国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

活性氧非酶促清除劑對老化種子的影響

2016-07-16 01:29:16夏方山閆慧芳朱艷喬王明亞毛培勝
草業(yè)科學(xué) 2016年6期
關(guān)鍵詞:清除劑活性氧老化

夏方山,閆慧芳,朱艷喬,王明亞,毛培勝

(中國農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,草業(yè)科學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100193)

?

活性氧非酶促清除劑對老化種子的影響

夏方山,閆慧芳,朱艷喬,王明亞,毛培勝

(中國農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,草業(yè)科學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100193)

摘要:種子老化是影響種子貯藏的關(guān)鍵問題?;钚匝?reactive oxygen species,ROS)非酶促清除劑能延緩種子的老化,但其含量會(huì)因種子老化而下降。因此,合理添加ROS非酶促清除劑協(xié)助其內(nèi)部酶系統(tǒng)共同清除種子內(nèi)ROS,抑制種子的老化,從而延長種子的貯藏壽命,這將成為種質(zhì)資源遷地保存研究的一個(gè)必然發(fā)展趨勢。本文重點(diǎn)綜述了ROS非酶促清除劑的種類及其對種子老化過程的影響,并系統(tǒng)分析了ROS非酶促清除劑在種子老化過程中的研究現(xiàn)狀、存在問題及其研究前景,以期為研究種子老化過程中ROS非酶促清除劑的作用機(jī)理提供理論基礎(chǔ)。

關(guān)鍵詞:種子;老化;活性氧;清除劑;脂質(zhì)過氧化作用

種子在發(fā)育形成及貯藏過程中不斷地進(jìn)行有氧代謝,并產(chǎn)生各種有害的活性氧(reactive oxygen species,ROS)。同時(shí),種子內(nèi)廣泛存在著各種活性物質(zhì),通過終止自由基鏈?zhǔn)椒磻?yīng)而清除ROS,以確保細(xì)胞內(nèi)ROS維持平衡水平,使其免受傷害,它們在種子發(fā)育、貯藏及萌發(fā)過程中發(fā)揮著不可缺少的作用。ROS一旦過量積累就會(huì)攻擊膜上的不飽和脂肪酸,誘導(dǎo)脂質(zhì)過氧化作用(lipid peroxidation,LPO),從而抑制機(jī)體內(nèi)ROS清除劑的形成及功能發(fā)揮,造成種子內(nèi)ROS積累與清除劑之間的失衡,使機(jī)體清除ROS的能力下降,致使細(xì)胞LPO增強(qiáng),最終導(dǎo)致貯藏條件下種子的老化,表現(xiàn)為丙二醛(malondialdehyde,MDA)含量顯著升高,甚至造成種子內(nèi)部酶蛋白失活、DNA損傷,誘導(dǎo)細(xì)胞程序性死亡等,這是造成種子活力喪失的合理解釋之一(圖1)[1-7]。這一結(jié)論已在圣櫟(Quercusilex)[8]、向日葵(Helianthusannuus)[9-10]、麻瘋樹(Jatrophacurcas)[11]、老芒麥(Elymussibiricus)[12]、大豆(Glycinemax)[13]、菊苣(Cichoriunintybus)[14]、榆樹(Ulmuspumila)[15]、羊草(Leymuschinensis)[16]及結(jié)縷草(Zoysiajaponica)[17]等大量植物種子老化研究中得到證實(shí)。所以,探討種子老化過程中內(nèi)源ROS清除劑與種子活力之間的關(guān)系,并采用適宜種類與濃度的外源ROS清除劑,調(diào)節(jié)種子老化過程中ROS的產(chǎn)生與清除之間的平衡,提高種子活力水平,延緩或修復(fù)種子老化產(chǎn)生的傷害,對農(nóng)牧業(yè)生產(chǎn)具有較高的理論和應(yīng)用價(jià)值。

圖1 活性氧對種子的老化損傷[1-7]

1老化種子內(nèi)ROS清除劑的種類

種子已經(jīng)進(jìn)化出一個(gè)復(fù)雜的ROS清除系統(tǒng)來保護(hù)細(xì)胞膜和細(xì)胞器,使其免受ROS的損傷,除了眾所周知的酶系統(tǒng),還有一個(gè)未完全闡明的ROS非酶促清除系統(tǒng)[3,18]。前者主要包括超氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶(catalase,CAT)、過氧化物酶(peroxidase,POD)、抗壞血酸過氧化物酶(ascorbate peroxidase,APX)、谷胱甘肽過氧化物酶(glutathione peroxidase,GPX)、谷胱甘肽還原酶(glutathione reductase,GR)、單脫氫抗壞血酸還原酶(monodehydroascorbate reductase,MDHAR)及脫氫抗壞血酸還原酶(dehydroascorbate reductase,DHAR)等[19-21],后者主要包括抗壞血酸(ascorbic acid,AsA)、維生素E(vitamin E,VE)、谷胱甘肽(glutathione,GSH)、類胡蘿卜素(carotenoids)、硒(Selenium,Se)、水楊酸(salicylic acid,SA)、茉莉酸(jasmonic acid,JA)和多酚類(polyphenols)等[21-24]。老化種子內(nèi)ROS的清除,需要依賴內(nèi)部酶促和非酶促清除劑之間的相互調(diào)節(jié)與平衡,因此,適當(dāng)添加外源ROS非酶促清除劑,可以共同完成對ROS積累的解毒作用,延緩或修復(fù)種子的老化損傷。

