彭妙娟+席偉成
摘要:運用改進的無單元Galerkin(Improved Element-Free Galerkin,IEFG)方法計算機場復合道面的位移和應力,分析不同的節(jié)點數量和影響域比例參數對計算結果的影響.結果表明:節(jié)點數在4 000以上、影響域比例參數取2.5~3.5時計算結果較好;IEFG方法比無單元Galerkin(Element-Free Galerkin,EFG)方法的精度更高,計算速度更快.計算結果可為機場道面設計提供參考.
關鍵詞:改進的移動最小二乘法; 改進的無單元Galerkin方法; 機場復合道面; 節(jié)點數; 比例參數; 位移; 應力
中圖分類號: U416.217
文獻標志碼: B
Abstract:The displacement and stress of composite airfield pavement are obtained using Improved Element-Free Galerkin(IEFG) method, and the effect of different node number and proportion parameter of influence domain on calculation results is analyzed. The results show that, the calculation results are good when the number of nodes is more than 4 000 and the proportion parameter of influence domain is 2.5~3.5; the IEFG has higher calculation accuracy and efficiency than the Element-Free Galerkin(EFG) method. The calculation results can be referenced when the airfield pavements are designed.
Key words:improved moving least-squares approximation; improved element-free Galerkin method; composite airfield pavement; node number; proportion parameter; displacement; stress
0 引 言
無網格方法的研究已經有近20年的歷史.國際上將基于點的近似、不需要在求解域內劃分用于確定插值函數的網格的方法稱為無網格方法.[1-2]
無單元Galerkin方法(Element-Free Galerkin,EFG)是目前最重要且應用最為廣泛的無網格方法之一.[3-4]EFG方法采用移動最小二乘法建立逼近函數,相對于有限元法來說計算量較大.
程玉民等在移動最小二乘法的基礎上,建立改進的移動最小二乘法和復變量移動最小二乘法.[5-9]在此基礎上發(fā)展出改進的無單元Galerkin(Improved Element-Free Galerkin,IEFG)方法[10-16]、邊界無單元方法[17-20]、復變量無單元Galerkin方法[21-27]和改進的復變量無單元Galerkin方法[28-32]等.
由于改進的移動最小二乘法形成的方程組易于求解且不會形成病態(tài)方程組,因而IEFG方法比EFG方法具有更高的計算精度和計算效率.
目前,國內外對機場復合道面的數值模擬大多采用有限元法,使用無網格方法對機場復合道面進行力學分析的研究較少.馬翔等[33-34]基于Abaqus使用正交設計法對復合式機場道面載荷應力進行分析,林小平[35]使用有限元法對復雜條件下機場跑道模型進行分析,提出瀝青加鋪層的結構設計理論與方法.
本文建立機場復合道面模型,基于IEFG方法對半剛性瀝青路面和復合機場道面模型的位移和應力進行計算,分析不同節(jié)點布置以及不同的影響域比例參數對計算結果的影響.
1 改進的移動最小二乘法
3 IEFG方法在機場復合道面工程中的應用
使用IEFG方法對5層結構的機場復合道面二維模型進行簡化計算,分別使用布置一定節(jié)點數改變影響域比例參數dmax和固定影響域比例參數改變節(jié)點數這2種方法,驗證適合計算模型的節(jié)點數和dmax值.該方法為機場復合道面的計算提供一種新的思路.
將載荷簡化為二維平面應變問題下的條形均布載荷,采用B777-200B機型,輪壓為1.45 MPa,輪距為1.40 m.此外,假定各結構層都由線彈性的各向同性、均質材料組成,地基由彈性半空間地基假設,在模型中采用有限尺寸.模型的邊界條件為:地基底部完全約束,各結構層兩側鉸接,具體幾何參數見圖1,物理參數見表1.
3.1 節(jié)點數不變時考慮影響域比例參數的影響
首先布置4 941個節(jié)點,并對輪載下方進行局部加密,其分布見圖2.
影響域比例參數dmax取1.5~4.0,得到瀝青層的豎直位移,輪載下各層的豎直位移、豎直方向正應力和剪應力,以及輪載下各層單點各項計算結果隨dmax的變化,見圖3~9.
3.2 影響域比例參數不變時考慮節(jié)點數的影響
取影響域比例參數dmax=3.5,節(jié)點分布仍采用輪載下加密并改變節(jié)點數目分別為1 986,3 045,4 000,4 941和6 006,計算結果見圖10~16.
3.3 考慮水泥混凝土層板塊接縫的計算模型
在上述模型的基礎上,考慮水泥混凝土板塊間的接縫,使用彈性模量E=2×105 MPa的拉桿以及E=40 MPa的填縫料,泊松比均為0.3.對接縫材料進行節(jié)點加密,其局部放大見圖17.計算瀝青層豎 直位移,見圖18.
3.4 計算結果分析
將影響域比例參數dmax=3.5和節(jié)點個數為4 941的模型計算結果與Abaqus有限元結果進行對比,見圖19.
