界面間分子交換更加頻繁,但是恒壓下溫度的升高同樣導(dǎo)致氣相(或者超臨界)體積的增大,導(dǎo)致分子濃度降低,所以就出現(xiàn)了兩種競爭情形:分子平均動(dòng)能的增加與氣相體積的增大,兩種效應(yīng)導(dǎo)致界面張力向相反的方向發(fā)展。所以這也就出現(xiàn)了上述轉(zhuǎn)折點(diǎn)壓力。低壓下溫度升高導(dǎo)致體積的膨脹效應(yīng)要弱于溫度升高帶來的分子平均動(dòng)能的升高,所以低壓下隨著溫度增加界面張力減下;高壓下,超臨界相的CO2體積受溫度的變化要強(qiáng)于常規(guī)的氣態(tài)CO2,體積效應(yīng)增強(qiáng),隨著溫度升高界面張力增大。

原油組成也影響著CO2-原油界面張力,隨著原油中C1組分的增加,界面張力增大;隨著C2~C10含量的增加,界面張力減?。?0]。而瀝青質(zhì)含量增加時(shí),體系界面張力變大[12]。

1.4瀝青質(zhì)沉積

瀝青質(zhì)是一類極性多環(huán)高分子化合物。原油中CO2的溶解打破了原有溶解平衡,破壞了分散體系的穩(wěn)定性,重組分凝聚析出,最先有可能沉積的為瀝青質(zhì)、膠質(zhì)以及大的直鏈烷烴[15,16]。

研究發(fā)現(xiàn)只有當(dāng)CO2在原油中達(dá)到一定溶解量時(shí)瀝青質(zhì)才開始沉積,也就出現(xiàn)了瀝青質(zhì)沉積的氣體初始含量[17,18]。CO2、石油伴生氣、N2的瀝青質(zhì)沉積的氣體初始含量分別為0.25、0.28、0.5[19],可見CO2最易析出瀝青質(zhì)。瀝青質(zhì)沉積的CO2初始含量受原油組成影響,瀝青質(zhì)含量4wt%和4.9wt%的原油,對應(yīng)的初始沉積含量分別為41 mol%和39 mol%(59°C,16MPa)[20]。

隨著CO2含量增加瀝青質(zhì)沉積達(dá)到最大值后又減小(見圖1),該現(xiàn)象在其他研究中也得到證實(shí)[21-24]。這是因?yàn)楫?dāng)CO2在油中含量較高時(shí),二者的傳質(zhì)形式主要是CO2對原油中輕組分的抽提,原油逐漸重質(zhì)化,發(fā)生瀝青質(zhì)返溶[22]。

圖1 瀝青質(zhì)沉積量與CO2在原油中含量的關(guān)系[25]

CO2壓力的增加導(dǎo)致瀝青質(zhì)沉積量的增大[26],類似地存在瀝青質(zhì)沉積的初始壓力[27]。柯文奇等[28]得到了Weyburn輕質(zhì)油的瀝青質(zhì)沉積初始壓力為4.7MPa~4.8MPa。Wang等[27]得出Alberta輕質(zhì)油的瀝青質(zhì)沉積初始壓力約為4.8MPa。

瀝青質(zhì)沉積還受巖性等因素影響,相比砂巖瀝青質(zhì)更容易在碳酸巖沉積[29]。滲透率越高瀝青質(zhì)沉積量越大,造成的地層破壞越嚴(yán)重[30],而巖石非均質(zhì)性越大,瀝青質(zhì)越易沉積[31]。瀝青質(zhì)的沉積導(dǎo)致地層孔道堵塞,滲透率和孔隙度下降[32]。此外瀝青質(zhì)的沉積也是巖石表面潤濕性向親油性轉(zhuǎn)變的重要影響因素[33]。

2 與地層的作用

2.1碳酸巖溶解

CO2的溶解一般能使地層水的pH降至3.3~3.7[34],足以使碳酸巖溶解,從而使地層結(jié)構(gòu)發(fā)生破壞,孔隙度和滲透率增加[35],但當(dāng)?shù)貙铀嘘栯x子的濃度增加到一定值時(shí),會(huì)以鹽的形式重新析出,沉積在孔道中,堵塞孔道,使?jié)B透率降低。所以孔隙度和滲透率的變化是受碳酸鹽溶解和二次析出雙重控制的[30,36]。Shedid等[37]發(fā)現(xiàn)CO2與碳酸巖接觸時(shí)間為7d時(shí),孔隙度和滲透率下降達(dá)20%;當(dāng)延長至150d發(fā)現(xiàn)孔隙度和滲透率的增加。Ibrahim等[38]發(fā)現(xiàn)CO2注入速率對碳酸巖滲透率的影響明顯,低注入速率(2cm3/min)時(shí)滲透率減小,高注入速率(5cm3/min)導(dǎo)致滲透率增加。