2ROS非酶促清除劑對種子老化的影響

2.1AsA對種子老化的影響

AsA是生命體內(nèi)普遍存在的最重要的小分子活性物質(zhì),也是體內(nèi)許多物質(zhì)代謝和氧化還原反應(yīng)的重要參與者之一[25]。AsA生物功能的完成與其氧化還原狀態(tài)以及生物合成、代謝、再生和轉(zhuǎn)運(yùn)相關(guān)酶類活性的變化密切相關(guān),在植物種子抵抗氧化脅迫、提高種子活力、促進(jìn)細(xì)胞分裂和伸長中發(fā)揮著重要作用[7,26]。通過研究榆樹[15]、大豆[24]、甘菊(Matricariarecutita)[21]、茄子(Solanummelongena)[27-28]、棉花(Gossypiumhirsutum)[29]、銀白槭(Acersaccharinum)[30]及小麥(Triticumaestivum)[31]等植物種子的老化發(fā)現(xiàn),AsA不僅能有效降低H2O2等ROS的含量,還能顯著增強(qiáng)種子內(nèi)CAT、APX、GR、SOD及POD等抗氧化酶的活性,與其協(xié)同抑制種子LPO的發(fā)生,這表現(xiàn)為浸出液中電解質(zhì)外滲量及MDA含量減少。老化的水稻(Oryzasativa)種子中AsA含量減少,APX和MDHAR活性降低,同時(shí)基因APX1和MDHAR1表達(dá)下調(diào)[32]。AsA對老化產(chǎn)生的傷害具有明顯的防護(hù)或修復(fù)作用,可能因其在APX的作用下,易被種子內(nèi)的O2-、1O2或H2O2氧化,生成脫氫抗壞血酸(dehydroascorbate,DHA),從而直接清除種子內(nèi)ROS的傷害,抑制了LPO[33-34];也可能AsA與GSH相偶聯(lián),與APX、GR、MDHAR和DHAR等酶促ROS清除劑相互作用,通過AsA-GSH循環(huán)來清除種子細(xì)胞內(nèi)過量積累的H2O2(圖2)[19,26]。同時(shí),AsA可以促進(jìn)細(xì)胞色素c的生成,激活細(xì)胞凋亡蛋白酶3的活性,從而延緩細(xì)胞的程序性凋亡。另外,可能AsA協(xié)調(diào)或改善了老化種子內(nèi)部的生理代謝過程,促進(jìn)了被損傷細(xì)胞膜結(jié)構(gòu)的修復(fù),提高了物質(zhì)轉(zhuǎn)化速率,增強(qiáng)了幼苗的光合同化能力,從而表現(xiàn)為延緩或修復(fù)了種子的老化損傷。

圖2 種子老化過程中以H2O2為中心的ROS清除途徑[19,26]

注:APX,抗壞血酸過氧化物酶;AsA,抗壞血酸;CAT,過氧化氫酶;DHA,脫氫抗壞血酸;DHAR,脫氫抗壞血酸還原酶;GPX,谷胱甘肽過氧化物酶; GR,谷胱甘肽還原酶;GSH,谷胱甘肽;GSSG,氧化型谷胱甘肽;POD,過氧化物酶;SOD,超氧化物歧化酶。

Note:APX, ascorbate peroxidase; AsA, ascorbic acid; CAT, catalase; DHA, dehydroascorbate; DHAR, dehydroascorbate reductase; GPX, glutathione peroxidase; GR, glutathione reductase; GSH, glutathione; GSSG, oxidized glutathione; POD, peroxidase; SOD, superoxide dismutase.

AsA與種子活力的關(guān)系因植物種類和處理方式不同而異。溫度和水分導(dǎo)致貯藏山毛櫸(Fagussylvatica)種子喪失活力時(shí),AsA含量顯著增加,而不同貯藏年齡的山毛櫸種子活力降低時(shí),AsA含量顯著下降[7,26]。前者AsA含量增加,可能是由于種子呼吸作用的增強(qiáng)或者是分解酶活性降低引起的,而后者減少可能是AsA參與了種子內(nèi)ROS的清除反應(yīng)。種胚線粒體AsA含量與不同老化時(shí)間的燕麥(Avenasativa)種子發(fā)芽率呈正相關(guān)[35],但AsA含量的變化與貯藏期間的銀杏(Ginkgobiloba)種子的發(fā)芽能力并不完全相關(guān)[36],種子內(nèi)AsA的積累,除了其清除ROS的積極功能外,可能還具有負(fù)面影響,尤其在水分虧缺條件下,AsA更可能與Fe2+反應(yīng),釋放出OH·自由基[26,37]。

盡管AsA能有效清除種子老化過程中產(chǎn)生的ROS,但其數(shù)量和有效性不能完全猝滅ROS,AsA不能阻止種子老化的發(fā)生[24]。另外,雖然AsA含量在種子萌發(fā)過程中會(huì)增加[38],仍不能完全彌補(bǔ)其在老化過程中的損耗。因此,添加外源AsA來延緩或者修復(fù)種子的老化也就成為必然,但外源AsA處理對老化種子的作用效果,與其濃度關(guān)系密切,而且是否具有雙重效應(yīng)尚有待于進(jìn)一步研究。2.5% AsA處理能夠有效提高人工加速老化的向日葵種子發(fā)芽率及芽長,但5%的AsA處理對其沒有影響[39],這說明AsA含量維持在一定的濃度范圍是延緩種子老化損傷的關(guān)鍵,一旦過量就會(huì)加劇種子的老化損傷。但在同一老化處理時(shí)間下,高濃度AsA會(huì)降低小麥種子的脂質(zhì)過氧化產(chǎn)物MDA的含量,增強(qiáng)老化種子的活力,其效應(yīng)更顯著[31]。研究發(fā)現(xiàn),外源AsA對老化種子的修復(fù)作用主要依賴于線粒體APX和MDHAR來完成[40]。

