韋保娟 任虹
[摘要] 核酸適配體是一類能夠高靈敏、高特異性地與靶標(biāo)相結(jié)合的寡核普酸序列,包括小分子化合物、細(xì)胞膜表面受體、蛋白質(zhì)、金屬離子等,具有超強(qiáng)的結(jié)合能力、低免疫原性、高穩(wěn)定性等特點(diǎn),同時(shí)能與各種藥物及載體結(jié)合,構(gòu)建多元復(fù)合靶向給藥系統(tǒng),目前已用于腫瘤的靶向治療。本文綜述核酸適配體在臨床診斷領(lǐng)域中的最新研究進(jìn)展,為腫瘤疾病的靶向治療提供新的干預(yù)方向,同時(shí)也為核酸適配體更為廣闊的應(yīng)用提供參考。
[關(guān)鍵詞] 核酸適配體;臨床診斷;研究進(jìn)展
[中圖分類號(hào)] R73-3 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1674-4721(2016)03(c)-0025-03
[Abstract] Aptamers is a class oligonucleotide sequence combinated with target of high sensitivity and high specificity,including small molecules,cell surface receptors,proteins,metal ions,etc.It has superior binding capacity,low immunogenicity,high stability and other characteristics,and can be combined with a variety of drugs and carriers to construct multiple composite targeted drug delivery system.At present,it has been used in cancer targeted therapy.This paper has reviewed the research progress of aptamers in clinical diagnostic field for the latest,to provide a new direction for the treatment of neoplastic diseases targeted interventions,while also to provide a reference for broader application prospects of aptamers.
[Key words] Aptamers;Clinical diagnosis;Research progress
核酸適配體是一類經(jīng)過人工進(jìn)化而篩選出的單鏈寡核苷酸片段,能特異、高親和力地識(shí)別靶分子。自核酸適配體被發(fā)現(xiàn)以來,人類對(duì)于核酸領(lǐng)域有了新的認(rèn)識(shí),其不僅能夠編碼生命的遺傳信息,還可作為一種新的特異的識(shí)別元件[1-2]。當(dāng)今,有學(xué)者已篩選出不同領(lǐng)域靶分子的核酸適配體,上至小分子的環(huán)境毒物,下至復(fù)雜多變的病原細(xì)菌,核酸適配體以其高靈敏性在臨床診斷中發(fā)揮著十分重要的作用。本研究通過綜述核酸適配體在臨床診斷領(lǐng)域中的研究進(jìn)展,以期為發(fā)展腫瘤靶向治療的新技術(shù)和新藥物提供參考。
1 核酸適配體的特點(diǎn)
適配體作為一種寡合甘酸序列的識(shí)別分子,與傳統(tǒng)的抗體比較有其自身的優(yōu)勢(shì)及特點(diǎn):①高親和性和特異度;②作用的靶分子范圍廣泛,從無機(jī)金屬的小分子到生物領(lǐng)域的大分子;③進(jìn)行篩選所需周期較短,整個(gè)過程能夠依賴自動(dòng)化,簡(jiǎn)便快捷;④穩(wěn)定程度高,降解速度較慢,常溫下可以保存較長(zhǎng)時(shí)間而不變性;⑤多為小分子,較易通過細(xì)胞膜到達(dá)細(xì)胞內(nèi)來發(fā)揮多功能特性,參與較多反應(yīng)[3-6]。另外,核酸適配體能夠廣泛作用于細(xì)胞膜表面受體、小分子化合物、金屬離子、蛋白質(zhì)等靶標(biāo),結(jié)合能力與抗體相近,甚至較抗體強(qiáng),同時(shí)其具有較好的低免疫原性及較高的穩(wěn)定性等特點(diǎn),可結(jié)合各種藥物及載體構(gòu)建的多元復(fù)合靶向給藥系統(tǒng),以此來達(dá)到靶向治療腫瘤的作用。
2 腫瘤標(biāo)志物
腫瘤標(biāo)志物是在腫瘤細(xì)胞中有所表達(dá),而在正常細(xì)胞中不表達(dá)的一種生化分子。通過對(duì)某一腫瘤標(biāo)志物的適配體進(jìn)行特異篩選,進(jìn)而發(fā)揮其靶向診斷的目的。