由圖19可以看出IEFG方法和有限元
法的計算結果基本一致.
綜上所述:機場復合道面的計算模型中影響域比例參數取值范圍應當為2.5~3.5,過大或過小都會對計算結果有明顯的影響;當節(jié)點數超過4 000以后,隨著節(jié)點的增加計算結果也更趨于穩(wěn)定,在保證計算精度的同時選擇適當的節(jié)點數目以提高計算效率是有必要的.
此外,在外載荷一定的情況下:豎直位移主要發(fā)生在道面的表面層;在假定各結構層完全連續(xù)由線彈性的各向同性、均質材料組成,且地基由彈性半空間地基假設時,在豎直方向的最大正應力主要在瀝青混凝土層中,而最大剪應力在水泥混凝土層中.
4 結 論
1)運用IEFG方法計算機場復合道面模型,并與有限元計算結果進行對比,證明無網格方法在計算這類工程問題中的有效性.
2)通過運用IEFG方法對半剛性基層瀝青路面模型進行計算,表明改進的移動最小二乘法選取正交作為基函數,比傳統移動最小二乘法形成的無網格方法計算速度更快,在滿足同樣精度的條件下所需選取的節(jié)點數目更少.
3)通過數值分析,得到復合機場道面計算模型中合適的節(jié)點數目和影響域比例參數的選擇范圍.在保證計算精度的同時應該選取較少節(jié)點以提高計算效率.影響域比例參數過大或過小對計算結果均有不利影響,在數值計算中需要通過多次試算來確定其范圍.
4)數值計算結果表明:在外載荷一定的情況下,豎直位移主要發(fā)生在道面的表面層;在豎直方向的最大正應力主要在瀝青混凝土層,最大剪應力在水泥混凝土層中.
參考文獻:
[1] CHENG Y M, WANG W Q, PENG M J, et al. Mathematical aspects of meshless methods[J]. Mathematical Problems in Engineering, 2014(1): 756297.
[2] CHENG R J, CHENG Y M. Error estimate for the finite point method[J]. Applied Numerical Mathematics, 2008, 58(6): 884-898.
[3] BELYTSCHKO T, LU Y Y, GU L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229- 256.
[4] 程榮軍, 程玉民. 勢問題的無單元Galerkin方法的誤差估計[J]. 物理學報, 2008, 57(10): 6037-6046.
CHENG R J, CHENG Y M. Error estimates of element-free Galerkin method for potential problems[J]. Acta Physica Sinica, 2008, 57(10): 6037-6046.
[5] 程玉民, 陳美娟. 彈性力學的一種邊界無單元法[J]. 力學學報, 2003, 35(2): 181-186.
CHENG Y M, CHEN M J. A boundary element-free method for linear elasticity[J]. Acta Mechanica Sinica, 2003, 35(2): 181-186.
[6] 陳美娟, 程玉民. 改進的移動最小二乘法[J]. 力學季刊, 2003, 24(2): 266-272.
CHEN M J, CHENG Y M. improved moving least-square approximation[J]. Chinese Quarterly of Mechanics, 2003, 24(2): 266-272.
[7] WANG J F, SUN F X, CHENG Y M, et al. Error estimates for the interpolating moving least-squares method[J]. Applied Mathematics and Computation, 2014, 245: 321-342.
[8] 程玉民, 彭妙娟, 李九紅. 復變量移動最小二乘法及其應用[J]. 力學學報, 2005, 37(6): 719-723.
CHENG Y M, PENG M J, LI J H. Complex variable moving least-square approximation and its application[J]. Chinese Journal of Theoretical And Applied Mechanics, 2005, 37(6): 719-723.
[9] 程玉民, 李九紅. 彈性力學的復變量無網格方法[J]. 物理學報, 2005, 54(10): 4463-4471.
CHENG Y M, LI J H. A meshless method with complex variables for elasticity[J]. Acta Physica Sinica, 2005, 54(10): 4463-4471.
[10] ZHANG Z, LI D M, CHENG Y M, et al. The improved element-free Galerkin method for three-dimensional wave equation[J]. Acta Mechanica Sinica, 2012, 28(3): 808-818.
[11] ZHANG Z, WANG J F, CHENG Y M, et al. The improved element-free Galerkin method for three-dimensional transient heat conduction problems[J]. Science China Physics, Mechanics & Astronomy, 2013, 56(8): 1568-1580.
[12] ZHANG Z, HAO S Y, LIEW K M, et al. The improved element-free Galerkin method for two-dimensional elastodynamics problems[J]. Engineering Analysis with Boundary Elements, 2013, 37(12): 1576-1584.
[13] WANG J F, SUN F X, CHENG Y M. An improved interpolating element-free Galerkin method with nonsingular weight function for two-dimensional potential problems[J]. Chinese Physics B, 2012, 21(9): 090204.
[14] SUN F X, WANG J F, CHENG Y M. An improved interpolating element-free Galerkin method for elasticity[J]. Chinese Physics B, 2013, 22(12): 120203.