2.2GSH對種子老化的影響

GSH作為細(xì)胞的ROS清除劑,不僅能保護(hù)含硫醇的酶,還能直接清除ROS,因此,GSH的含量水平及其相關(guān)酶活性常被作為機(jī)體清除ROS狀態(tài)的標(biāo)志[41]。然而,目前關(guān)于GSH對種子老化的作用尚未統(tǒng)一,即使認(rèn)為GSH對老化種子具有修復(fù)作用,但其機(jī)理也存在一定的爭議。一般認(rèn)為,在干燥或成熟的正常種子中,AsA含量會(huì)缺乏,GSH則易被維持,而在種子老化過程中卻存在差異[37,42]。GSH與貯藏后的山毛櫸老化種子的發(fā)芽率不相關(guān)[7],但伴隨著種子活力的喪失,銀杏種子GSH含量減少,發(fā)生在種子貯藏期間的GSH代謝的改變,可能參與了種子發(fā)芽勢的下降[36]。研究老化大麥(Hordeumvulgare)種子發(fā)現(xiàn),水溶性GSH及其相關(guān)的硫醇通過轉(zhuǎn)變?yōu)槎蚧锒峁┮粋€(gè)強(qiáng)大的細(xì)胞內(nèi)氧化環(huán)境[43]。GSH處理既可以提高人工加速老化的向日葵種子的發(fā)芽率,還能顯著促進(jìn)正常幼苗的生長[39]。研究表明,GSH處理有利于老化種子修復(fù),既可能直接與ROS反應(yīng),也可能通過AsA-GSH循環(huán)間接清除ROS,從而清除種子老化過程產(chǎn)生的過量ROS,使細(xì)胞膜免受ROS攻擊,延緩種子的LPO進(jìn)程(圖2)[19,26]。外源GSH對老化種子的修復(fù)主要通過線粒體GR和DHAR協(xié)同完成[40]。De-Vos等[6]認(rèn)為,在種子老化引起的氧化應(yīng)激過程中,GSH被氧化成了氧化型(GSSG),但這并不影響其吸收GSSG的還原能力,且成熟種子發(fā)芽率的降低,并不能直接歸因于GSH的減少。Kranner等[42]和Seal等[44]則認(rèn)為,無論是GSH濃度還是GSSG濃度均不單獨(dú)與種子活力相關(guān),而GSH還原電位(EGSSG/2GSH)與貯藏期間種子活力有很強(qiáng)的相關(guān)性,并在種子活力喪失前增加,因此,EGSSG/2GSH是種子活力喪失或VE含量變化的一個(gè)早期預(yù)警系統(tǒng),被認(rèn)為是一個(gè)可靠的評(píng)價(jià)種子活力的生化指標(biāo)。這些研究爭議可能既與植物品種有關(guān),又與老化條件之間的差異有關(guān)[45]。鑒于對上述研究的分析認(rèn)為,GSH在種子老化過程中的代謝途徑、作用效果以及與ROS酶促清除劑之間相互作用的生理及分子機(jī)制,將是該領(lǐng)域進(jìn)一步研究探討的重點(diǎn)和難點(diǎn)。

2.3VE對種子老化的影響

VE作為一種小分子脂溶性ROS清除劑,具有保護(hù)種子細(xì)胞膜免受ROS傷害的作用,它的主要功能是在種子老化過程中限制非酶促LPO的發(fā)生[7,44]。但長期以來,VE對種子老化的影響也一直存在爭議,甚至在同一物種的相關(guān)研究中。Sattler等[46]研究缺乏天然VE合成的擬南芥(Arabidopsisthaliana)突變體種子發(fā)現(xiàn),VE是植物種子長壽必不可少的物質(zhì)。而老化過程降低了VE的含量及其相關(guān)酶對氧化攻擊的保護(hù)作用,直接導(dǎo)致了ROS的積累和LPO的發(fā)生,最終造成了種子活力的降低。這在蘿卜(Raphanussativus)[3]、挪威楓(Acerplatanoides)[47]、蠶豆(Viciafaba)[48]、大豆[49-50]、油菜(Brassicanapus)[51]、山毛櫸[7,52-53]、夏櫟(Quercusrobur)[54]、樟子松(Pinussylvestris)[55]及芝麻(Sesamumindicum)[56]等植物種子的老化中被驗(yàn)證,并發(fā)現(xiàn)VE含量會(huì)隨種子老化程度的加深而逐漸減少,自然老化比人工加速老化處理?xiàng)l件下降幅度大。天然VE含量會(huì)隨其降解或合成相關(guān)基因表達(dá)的變化而發(fā)生變化,通過降低ROS的積累(尤其是H2O2、O2-和HO·),抑制LPO的進(jìn)行,從而阻止氧化損傷,實(shí)現(xiàn)對種子的保護(hù)作用[57]。一些研究表明,金合歡樹(Acaciabivenosa)[58]、袋鼠花(Anigozanthosmanglesii)[58]、橙色山龍眼(Banksiaashbyi)[58]及大豆[59]種子內(nèi)VE含量與其活力沒有任何相關(guān)性,但另一些研究對埃及榕(Acerpseudoplatanus)[60]、挪威槭[60]和大豆[61]等植物種子的老化研究則發(fā)現(xiàn),VE的含量隨種子活力的降低而增加,這說明VE含量對種子老化沒有影響。外源VE對老化種子的影響也同樣存在爭議。與對照相比,VE處理不僅能提高人工加速老化的向日葵種子發(fā)芽率,還能顯著提高其正常幼苗的芽長[39]。而豌豆(Pisumsativum)種子自然老化的前期,外源VE處理沒有表現(xiàn)出有利作用,后期則有延緩劣變的作用,但與自然老化所不同的是,VE對人工老化豌豆種子的劣變沒有明顯的減緩作用[62]。