2.2巖層潤濕性的改變

潤濕性是衡量巖石表面被流體潤濕的能力,其直接影響著流體在地層的分布以及流動(dòng)。親油環(huán)境中,潤濕相油占據(jù)小的孔道,導(dǎo)致了較大的殘余油飽和度;隨著潤濕性向親水性轉(zhuǎn)變,水逐漸占據(jù)被原油占據(jù)的小孔道,從而降低了殘余油飽和度[39]。同樣在注CO2過程中發(fā)現(xiàn)了巖石潤濕性的改變。

Saad等[40]發(fā)現(xiàn)隨著巖石與CO2接觸時(shí)間增長,接觸角減小。通常認(rèn)為巖石親水性的增強(qiáng)主要是緣于CO2對地層水酸化和地層溶解[41]。而Robert等[42]研究了CO2驅(qū)替實(shí)驗(yàn),發(fā)現(xiàn)石英和方解石的水相接觸角分別由46°和51°增加到134°和129°。這主要是因?yàn)闉r青質(zhì)在巖石表面的沉積增加了其親油性。Hamed等[33]模擬了瀝青質(zhì)沉積對巖石潤濕性的影響,發(fā)現(xiàn)隨著瀝青質(zhì)沉積發(fā)生親水性向親油性的反轉(zhuǎn)??梢?,要想解釋CO2對巖石潤濕性的作用,必須同時(shí)考慮瀝青質(zhì)沉積和巖層溶解兩因素。

2.3滲透率改變

CO2驅(qū)油過程中地層滲透率的變化主要受以下因素影響:瀝青質(zhì)沉積和巖石溶解[43],其中瀝青質(zhì)在孔道的沉積導(dǎo)致滲透率下降[44]。Yoshihisa等[29]在砂巖和碳酸巖上進(jìn)行CO2驅(qū)油實(shí)驗(yàn)時(shí)發(fā)現(xiàn)瀝青質(zhì)沉積導(dǎo)致巖心滲透率減小了20%,AmirMasoud等[17]甚至發(fā)現(xiàn)滲透率的減小指數(shù)與瀝青質(zhì)的沉積量呈線性關(guān)系。而巖石溶解對滲透率的影響,如2.1中所述,最終結(jié)果是受多因素影響的。

3 結(jié)語

CO2在原油內(nèi)的溶解導(dǎo)致了原油降黏、溶脹和油氣界面張力改善、瀝青質(zhì)沉積等效應(yīng);而CO2在地層水的溶解導(dǎo)致了碳酸巖的溶解,地層物化性質(zhì)的改變是上述作用的綜合表現(xiàn)。在制定油藏開發(fā)工藝時(shí)為達(dá)到最大采收率,應(yīng)充分考慮各作用的影響。例如對于輕質(zhì)油,可忽略CO2混相驅(qū)中的瀝青質(zhì)沉積;而對于重質(zhì)油,CO2會(huì)促使較多的瀝青質(zhì)沉積,混相驅(qū)工藝并不是最合適的選擇,建議在較少瀝青質(zhì)沉積量的前提下,結(jié)合非混相和熱開采等工藝,盡可能大的降低原油黏度并使其溶脹。

參考文獻(xiàn):

[1]李兆敏,孫曉娜,鹿騰,等.二氧化碳在毛8塊稠油油藏?zé)岵芍械淖饔脵C(jī)理[J].特種油氣藏,2013,20(5):122-124+ 157.

[2]Orr F. M.,Jr.,Heller J. P. and Taber J. J. Carbon dioxide flooding for enhanced oil recovery∶Promise and problems [J].Journal of the American Oil Chemists Society,1982,59 (10):810A-817A.

[3]Rojas G. A. and Ali S. M. Farouq. Dynamics of Subcritical CO2/Brine Floods for Heavy-Oil Recovery[J].SPE Reservoir Engineering,1988,3(10):35-44.

[4]Gao Changhong,Li Xiangliang,Guo Lanlei and Zhao Fangjian. Heavy oil production by carbon dioxide injection[J].Greenhouse Gases,Science and Technology,2013,3(3):185-195.

[5]Abedini Ali and Torabi Farshid. Oil Recovery Performance of Immiscible and Miscible CO2Huff-and-Puff Processes[J]. Energy & Fuels,2014,28(2):774-784.