[15] CHENG Y M, BAI F N, PENG M J. A novel Interpolating Element-Free Galerkin (IEFG) method for two-dimensional elastoplasticity[J]. Applied Mathematical Modelling, 2014, 38(21/22): 5187-5197.
[16] PENG M J, LI R X, CHENG Y M. Analyzing three-dimensional viscoelasticity problems via the Improved Element-Free Galerkin (IEFG) method[J]. Engineering Analysis with Boundary Elements, 2014(40): 104-113. DOI: 10.1016/j.enganabound.2013.11.018.
[17] CHENG Y M, PENG M J. Boundary element-free method for elastodynamics[J]. Science in China: Series G, Physics, Mechanics & Astronomy, 2005, 48(6): 641-657.
[18] PENG M J, CHENG Y M. A Boundary Element-Free Method (BEFM) for two-dimensional potential problems[J]. Engineering Analysis with Boundary Elements, 2009, 33(1): 77-82. DOI: 10.1016/j.enganabound.2008.03.005.
[19] CHENG Y M, LIEW K M, KITIPORNCHAI S. Reply to ‘Comments on ‘Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems[J]. International Journal for Numerical Methods in Engineering, 2009, 78(10): 1258-1260.
[20] REN H P, CHENG Y M, ZHANG W. An Improved Boundary Element-Free Method (IBEFM) for two-dimensional potential problems[J]. Chinese Physics B, 2009, 18(10): 4065-4073.
[21] CHENG Y M, LI J H. A complex variable meshless method for fracture problems[J]. Science in China: Series G, Physics, Mechanics & Astronomy, 2006, 49(1): 46-59.
[22] 劉沛, 彭妙娟, 程玉民. 勢問題的復變量無單元Galerkin方法[J]. 計算機輔助工程, 2009, 18(4): 11-15.
LIU P, PENG M J, CHENG Y M. Complex variables element-free Galerkin method for potential problems[J]. Computer Aided Engineering, 2009, 18(4): 11-15.
[23] PENG M J, LIU P, CHENG Y M. Complex Variable Element-Free Galerkin(CVEFG) method for two-dimensional elasticity problems[J]. International Journal of Applied Mechanics, 2009, 1(2): 367-385.
[24] PENG M J, LI D M, CHENG Y M. Complex Variable Element-Free Galerkin(CVEFG) method for elasto-plasticity problems[J]. Engineering Structures, 2011, 33(1): 127-135.
[25] 李冬明, 彭妙娟, 程玉民. 彈性大變形問題的復變量無單元Galerkin方法[J]. 中國科學: 物理學 力學 天文學, 2011, 41(8): 1003-1014.
LI D M, PENG M J, CHENG Y M. Complex Variable Element-Free Galerkin(CVEFG) method for elastic large deformation problems[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2011, 41(8): 1003-1014.
[26] CHENG Y M, LI R X, PENG M J. Complex variable element-free Galerkin method for viscoelasticity problems[J]. Chinese Physics B, 2012, 21(9): 090205.
[27] CHENG Y M, WANG J F, LI R X. Complex Variable Element-Free Galerkin(CVEFG) method for two-dimensional elastodynamics problems[J]. International Journal of Applied Mechanics, 2012, 4(4): 1250042.
[28] BAI F N, LI D M, WANG J F, et al. An Improved Complex Variable Element-Free Galerkin(ICVEFG) method for two-dimensional elasticity problems[J]. Chinese Physics B, 2012, 21(2): 020204.
[29] CHENG Y M, WANG J F, BAI F N. A new complex variable element-free Galerkin method for two-dimensional potential problems[J]. Chinese Physics B, 2012, 21(9): 090203.
[30] WANG J F, CHENG Y M. A new complex variable meshless method for transient heat conduction problems[J]. Chinese Physics B, 2012, 21(12): 120206.
[31] WANG J F, CHENG Y M. New complex variable meshless method for advection-diffusion problems[J]. Chinese Physics B, 2013, 22(3): 030208.
[32] DENG Y J, LIU C, PENG M J, et al. The interpolating complex variable element-free Galerkin method for temperature field problems[J]. International Journal of Applied Mechanics, 2015, 7(2): 1550017.
[33] 馬翔, 倪富健, 陳榮生. 復合式機場道面載荷應力[J]. 長安大學學報, 2010, 30(4): 23-27.
MA X, NI F J, CHEN R S. Load stress of composite airport pavement[J]. Journal of Changan University(Natural Science Edition), 2010, 30(4): 23-27.
[34] 馬翔, 倪富健, 顧興宇. 復合式機場道面結構設計方法[J]. 交通運輸工程學報, 2010, 10(2): 36-40.
MA X, NI F J, GU X Y. Structure design method of composition airfield pavement[J]. Journal of Traffic and Transportation Engineering, 2010, 10(2): 36-40.
[35] 林小平. 復雜條件下機場跑道瀝青加鋪層結構設計理論與方法[D]. 上海: 同濟大學, 2007.
(編輯 武曉英)