1時(shí),地方病平衡點(diǎn)局部漸近穩(wěn)定的,形成地方病。數(shù)值模擬驗(yàn)證了上述理論結(jié)果?!娟P(guān)鍵詞】乙肝病毒模型;非線(xiàn)性發(fā)生率;穩(wěn)定性;數(shù)值模擬【Abstract】"/>
袁曉霞 薛亞奎
【摘 要】本文建立了一類(lèi)具有飽和發(fā)生率的乙肝病毒動(dòng)力學(xué)模型。通過(guò)分析確定了疾病是否流行的閾值R0。證明了當(dāng)R0≤1時(shí),無(wú)病平衡點(diǎn)局部漸近穩(wěn)定,疾病消亡;當(dāng)R0>1時(shí),地方病平衡點(diǎn)局部漸近穩(wěn)定的,形成地方病。數(shù)值模擬驗(yàn)證了上述理論結(jié)果。
【關(guān)鍵詞】乙肝病毒模型;非線(xiàn)性發(fā)生率;穩(wěn)定性;數(shù)值模擬
【Abstract】In this paper, we formulate a HBV model with nonlinear incidence rate. We obtain the basic reproduction number. When, the disease-free equilibrium is locally asymptotically stable and the infection may become extinct. When, the endemic disease equilibrium is locally asymptotically stable. Numerical simulations are presented to verify the theoretical analysis.
【Key words】HBV model; Nonlinear incidence rate; Stability; Numerical simulations
0 引言
1996 年,Nowak 等在文獻(xiàn)[1]最早提出了乙肝病毒動(dòng)力學(xué)模型。Min
等采用標(biāo)準(zhǔn)發(fā)生代替雙線(xiàn)性發(fā)生率[2]使得模型更接近實(shí)際乙肝疾病的傳播,較為合理。我們建立以下具有非線(xiàn)性發(fā)生率的乙肝病毒模型。
1 模型的建立
4 總結(jié)
本文主要研究了一類(lèi)具有非線(xiàn)性發(fā)生率的乙肝病毒模型。分析了平衡點(diǎn)的穩(wěn)定性,并且我們做了數(shù)值模擬去驗(yàn)證理論(下轉(zhuǎn)第96頁(yè))(上接第65頁(yè))結(jié)果。乙肝的傳染病模型為預(yù)防控制其發(fā)展具有實(shí)際的指導(dǎo)意義。
【參考文獻(xiàn)】
[1]Nowak M A, Bonhoeffer S, Hill A M, et al. Viral dynamics in hepatitis B virus infection[J].Proceedings of the National Academy of Sciences, 1996,93(9):4398-4402.
[2]Min L, Su Y, Kuang Y. Mathematical analysis of a basic virus infection model with application to HBV infection[J].JOURNAL OF MATHEMATICS, 2008,38(5).
[3]Bonhoeffer S, Coffin J M, Nowak M A. Human immunodeficiency virus drug therapy and virus load[J].Journal of Virology,1997,71(4):3275-3278.
[4]Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Mathematical biosciences,2002,180(1):29-48.
[責(zé)任編輯:王楠]