2.1 甲胎蛋白(AFP)
有學(xué)者采用SELEX技術(shù)從隨機(jī)單鏈核酸序列庫中篩選出特異性與靶物質(zhì)高度親和的α-AFP的RNA適配體,該適配體可下調(diào)AFP誘導(dǎo)的細(xì)胞中原癌基因的表達(dá)[7-10]。在AFP相關(guān)聯(lián)的腫瘤中,此適配體可被用來診斷或治療疾病。AFP-L3本質(zhì)是一種蛋白,作為AFP的異質(zhì)體,其分離出的DNA適配子在肝細(xì)胞癌診斷中的作用明顯。
2.2 黏蛋白1(Mucin1,MUC1)
MUC1作為Ⅰ型跨膜蛋白的一種多異常表達(dá)于腫瘤細(xì)胞中。有學(xué)者利用MUC1的DNA適配體為載體,構(gòu)建了DOX-Apt復(fù)合物,結(jié)果顯示,DOX-Apt復(fù)合物不但使機(jī)體對(duì)乳腺癌細(xì)胞系中細(xì)胞殺傷力強(qiáng),正常細(xì)胞的存活率也有所提高,安全性較好[11-12]。將MUC1適配體的cDNA等部件組裝到金電極體,可以依靠新的電化學(xué)競(jìng)爭(zhēng),此時(shí)采用電化學(xué)溶出法便可對(duì)靶細(xì)胞進(jìn)行檢測(cè)。研究顯示,兩種特異性核酸適配體如TLSlc、TLS11a能夠各自通過DNA鏈偶聯(lián)于電極體表,形成特有的生物界面,此類DNA有些具有柔性結(jié)構(gòu),有些具有剛性結(jié)構(gòu),其提高了核酸適配體捕獲腫瘤細(xì)胞的效率,減小了界面間的位阻力[13]。當(dāng)有靶細(xì)胞存在時(shí),細(xì)胞表面過表達(dá)的MUC1能與cDNA競(jìng)爭(zhēng)性結(jié)合適配體,使得cDNA和適配體組成的雙鏈DNA出現(xiàn)變性,在電極端釋放出Apt-Ds復(fù)合物。利用QDs上的熒光能夠清晰地看到適配體對(duì)靶細(xì)胞的識(shí)別。
2.3 癌胚抗原(CEA)
CEA作為大腸癌組織代謝的一種糖蛋白,一般提取于結(jié)腸腺及胎兒腸,目前已逐漸在其他胃腸道腫瘤的檢測(cè)中得到應(yīng)用。其在正常胚胎的消化管組織及消化系統(tǒng)癌中均可表達(dá)[14-15],所以CEA可被認(rèn)為是廣譜性的腫瘤標(biāo)志物。研究報(bào)道指出,有學(xué)者已篩選出能對(duì)人癌胚抗原進(jìn)行特異性結(jié)合的DNA適配體,為腫瘤的診斷指明了一種新的思維方向。
2.4 前列腺特異性抗原(PSA)
正常生理?xiàng)l件下PSA主要存在于前列腺組織中,如果前列腺出現(xiàn)病變,血清中的PSA濃度迅速升高。血清PSA作為前列腺癌早期篩查較為重要的指標(biāo),已被廣泛用于前列腺癌的診斷、分期及治療后監(jiān)測(cè)。當(dāng)有PSA存在時(shí),適配體與PSA結(jié)合,使金納米復(fù)合物聚集成大粒子,在一定程度上增大了共振光的強(qiáng)度[16],同時(shí)依據(jù)共振光散射光譜的分析結(jié)果能夠?qū)ρ簶颖局械腜SA進(jìn)行檢測(cè)。
3 細(xì)胞因子及其受體
3.1 血管內(nèi)皮生長(zhǎng)因子(VEGF)
VEGF作用于血管內(nèi)皮細(xì)胞,促進(jìn)腫瘤的血管形成,參與腫瘤的發(fā)生、發(fā)展過程[17-18]。有學(xué)者通過構(gòu)建高靈敏、高特異度且能夠同時(shí)對(duì)腫瘤標(biāo)志物MUC1和VEGF進(jìn)行檢測(cè)的電化學(xué)傳感器,當(dāng)兩者同時(shí)表現(xiàn)時(shí),適配體能夠與之相結(jié)合,使其長(zhǎng)雙鏈發(fā)生變化,由此出現(xiàn)電化學(xué)信號(hào),且電信號(hào)此時(shí)是最強(qiáng)[19-20]。
3.2 血小板源生長(zhǎng)因子(PDGF)
PDGF作為生長(zhǎng)因子家族的一員,過度表達(dá)于惡性腫瘤中。Liao等[21]采用PDGF-BB的DNA適配體,將其構(gòu)建為分子靶標(biāo),利用熒光共振來檢測(cè)PDGF,靈敏度極高。Dam等[22]將20 mg/kg環(huán)磷酰胺與適配體AX102聯(lián)合進(jìn)行機(jī)體的給藥,腫瘤細(xì)胞的增殖能夠得到很大程度的阻滯,使其降低31%。
3.3 表皮生長(zhǎng)因子受體(EGFR)