[6]Han Haishui,Yuan Shiyi,Li Shi,Liu Xiaolei and Chen Xinglong. Dissolving capacity and volume expansion of carbon dioxide in chain n-alkanes[J].Petroleum Exploration and Development,2015,42(1):97-103.

[7]Chung Frank T. H.,Jones Ray A. and Nguyen Hai T. Measurements and Correlations of the Physical Properties of CO2-Heavy Crude Oil Mixtures[J].SPE Reservoir Engineering,1988,3(3):822-828.

[8]E. Ghoodjani and Bolouri S.H. Experimental Study of CO2-EOR and N2-EOR with Focus on Relative Permeability Effect[J].J Pet Environ Biotechnol,2011,2(1):1-5.

[9]Yang Daoyong and Gu Yongan. Interfacial Interactions Between Crude Oil and CO2Under Reservoir Conditions[J]. Petroleum Science and Technology,2005,23(9-10):1099-1112.

[10]Wang Xin,Liu Lifeng,Lun Zengmin,Lv Chengyuan,Wang Rui,Wang Haitao,et al. Effect of Contact Time and Gas Component on Interfacial Tension of CO2/Crude Oil System by Pendant Drop Method[J].Journal of Spectroscopy,2014: 1-7.

[11]Amro M.,F(xiàn)reese C.,F(xiàn)inck M.,and Jaeger P. Effect of CO2-miscibility in EOR[C].SPE Middle East Oil & Gas Show and Conference. Manama,Bahrain:Society of Petroleum Engineers,2015.

[12]Hemmati -Sarapardeh Abdolhossein,Ayatollahi Shahab,Ghazanfari Mohammad -Hossein,and Masihi Mohsen. Experimental Determination of Interfacial Tension and Miscibility of the CO2-Crude Oil System.Temperature,Pressure,and Composition Effects[J].Journal of Chemical & Engineering Data,2014,59(1):61-69.

[13]Zolghadr Ali,Escrochi Mehdi,and Ayatollahi Shahab. Temperature and Composition Effect on CO2Miscibility by Interfacial Tension Measurement[J].Journal of Chemical & Engineering Data,2013,58(5):1168-1175.

[14]Jaeger Philip T.,Alotaibi Mohammed B.,and Nasr-El-Din Hisham A. Influence of Compressed Carbon Dioxide on the Capillarity of the Gas Crude Oil Reservoir Water System [J].Journal of Chemical & Engineering Data,2010,55 (11):5246-5251.

[15]Dehyadegari E. and Rabbani A. R. The Effects of Miscible CO2Injection on Oil Biomarker Parameters[J].Petroleum Science and Technology,2014,32(23):2853-2866.

[16]Naghibi A.,Rabbani A. R.,and Dehyadegary E. A Geochemical Investigation of the CO2Injection Effect on Oil Composition in One of the Eastern Persian Gulf Fields[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2015,37(10):1062-1070.

[17]Kalantari-Dahaghi AmirMasoud,Gholami Vida,Moghadasi Jamshid,and Abdi R. Formation Damage Through Asphaltene Precipitation Resulting From CO2Gas Injection in I-ranian Carbonate Reservoirs[J].SPE Production & Operations,2008,23(2):210-214.

[18]Hamouda A. A.,Chukwudeme E. A.,and Mirza D. Investigating the Effect of CO2Flooding on Asphaltenic Oil Recovery and Reservoir Wettability[J].Energy & Fuels,2009,23(2):1118-1127.

[19]Nakhli H.,Alizadeh A.,Afshari S.,Kharrat R.,and Ghazanfari M. Experimental and Modelling Investigations of Asphaltene Precipitation During Pressure Depletion and Gas Injection Operations[J].Petroleum Science and Technology,2014,32(15):1868-1875.

[20]Srivastava R. K.,Huang S. S.,and Dong Mingzhe. Asphaltene Deposition During CO2Flooding[J].SPE Production & Facilities,1999,14(4):235-245.

[21]Tahami S. A.,Dabir B.,Asghari K.,and Shahvaranfard A. Modeling of Asphaltene Deposition During Miscible CO2Flooding[J].Petroleum Science and Technology,2014,32 (18):2183-2194.

[22]Karambeigi M. A. and Kharrat R. Asphaltene Precipitation During Different Production Operations[J].Petroleum Science and Technology,2014,32(14):1655-1660.

[23]Tavakkoli M.,Kharrat R.,Masihi M.,and Ghazanfari M. H. Prediction of Asphaltene Precipitation during Pressure Depletion and CO2Injection for Heavy Crude[J].Petroleum Science and Technology,2010,28(9):892-902.