VE對種子老化的影響存在差異的原因是多方面的,可能是植物種類不同所致。植物體內(nèi)VE共有4種自然存在形式,分別為α-生育酚、γ-生育酚、β-生育酚及δ-生育酚,而α-生育酚是天然VE中自由基清除活性最強(qiáng)的一種形式,具有較強(qiáng)的物理淬火能力、生物效力以及與O2-反應(yīng)的活性[56,63]。植物種子內(nèi)VE的含量及抗氧化能力與其基因型有關(guān)[64],許多植物種子內(nèi)γ-生育酚含量較α-生育酚高得多,例如擬南芥[46]、樟子松[55]及大豆[59]等,從而導(dǎo)致測定的種子內(nèi)VE含量與種子活力的變化呈現(xiàn)多樣性。也可能與貯藏時(shí)間及方式有關(guān),如,在剛開始貯藏的3年內(nèi),海濱堿蓬(Suaedamaritime)種子仍然保持較高的活力,而且VE的含量也比較穩(wěn)定,其后,種子活力和VE含量迅速降低,且電解質(zhì)滲出率增加[44]。人工老化與自然老化機(jī)理上的差異也是一個(gè)原因,老化過程中VE的相關(guān)酶活性被損害,限制了其生物合成,而人工加速老化處理?xiàng)l件下該表現(xiàn)相對緩慢[3,61-62]。Giurizatto等[61]研究自然老化及人工老化的大豆種子發(fā)現(xiàn),種子內(nèi)天然VE含量隨貯藏期的延長而呈線性增加,而且貯藏時(shí)間達(dá)到120 d后,人工老化和自然老化之間大豆種子中VE含量才差異顯著。此外,外源VE還存在濃度及處理時(shí)間是否合適的問題,即VE在種子老化中可能存在雙重效應(yīng),低濃度處理會(huì)延緩或修復(fù)種子的老化,相反,高濃度則會(huì)加劇。

目前,關(guān)于VE對種子老化的影響僅限于兩個(gè)方面:一方面為老化過程中內(nèi)源VE含量的變化與種子活力的關(guān)系,另一方面為外源VE處理對老化種子活力的影響。由于VE對種子老化的影響尚不清楚,因此,將會(huì)有越來越多的學(xué)者開展關(guān)于外源VE對種子老化影響的研究工作,以確定VE對老化種子的影響機(jī)理。

2.4其它ROS非酶促清除劑對種子老化的影響

Se及SA等活性物質(zhì)也具有一定的清除ROS的作用,有利于植物種子生物功能的完成,保護(hù)植物種子免受生物或非生物脅迫的傷害。通過研究矮柱花草(Stylosantheshumilis)[65]、苦瓜(Momordicacharantia)[66]、銀槭[23]、黑麥草(Loliumperenne)[67]及黃瓜(Cucumissativus)[68-70]等植物種子發(fā)現(xiàn),適當(dāng)濃度的Se處理能夠有效打破種子休眠,降低幼苗中MDA含量及電導(dǎo)率,提高種子貯藏后的發(fā)芽勢、發(fā)芽率及萌動(dòng)種子呼吸速率和淀粉酶活性,并提高種子萌發(fā)后的幼苗質(zhì)量、根系活力、幼苗中SOD、POD及CAT活性等生理指標(biāo),促進(jìn)幼苗的生長發(fā)育。同時(shí),還發(fā)現(xiàn)Se具有雙重效應(yīng),高濃度處理時(shí),老化種子的萌發(fā)及幼苗生長受到抑制,相關(guān)的生理指標(biāo)下降。通過對大蔥(Alliumfistulosum)[71]、花生(Arachishypogaea)[22]及西瓜(Citrulluslanatus)[72]等植物種子的老化研究發(fā)現(xiàn),不同濃度的SA處理時(shí),種子的發(fā)芽率、發(fā)芽勢、發(fā)芽指數(shù)及活力指數(shù)呈現(xiàn)先升高后降低的趨勢,而種子浸出液的電導(dǎo)率、可溶性糖含量及MDA含量均呈現(xiàn)先降低后增加的趨勢。這表明SA對種子老化的影響具有雙重效應(yīng),低濃度SA浸種對種子膜系統(tǒng)具有修復(fù)作用,延緩了種子的老化,明顯提高了種子質(zhì)量,促進(jìn)其萌發(fā)的效果顯著,而高濃度SA處理則加劇了種子的老化進(jìn)程[73]。而且,由于植物種類、處理方式及時(shí)間的差異,SA延緩大蔥、西瓜及花生種子老化的最佳濃度不同,分別為0.05、0.10及15 mmol·L-1[22,71-72]。研究還發(fā)現(xiàn),由于理化指標(biāo)測定時(shí)間至種子發(fā)芽(胚根突破種皮)期間相隔一段時(shí)間,導(dǎo)致發(fā)芽效果最好的處理并非生理指標(biāo)最好的處理,因此,在胚根突破種皮前測定理化指標(biāo)更能代表不同處理對膜系統(tǒng)的修復(fù)效果[74]。總甾醇類(total sterols)在植物膜穩(wěn)定性方面具有重要意義[75],但研究貯藏過程中山毛櫸種子的老化發(fā)現(xiàn),其與種子活力不相關(guān)[7]。茉莉酸甲酯(methyl jasmonate,MeJA)能促進(jìn)休眠及逆境條件下花生和水稻種子的萌發(fā)[76-77],但JA是否能夠促進(jìn)老化種子的萌發(fā),還有待于進(jìn)一步研究。