EGFR是一種帶酪氨酸激酶的活性膜表面受體物質(zhì),常異常表達(dá)或高表達(dá)于惡性腫瘤中。Pu等[23]篩選出了一種高親和力的適配體E07,適配體對(duì)野生型的EGFR和缺失突變體EGFRVⅢ產(chǎn)生一定的特異性,降低EGFR自磷酸化的進(jìn)程。Li等[24]將適配體E07構(gòu)建于化學(xué)修飾的玻璃基質(zhì),同時(shí)檢測(cè)腫瘤細(xì)胞的富集進(jìn)程,進(jìn)而對(duì)外周血中的腫瘤細(xì)胞進(jìn)行有效的檢測(cè),以期實(shí)現(xiàn)腫瘤的及早診斷。
3.4 白細(xì)胞介素受體
白細(xì)胞介素6受體(IL-6R)在各種炎性反應(yīng)中(與癌癥相關(guān)的)關(guān)系密切。Yu等[25]篩選IL-6R胞外可溶性位點(diǎn),能夠得到特異且適宜的RNA適配體。用熒光進(jìn)行標(biāo)記適配體AIR3A,結(jié)果顯示,適配體AIR3A可以介導(dǎo)細(xì)胞吞噬作用的發(fā)生,并參與其過程。白細(xì)胞介素10受體(IL-10)的RNA適配體RSA1也能很好地阻斷IL-10的信號(hào)傳導(dǎo),限制腫瘤的生長(zhǎng)[26],推測(cè)此可能是癌癥治療的新策略。
4 小結(jié)
核酸適配體特有的高親和力、高特異度等優(yōu)勢(shì),使其在腫瘤的診斷中占據(jù)至關(guān)重要的地位。較抗體而言,核酸適配體較易獲得的優(yōu)勢(shì)使其在腫瘤領(lǐng)域的研究不斷攀升。隨著核酸適配體在腫瘤靶向治療中的廣泛應(yīng)用,基于細(xì)胞的SELEX技術(shù)儼然已成為該領(lǐng)域的主要方向,可利用組合療法將siRNA及嵌有化療藥物的核酸適配體共同呈遞來提高藥物療效[27-29]?!凹せ钍胶怂徇m配體探針”概念的提出,不僅為核酸適配體在腫瘤活細(xì)胞檢測(cè)研究中的應(yīng)用提供了一種新穎的手段與思路,而且具有極其重要的科學(xué)價(jià)值及臨床實(shí)驗(yàn)的廣泛前景。目前大部分的研究還在一個(gè)較為基礎(chǔ)的階段,將核酸適配體作為藥物用于臨床尚待大樣本、多中心的實(shí)驗(yàn)來驗(yàn)證其有效性及安全性。核酸適配體介導(dǎo)的靶向給藥系統(tǒng)也會(huì)隨著此領(lǐng)域技術(shù)的不斷加深及完善,在疾病的治療中發(fā)揮至關(guān)重要的功用。同時(shí),在醫(yī)學(xué)、藥學(xué)、分子生物學(xué)、納米科學(xué)、物理化學(xué)等領(lǐng)域系統(tǒng)地進(jìn)行聯(lián)合研究,勢(shì)必會(huì)推動(dòng)核酸適配體更為廣泛的發(fā)展,從而為發(fā)展腫瘤靶向治療的新技術(shù)提供可靠的參考。
[參考文獻(xiàn)]
[1] Maremanda NG,Roy K,Kanwar RK,et al.Quick chip assay using locked nucleic acid modified epithelial cell adhesion molecule and nucleolin aptamers for the capture of circulating tumor cells[J].Biomicrofluidics,2015,9(5):054110.
[2] Qin C,Wen W,Zhang X,et al.Visual detection of thrombin using a strip biosensor through aptamer-cleavage reaction with enzyme catalytic amplification[J].Analyst,2015, 140(22):7710-7717.
[3] Aptekar S,Arora M,Lawrence CL,et al.Selective targeting to glioma with nucleic acid aptamers[J].PLoS One,2015, 10(8):e0134957.
[4] Wan J,Ye L,Yang X,et al.Cell-SELEX based selection and optimization of DNA aptamers for specific recognition of human cholangiocarcinoma QBC-939 cells[J].Analyst,2015,140(17):5992-5997.
[5] Sun H,Zu Y.A highlight of recent advances in aptamer technology and its application[J].Molecules,2015,20(7):11959-11980.
[6] Colucciello M.Current intravitreal pharmacologic therapies for diabetic macular edema[J].Postgrad Med,2015,127(6):640-653.