[24]Tavakkoli Mohammad,Masihi Mohsen,Ghazanfari Mohammad H.,and Kharrat Riyaz. Prediction of Asphaltene Precipitation During Solvent/CO2Injection Conditions:A Comparative Study on Thermodynamic Micellization Model With a Different Characterization Approach and Solid Model[J]. Journal of Canadian Petroleum Technology,2011,50(3):65-74.

[25]Srivastava Raj K. and Huang Sam S. Asphaltene Deposition During CO2Flooding:A Laboratory Assessment[C].SPE Production Operations Symposium. Oklahoma City,Oklahoma:Society of Petroleum Engineers,1997.

[26]Zanganeh Peyman,Ayatollahi Shahab,Alamdari Abdolmohammad,Zolghadr Ali,Dashti Hossein,and Kord Shahin. Asphaltene Deposition during CO2Injection and Pressure Depletion:A Visual Study[J].Energy & Fuels,2011,26 (2):1412-1419.

[27]Wang Xiaoqi and Gu Yongan. Oil Recovery and Permeability Reduction of a Tight Sandstone Reservoir in Immiscible and Miscible CO2Flooding Processes[J].Industrial & Engineering Chemistry Research,2011,50(4):2388-2399.

[28]柯文奇,張巖,陳大釗.不同壓力下原油和CO2的相互作用研究[J].國外油田工程,2009,25(4):3-7.

[29]Hayashi Yoshihisa and Okabe Hiroshi. Experimental Investigation Of Asphaltene Induced Permeability Reduction[C]. SPE EOR Conference at Oil & Gas West Asia. Muscat,O-man:Society of Petroleum Engineers,2010.

[30]Zekri Abdulrazag Y.,Shedid Shedid A.,and Almehaideb Reyadh A. Investigation of supercritical carbon dioxide,aspheltenic crude oil,and formation brine interactions in carbonate formations[J].Journal of Petroleum Science and Engineering,2009,69(1-2):63-70.

[31]Takahashi Satoru,Hayashi Yoshihisa,Takahashi Shunya,Yazawa Nintoku,and Sarma Hemanta. Characteristics and Impact of Asphaltene Precipitation During CO2Injection in Sandstone and Carbonate Cores∶An Investigative Analysis Through Laboratory Tests and Compositional Simulation[C]. SPE International Improved Oil Recovery Conference in A-sia Pacific. Kuala Lumpur,Malaysia:Society of Petroleum Engineers,2003.

[32]Wang Tonglei,Song Yongchen,zhao Yuechao,Liu Yu,and Zhu Ningjun. Measurement of Immiscible CO2Flooding Processes and Permeability Reduction due to Asphaltene Precipitation by X-ray CT Imaging[J].Energy Procedia,2013:6920-6927.

[33]Darabi Hamed,Sepehrnoori Kamy,and Kalaei M. Hosein. Modeling of Wettability Alteration Due to Asphaltene Deposition in Oil Reservoirs[C].SPE Annual Technical Conference and Exhibition. San Antonio,Texas,USA:Society of Petroleum Engineers,2012.

[34]Qiao Changhe,Li Li,Johns Russell Taylor,and Xu Jinchao. Compositional Modeling of Reaction -Induced Injectivity Alteration During CO2Flooding in Carbonate Reservoirs [C].SPE Annual Technical Conference and Exhibition. Amsterdam,The Netherlands:Society of Petroleum Engineers,2014.

[35]Alam M. Monzurul,Hjuler Morten Leth,Christensen Helle Foged,and Fabricius Ida Lykke. Petrophysical and rockmechanics effects of CO2injection for enhanced oil recovery:Experimental study on chalk from South Arne field,North Sea[J].Journal of Petroleum Science and Engineering,2014:468-487.

[36]Luquot L. and Gouze P. Experimental determination of porosity and permeability changes induced by injection of CO2into carbonate rocks[J].Chemical Geology,2009,265 (1-2):148-159.

[37]Shedid Shedid A. and Salem Adel M. Experimental Investigations of CO2Solubility and Variations in Petrophysical Properties due to CO2Storage in Carbonate Reservoir Rocks [C]. North Africa Technical Conference and Exhibition. Cairo,Egypt:Society of Petroleum Engineers,2013.

[38]Mohamed Ibrahim Mohamed,He Jia,and Nasr -El -Din Hisham A. Permeability Change during CO2Injection in Carbonate Aquifers∶Experimental Study[C].SPE Americas E&P Health,Safety,Security,and Environmental Conference. Houston,Texas,USA:Society of Petroleum Engineers,2011.