3ROS非酶促清除劑對種子老化的協(xié)同影響

在植物中,ROS清除劑之間可以相互增效,多種ROS清除劑聯(lián)合使用,其清除ROS的能力高于各組分在添加濃度下的效果之和,這種相互作用叫做協(xié)同作用,且其協(xié)同作用受ROS清除劑的濃度、反應(yīng)體系等影響[78]。因此,研究種子老化過程中ROS清除劑之間的協(xié)同增效作用,尋找高效、低毒的復(fù)合型ROS清除劑,對于高效利用ROS清除劑具有重要意義。目前,協(xié)同作用已成為ROS清除劑研究領(lǐng)域中的熱點(diǎn)之一。8 mg·L-1AsA與0.4或0.8 mg·L-1Se配合浸泡黃瓜種子,能明顯提高幼苗子葉和根系中SOD、POD及CAT的活性,其效果明顯優(yōu)于單純AsA或Se處理[69]。但0.5% AsA與0.3% VE和0.05% GSH共同處理人工加速老化的向日葵種子,導(dǎo)致最佳溫度條件下發(fā)芽率不同程度地降低,且在AsA、VE或GSH單獨(dú)處理時(shí),苗的異常率均沒有變化,而組合處理時(shí),苗的異常率卻增加,芽長和根長卻均稍微增加[39],這說明AsA、VE與GSH三者共同處理對人工加速老化的向日葵種子沒有協(xié)同效應(yīng),其原因尚不清楚。老化種子中AsA-GSH系統(tǒng)清除ROS的研究已經(jīng)深入到細(xì)胞器水平,主要以APX和MDHAR催化的AsA的氧化還原起作用,而以GR和DHAR催化的GSH的氧化還原作用相對較弱[35]。采用濃度均為1 mmol·L-1的AsA和GSH共同處理0.5 h的燕麥老化種子發(fā)現(xiàn),AsA和GSH的修復(fù)效果沒有疊加作用[40]。抗氧化劑在線粒體水平上修復(fù)機(jī)理尚不清楚,有待進(jìn)一步研究探討[79]。因此,關(guān)于ROS清除劑之間的協(xié)同性對種子老化的作用效果還有待于進(jìn)一步深入探索,以期充分發(fā)揮ROS清除劑的作用效果,為農(nóng)業(yè)生產(chǎn)提供可靠的理論指導(dǎo)和技術(shù)支持。

4小結(jié)

種子老化是影響其貯藏及幼苗建成的關(guān)鍵問題。目前,研究發(fā)現(xiàn)AsA、GSH、VE、Se及SA等ROS非酶促清除劑與種子活力關(guān)系密切,能夠延緩或修復(fù)部分種子的老化進(jìn)程。雖然大部分種子具有相同的發(fā)育過程和生理特征,但它們在大小、結(jié)構(gòu)、儲(chǔ)存物、生態(tài)學(xué)等類型及性質(zhì)方面的差異較大,導(dǎo)致ROS非酶促清除劑影響老化種子活力的潛在作用機(jī)理尚不清楚,甚至不同ROS非酶促清除劑的作用效果尚存在爭議,所以,這仍是未來種質(zhì)資源遷地保存研究的熱點(diǎn)問題之一。在研究ROS非酶促清除劑對老化種子的影響方面,僅從目前單一的細(xì)胞生理方面考慮是不充分的,必須整合已知的相關(guān)研究成果,深入到細(xì)胞器水平上,尤其是種子ROS產(chǎn)生的重要細(xì)胞器——線粒體,利用雙向熒光差異凝膠電泳技術(shù)深入探索非酶促清除劑清除ROS的酶學(xué)機(jī)理,并結(jié)合功能基因組學(xué)的技術(shù)及手段探討APX、SOD、CAT、GPX及GR等相關(guān)酶基因表達(dá)調(diào)控的分子機(jī)制。另外,從種子超微結(jié)構(gòu)的變化及其萌發(fā)后的生長性能等角度,綜合評(píng)價(jià)其清除ROS的能力、最適作用pH值、處理時(shí)效及其協(xié)同作用。在實(shí)際生產(chǎn)中,僅靠添加外源ROS非酶促清除劑來延緩種子的老化是不夠的,還應(yīng)通過生物學(xué)手段,誘導(dǎo)增加內(nèi)源ROS清除劑的種類和含量,這將是防止種子劣變,減輕老化的重要途徑,也是延長種子貯藏時(shí)間最理想的方法。

參考文獻(xiàn)References:

[1]Goel A,Sheoran I S.Lipid peroxidation and peroxide-scavenging enzymes in cotton seeds under natural aging.Biologia Plantarum,2003,46(3):429-434.

[2]Bhatia V S,Yadav S,Jumrani K,Curupasad K N.Field deterioration of soybean seed:Role of oxidative stresses and antioxidant defense mechanism.Journal of Plant Biology (New Delhi),2010,37(2):179-190.

[3]Bellani L M,Salvini L,Dell’Aquila A,Scialabba A.Reactive oxygen species release,vitamin E,fatty acid and phytosterol contents of artificially aged radish (RaphanussativusL.) seeds during germination.Acta Physiologiae Plantarum,2012,34(5):1789-1799.

[4]Calucci L,Capocchi A,Galleschi L,Ghiringnelli S,Pinzino C,Saviozzi F,Zandomeneghi M.Antioxidants,free radicals,storage proteins,puroindlines,and proteolytic activities in bread wheat (TriticumaestivmL.) seeds during accelerated aging.Journal of Agricultural and Food Chemistry,2004,52(13):4244-4251.

[5]Bailly C,Benamar A,Corbineau F,Cme D.Changes in malondialdehyde content and in superoxide dismutase,catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging.Physiologia Plantarum,1996,97(1):104-110.