[7] Wang D,Li Y,Lin Z,et al.Surface-enhanced electrochemiluminescence of Ru@SiO2 for ultrasensitive detection of carcinoembryonic antigen[J].Anal Chem,2015,87(12):5966-5972.
[8] Camorani S,Cerchia L.Oligonucleotide aptamers for glioma targeting:an update[J].Cent Nerv Syst Agents Med Chem,2015,15(2):126-137.
[9] Yu J,Yang L,Liang X,et al.Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin[J].Analyst,2015,140(12):4114-4120.
[10] Benedetto G,Hamp TJ,Wesselman PJ,et al.Identification of epithelial ovarian tumor-specific aptamers[J].Nucleic Acid Ther,2015,25(3):162-172.
[11] Cappi G,Spiga FM,Moncada Y,et al.Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance[J].Anal Chem,2015,87(10):5278-5285.
[12] Klufas MA,Chan RV.Intravitreal anti-VEGF therapy as a treatment for retinopathy of prematurity:what we know after 7 years[J].J Pediatr Ophthalmol Strabismus,2015, 52(2):77-84.
[13] Lao YH,Phua KK,Leong KW.Aptamer nanomedicine for cancer therapeutics:barriers and potential for translation[J].ACS Nano,2015,9(3):2235-2254.
[14] Jacobson O,Yan X,Niu G,et al.PET imaging of tenascin-C with a radiolabeled single-stranded DNA aptamer[J].J Nucl Med,2015,56(4):616-621.
[15] Diaz JA,Wrobleski SK,Alvarado CM,et al.P-selectin inhibition therapeutically promotes thrombus resolution and prevents vein wall fibrosis better than enoxaparin and an inhibitor to von Willebrand factor[J].Arterioscler Thromb Vasc Biol,2015,35(4):829-837.
[16] Santoni M,Scarpelli M,Mazzucchelli R,et al.Targeting prostate-specific membrane antigen for personalized therapies in prostate cancer:morphologic and molecular backgrounds and future promises[J].J Biol Regul Homeost Agents,2014,28(4):555-563.
[17] Yeh S,Kim SJ,Ho AC,et al.Therapies for macular edema associated with central retinal vein occlusion:a report by the American Academy of Ophthalmology[J].Ophthalmology,2015,122(4):769-778.
[18] Xiang D,Shigdar S,Qiao G,et al.Nucleic acid aptamer-guided cancer therapeutics and diagnostics:the next generation of cancer medicine[J].Theranostics,2015,5(1):23-42.
[19] Chen TT,Tian X,Liu CL,et al.Fluorescence activation imaging of cytochrome C released from mitochondria using aptameric nanosensor[J].J Am Chem Soc,2015,137(2):982-989.
[20] Liu J,Zhang P,Yang X,et al.Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells[J].Nanotechnology,2014,25(50):505502.
[21] Liao J,Liu B,Liu J,et al.Cell-specific aptamers and their conjugation with nanomaterials for targeted drug delivery[J].Expert Opin Drug Deliv,2015,12(3):493-506.
[22] Dam DH,Culver KS,Kandela I,et al.Biodistribution and in vivo toxicity of aptamer-loaded gold nanostars[J].Nan-omedicine,2015,11(3):671-679.
[23] Pu Y,Liu Z,Lu Y,et al.Using DNA aptamer probe for immunostaining of cancer frozen tissues[J].Anal Chem,2015,87(3):1919-1924.
[24] Li H,Mu Y,Qian S,et al.Synthesis of fluorescent dye-doped silica nanoparticles for target-cell-specific delivery and intracellular microRNA imaging[J].Analyst,2015, 140(2):567-573.
[25] Yu J,Zhang L,Xu X,et al.Quantitative detection of potassium ions and adenosine triphosphate via a nanochannel-based electrochemical platform coupled with G-quadruplex aptamers[J].Anal Chem,2014,86(21):10741-10748.
[26] Kaur J,Tikoo K.Ets1 identified as a novel molecular target of RNA aptamer selected against metastatic cells for targeted delivery of nano-formulation[J].Oncogene,2015, 34(41):5216-5228.
[27] Ruff KM,Strobel SA.Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy[J].RNA,2014,20(11):1775-1788.
[28] Gopinath SC,Hayashi K,Kumar PK.Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry[J].J Virol,2012,86(12):6732-6744.
[29] Xiang DX,Shigdar S,Qiao G,et al.Nucleic acid aptamer-guided cancer therapeutics and diagnostics:the next generation of cancer medicine[J].Theranostics,2015,5(1):23-42.
(收稿日期:2016-01-08 本文編輯:王紅雙)