[39]Al-Mutairi Saad Menahi,Abu-khamsin Sidqi A.,and Hossain Mohammed Enamul. A Novel Approach to Handle Continuous Wettability Alteration during Immiscible CO2Flooding Process[C].Abu Dhabi International Petroleum Conference and Exhibition. Abu Dhabi,UAE:Society of Petroleum Engineers,2012.

[40]Al-Mutairi Saad M.,Abu-Khamsin Sidqi A.,Okasha Taha M.,Aramco Saudi,and Hossain M. Enamul. An experimen-tal investigation of wettability alteration during CO2immiscible flooding[J].Journal of Petroleum Science and Engineering,2014:73-77.

[41]Seyyedi Mojtaba,Sohrabi Mehran,and Farzaneh Amir. Investigation of Rock Wettability Alteration by Carbonated Water through Contact Angle Measurements[J].Energy & Fuels,2015,29(9):5544-5553.

[42]Ehrlich Robert,Tracht J. H.,and Kaye S. E. Laboratory and Field Study of the Effect of Mobile Water on CO2-Flood Residual Oil Saturation[J].Journal of Petroleum Technology,1984,36(10):1797-1809.

[43]Ghedan Shawkat G. Global Laboratory Experience of CO2-EOR Flooding[C].SPE/EAGE Reservoir Characterization and Simulation Conference. Abu Dhabi,UAE:Society of Petroleum Engineers,2009.

[44]Pak T.,Kharrat R.,Bagheri M.,Khalili M.,and Hematfar V. Experimental Study of Asphaltene Deposition During Different Production Mechanisms[J].Petroleum Science and Technology,2011,29(17):1853-1863.

Review on the mechanisms during CO2flooding process

LIANG Meng1,YUAN Haiyun2,YANG Ying1,LIN Jiangtao2,YANG Yunbo2
(1.Gubkin Russian State Oil and Gas University,Moscow 119991,Russian;2.Gas Production Plant 3 of PetroChina Changqing Oilfield Company,Xi'an Shanxi 710021,China)

Abstract:This paper reviews several mechanisms existing in the CO2flooding,under formation conditions CO2dissolves in crude oil,which leads to changes in the compositions and properties of crude oil,in particular to reduce the viscosity of crude oil,volume expansion,reduce oil-gas interfacial tension and asphaltene deposition. CO2dissolves in the formation water and provide corrosive acidic environment for rock,however in water increasing cation concentration and excess CO2results in the balance between dissolution and precipitation of carbonate. Affected by the above factors,changes in the wettability of rock and permeability occur during CO2injection. Each of the above phenomena and mechanism does not exist in isolation,they influence each other,and in varying degrees affects the displacement process and ultimate recovery,so when a reservoir development process is designed and optimized,itis necessary to fully compare their influences.

Key words:Carbon dioxide;enhanced oil recovery;mechanism;oil displacement

中圖分類號:TE357.45

文獻(xiàn)標(biāo)識碼:A

文章編號:1673-5285(2016)06-0001-06

DOI:10.3969/j.issn.1673-5285.2016.06.001

*收稿日期:2016-05-11修回日期:2016-05-24

作者簡介:梁萌,男(1987-),在讀博士研究生,主要從事提高采收率方面的研究工作,郵箱:liangmeng@mail.ru。

猜你喜歡
機(jī)理二氧化碳
揚(yáng)眉吐氣的二氧化碳
用多種裝置巧制二氧化碳
用多種裝置巧制二氧化碳
隔熱纖維材料的隔熱機(jī)理及其應(yīng)用
“抓捕”二氧化碳
如何“看清”大氣中的二氧化碳
煤層氣吸附-解吸機(jī)理再認(rèn)識
中國煤層氣(2019年2期)2019-08-27 00:59:30
霧霾機(jī)理之問
高性能可變進(jìn)氣岐管降低二氧化碳排放
汽車零部件(2014年8期)2014-12-28 02:03:03
球形ADN的吸濕機(jī)理
邻水| 萨嘎县| 招远市| 昭平县| 蕲春县| 黄浦区| 晋宁县| 邵阳市| 秀山| 山东省| 宿松县| 宿迁市| 临汾市| 小金县| 泸定县| 盐城市| 墨玉县| 鄄城县| 南乐县| 西昌市| 和政县| 唐山市| 兴化市| 勃利县| 静安区| 南投市| 若尔盖县| 开封县| 新乐市| 宜君县| 茶陵县| 南涧| 平原县| 长泰县| 山阳县| 长岭县| 茶陵县| 曲松县| 台湾省| 剑川县| 崇阳县|