[6]De-Vos C H R,Kraak H L,Bino R J.Aging of tomato seeds involves glutathione oxidation.Physiologia Plantarum,1994,92(1):131-139.

[7]Pukacka S,Ratajczak E.Age-related biochemical changes during storage of beech (FagussylvaticaL.) seeds.Seed Science Research,2007,17(1):45-53.

[8]Pasquini S,Mizzau M,Petrussa E,Braidot E,Patui S,Gorian F,Lambardi M,Vianedo A.Seed storage in polyethylene bags of a recalcitrant species (Quercusilex):Analysis of some bio-energetic and oxidative parameters.Acta Physiology Plant,2012,34(5):1963-1974.

[9]El-Maarouf-Bouteau H,Mazuy C,Corbineau F,Bailly C.DNA alteration and programmed cell death during ageing of sunflower seed.Journal of Experimental Botany,2011,62(14):5003-5011.

[10]Kibinza S,Vinel D,Cme D,Bailly C,Corbineau F.Sunflower seed deterioration as related to moisture content during ageing,energy metabolism and active oxygen species scavenging.Physiologia Plantarum,2006,128(3):496-506.

[11]Nithiyanantham S,Siddhuraju P,Francis G.A promising approach to enhance the total phenolic content and antioxidant activity of raw and processedJatrophacurcasL. kernel meal extracts.Industrial Crops and Products,2013,43(1):261-269.

[12]朱萍,孔令琪,李高,張曉媛,于娜,毛培勝.貯藏溫度對不同含水量老芒麥種子生理特性的影響.草業(yè)學(xué)報(bào),2011,20(6):101-108.

Zhu P,Kong L Q,Li G,Zhang X Y,Yu N,Mao P S.Effect of moisture content on physiological characteristics ofElymussibiricusseed under different storage temperature conditions.Acta Prataculturae Sinica,2011,20(6):101-108.(in Chinese)

[13]Sung J M,Chiu C C.Lipid peroxidation and peroxide-scavenging enzymes of naturally aged soybean seed.Plant Science,1995,110(1):45-52.

[14]姜義寶,鄭秋紅,王成章,郭玉霞,李德鋒.超干貯藏對菊苣種子活力與抗氧化性的影響.草業(yè)學(xué)報(bào),2009,18(5):93-97.

Jiang Y B,Zheng Q H,Wang C Z,Guo Y X,Li D F.Effects of ultradrying storage on vigor and antioxidase activity ofCichoriunintybusseeds.Acta Prataculturae Sinica,2009,18(5):93-97.(in Chinese)

[15]Hu D,Ma G,Wang Q,Yao J H,Wang Y,Pritchard H,Wang X F.Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (UlmuspumilaL.) seeds during controlled deterioration.Plant,Cell and Environment,2012,35(11):2045-2059.

[16]毛培勝,常淑娟,王玉紅,廉佳杰.人工老化處理對羊草種子膜透性的影響.草業(yè)學(xué)報(bào),2008,17(6):66-70.

Mao P S,Chang S J,Wang Y H,Lian J J.Effect of artificially ageing treatments on the membrane permeability ofLeymuschinensisseed.Acta Prataculturae Sinica,2008,17(6):66-70.(in Chinese)

[17]Mao P S,Wang X G,Wang Y H,Han J G.Effect of storage temperature and duration on the vigour of Zoysiagrass(ZoysiajaponicaSteud.) seed harvested at different maturity stages.Grassland Science,2009,55(1):1-5.

[18]Dussert S,Davey M W,Laffargue A,Doulbeau S,Wennen R,Etienne H.Oxidative stress,phospholipid loss and lipid hydrolysis during drying and storage of intermediate seeds.Physiologia Plantarum,2006,127(2):192-204.

[19]Tang A J.Desiccation-induced changes in viability,lipid peroxidation and antioxidant enzyme activity inMimusopselengiseeds.African Journal of Biotechnology,2012,11(44):10255-10261.

[20]Bailly C,Benamar A,Corbineau F,Cme D.Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds.Physiologia Ptantarum,1998,104(17):646-652.

[21]Tilebeni H G,Sadeghi M.Effect of priming on biochemical regeneration of chamomile (Matricariarecutita,Chamaemelumnobile) deteriorative seeds.American-Eurasian Journal of Agricultural & Environmental Sciences,2011,10(6):954-961.

[22]Ei-Saidy A E A,Ei-Hai K M A.Alleviation of peanut seed deterioration during storage using biotic and abiotic agents.Research Journal of Seed Science,2011,4(2):64-81.

[23]Pukacka S,Ratajczak E,Kalemba E.The protective role of selenium in recalcitrantAcersacchariumL.seeds subjected to desiccation.Journal of Plant Physiology,2011,168(3):220-225.

[24]Sanjeev Y,Bhatia V S,Guruprasad K N.Oxyradical accumulation and their detoxification by ascorbic acid and alpha-tocopherol in soybean seeds during field weathering.Indian Journal of Plant Physiology,2006,11(1):28-35.

[25]閆慧芳,夏方山,王明亞,毛培勝.植物體內(nèi)自由基清除劑抗壞血酸研究進(jìn)展.草業(yè)科學(xué),2013,30(8):1246-1252.

Yan H F,Xia F S,Wang M Y,Mao P S.Research progress on ascorbic acid in plants.Pratacultural Science,2013,30(8):1246-1252.(in Chinese)

[26]Pukacka S,Ratajczak E.Production and scavenging of reactive oxygen species inFagussylvaticaseeds during storage at varied temperature and humidity.Journal of Plant Physiology,2005,162(8):873-885.

[27]Sadhu M K,Pal S K,Biswas R.Wet treatment effect on brinjal seed and deterioration under different conditions.Indian Biologist,2011,43(1-2):81-93.

[28]Biswas R,Sadhu M K,Pal S K.Dry treatment effect on brinjal seed and deterioration under different conditions.Indian Biologist,2011,43(1-2):51-62.

[29]Goel A,Goel A K,Sheoran I S.Changes in oxidative stress enzymes during artificial ageing in cotton (GossypiumhirsutumL.) seeds.Journal of Plant Physiology,2003,160(9):1093-1100.

[30]Pukacka S,Ratajczak E.Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrantAcersaccharinumseeds.Journal of Plant Physiology,2006,163(12):1259-1266.

[31]李珍珍,韓陽.抗壞血酸對小麥種子老化及幼苗脂質(zhì)過氧化的影響.遼寧大學(xué)學(xué)報(bào):自然科學(xué)版,2000,27(2):170-172.

Li Z Z,Han Y.Effect of ASA on membrane lipid peroxidation of aging seeds and seedling of wheat.Journal of Liaoning University:Natural Sciences Edition,2000,27(2):170-172.(in Chinese)

[32]Yin G K,Xin X,Chen X L,Zhang J M,Wu S H,Li R F.Activity levels and expression of antioxidant enzymes in the ascorbate-glutathione cycles in artificially aged rice seed.Plant Physiology Biochemistry,2014,80:1-9.

[33]Noctor G,Foyer C H.Ascorbate and glutathione:Keeping active oxygen under control.Annual Review of Plant Physiology and Plant Molecular Biology,1989,49(1):249-279.

[34]Nakano Y,Asada K.Purification of ascorbate peroxidase in spinach chloroplasts:Its inactivation in ascorbatedepleted medium and reactivation by monodehydroascorbate radical.Plant,Cell and Physiology,1987,28(1):131-140.

[35]Xia F S,Wang X G,Li M L,Mao P S.Mitochondrial structural and antioxidant system responses to aging in oat (AvenasativaL.) seeds with different moisture contents.Plant Physiology and Biochemistry,2015,94:122-129.

[36]Tommasi F,Paciolla C,De Gara L,de Pinto M C.Effects of storage temperature on viability,germination and antioxidant metabolism inGinkgobilobaL.seeds.Plant Physiology and Biochemistry,2006,44(5-6):359-368.

[37]De-Tulio M C,Arrigoni O.The ascorbic acid system inseeds:To protect and to serve.Seed Science Research,2003,13(4):249-260.

[38]Masood T,Shah H U,Zeb A.Effect of sprouting time on proximate composition and ascorbic acid level of mung (VignaradiateL.) and chickpea (CicerarietinumL.) seeds.The Journal of Animal & Plant Sciences,2014,24(3):850-859.

[40]夏方山.不同老化處理對燕麥種子線粒體結(jié)構(gòu)及抗氧化系統(tǒng)的影響.北京:中國農(nóng)業(yè)大學(xué)博士學(xué)位論文,2015:54-65.

Xia F S.Effect of different ageing treatments on mitochondrial structure and antioxidant systems in oat seeds.PhD Thesis.Beijing:China Agricultural University,2015:54-65.(in Chinese)

[41]Fran?a M B,Panek A D,Eleutherio E C A.Oxidative stress and its effects during dehydration.Comparative Biochemistry and Physiology,Part A,2007,146(4):621-631.

[43]Nagel M,Kranner I,Neumann K,Rolletschek H,Seal C E,Colville L,Fernández-Marín B,B?rner A.Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley.Plant,Cell and Environment,2014,38(6):1011-1022.

[44]Seal C E,Zammit R,Scott P,Flowers T J,Kranner I.Glutathione half-cell reduction potential and α-tocopherol as viability markers during the prolonged storage ofSuaedamaritimaseeds.Seed Science Research,2010,20(1):47-53.

[45]Lehner A,Mamadou N,Poels P,Cme D,Bailly C,Corbineau F.Changes in soluble carbohydrates,lipid peroxidation and antioxidant enzyme activities in the embryo during ageing in wheat grains.Journal of Cereal Science,2008,47(3):555-565.

[46]Sattler S E,Gilliland L U,Magallanes-Lundback M,Pollard M,DellaPenna D.Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination.Plant Cell,2004,16(6):1419-1432.

[47]Pukacka S.Changes in membrane lipid components and antioxidant levels during natural aging of seeds ofAcerplatanoides.Physiologia Plantarum,1991,82(2):306-310.

[48]Zalewski K,Widejko D,Grecki R.The influence of CO2,temperature and a-tocopherol on phospholipid changes in embryonic axes of field bean seeds during storage.Acta Societatis Botanicorum Poloniae,2000,69(2):123-126.

[49]Senaratna T,Gusse J F,McKersie B D.Age-induced changes in cellular membranes of imbibed soybean seed axes.Physiologia Plantarum,1988,73(1):85-91.

[50]Vasantharuba S ,Wijesinghe D G N G,Sivakanesan R.Changes in vitamin E and essential fatty acid contents and their interrelationship in soybean (GlycinemaxL.Merr.) seeds during germination and storage.Tropical Agricultural Research,2007,19(1):119-127.

[51]Goffman F D,M?llers C.Changes in tocopherol and plastochromanol-8 contents in seeds and oil of oilseed rape (BrassicanapusL.) during storage as influenced by temperature and air oxygen.Journal of Agricultural and Food Chemistry,2000,48(5):1605-1609.

[52]Ratajczak E,Pukacka S.Decrease in beech (Fagussylvatica) seed viability caused by temperature and humidity conditions as related to membrane damage and lipid composition.Acta Physiologiae Plantarum,2005,27(1):3-12.

[54]Hendry G A E,Einch-Savage W E,Thorpe P C,Atherton N M,Buckland S M,Nilsson K A,Seel W E.Free radical processes and loss of seed viability during desiccation in the recalcitrant speciesQuercusroburL.New Phytologist,1992,122(2):273-279.

[55]Tammela P,Salo-V??n?nen P,Laakso I,Hopia A,Vuorela H,Nygren N.Tocopherols,tocotrienols and fatty acids as indicators of natural ageing inPinussylvestrisseeds.Scandinavian Journal of Forest Research,2005,20(5):378-384.

[56]Tae-Shik H,Sung-Jin P,Martin L Y.Effects of germination on chemical composition and functional properties of sesame (SesamumindicumL.) seeds.Bioresource Technology,2009,100(4):1643-1647.

[57]Munneé-Bosch S.The role of α-tocopherol in plant stress tolerance.Journal of Plant Physiology,2005,162(7):743-748.

[58]Merritt D J,Senaratna T,Touchell D H,Dixon K W,Sivasithamparam K.Seed ageing of four Western Australian species in relation to storage environment and seed antioxidant activity.Seed Science Research,2003,13(2):155-165.

[59]Priestley D A,Mcbripe M B,Leopold C.Tocopherol and organic free-radical levels in soybean seeds during natural and accelerated aging.Plant Physiology,1980,66(4):715-719.

[60]Greggains V,Finch-Savage W E,Quick W P,Atherton N M.Putative desiccation tolerance mechanisms in orthodox and recalcitrant seeds of the genusAcer.Seed Science Research,2000,10(3):317-327.

[61]Giurizatto M I K,Ferrarese-Filho O,Ferrarese M D L,Robaina A D,Goncalves M C,Cardoso C A L.α-Tocopherol levels in natural and artificial aging of soybean seeds.Acta Scientiarum,2012,34(3):339-343.

[62]楊延芬,馬緣生.PEG、丙酮和維生素E對種子耐藏力的影響.作物品種資源,1992(3):36-37.

Yang Y F,Ma Y S.Effect of PEG,acetone and vitamin E to seed storability.Crop Germplasm Resources,1992(3):36-37.(in Chinese)

[63]Scialabba A,Salvini L,Faqi A S,Bellani L M.Tocopherol,fatty acid and phytosterol content in seeds of nine wild taxa of SicilianBrassica(Cruciferae).Plant Biosystems,2010,144(3):626-633.

[64]Do T D T,Cozzolino D,Muhlhausler B,Box A,Able A J.Antioxidant capacity and vitamin E in barley:Effect of genotype and storage.Food Chemistry,2015(187):65-74.

[65]Pinheiro F J A,Barros R S,Coelho T G,Souza B M D.Breaking dormancy ofStylosantheshumilisseeds with selenium compounds.Seed Science Research,2008,18(1):47-53.

[66]Chen C C,Sung J M.Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under sub-optimal temperature.Physiologia Plantarum,2001,111(1):9-16.

[67]Hartikainen H,Xue T L,Piironen V.Selenium as an anti-oxidant and pro-oxidant in ryegrass.Plant and Soil,2000,225(1/2):193-200.

[68]尚慶茂,張志剛,王一鳴.不同試劑浸種對黃瓜種子萌發(fā)和幼苗生長的影響.種子,2005,24(2):27-30.

Shang Q M,Zhang Z G,Wang Y M.Effects of seed soaking with different reagents on germination and seedling growth of cucumber.Seed,2005,24(2):27-30.(in Chinese)

[69]何麗燦,區(qū)炳慶,王艷.抗壞血酸和亞硒酸鈉浸種對黃瓜幼苗抗氧化功能的影響.湖北農(nóng)業(yè)科學(xué),2004(6):56-58.

He L C,Qu B Q,Wang Y.Effects of ascorbic acid and sodium selenite on some antioxidation function of cucumber seedling by steeping seeds.Hubei Agricultural Sciences,2004(6):56-58.(in Chinese)

[70]張萬萍,楊民,莫小青,陳善粉.稀土浸種對黃瓜種子萌發(fā)及幼苗生長的影響.種子,2003,127(1):27-29,32.

Zhang W P,Yang M,Mo X Q,Chen S F.The effect of aluminum on germination of soybean seed.Seed,2003,127(1):27-29,32.(in Chinese)

[71]穆瑞霞,阮云飛,王吉慶,楊林超,李陽,宗偉芳.不同濃度水楊酸浸種對大蔥種子萌發(fā)及生理特性的影響.中國農(nóng)學(xué)通報(bào),2008,24(6):370-373.

Mu R X,Ruan Y F,Wang J Q,Yang L C,Li Y,Zong W F.Effect of soaking with different concentration salicylic acid on the germination and physiological characteristics of the welsh onion seed.Chinese Agricultural Science Bulletin,2008,24(6):370-373.(in Chinese)

[72]邢燕,王吉慶,菅廣宇,邵秀麗.不同引發(fā)劑處理對西瓜種子萌發(fā)及生理特性的影響.中國農(nóng)學(xué)通報(bào),2009,25(11):133-136.

Xing Y,Wang J Q,Jian G Y,Shao X L.Effect of different materials priming on the germination and physiological characteristics of aged watermelon seed.Chinese Agricultural Science Bulletin,2009,25(11):133-136.(in Chinese)

[73]夏方山,毛培勝,閆慧芳,王明亞.水楊酸對植物種子及幼苗抗逆性的影響.草業(yè)科學(xué),2014,31(7):1367-1373.

Xia F S,Mao P S,Yan H F,Wang M Y.Effects of salicylic acid on stress resistance of seeds and seedling.Pratacultural Science,2014,31(7):1367-1373.(in Chinese)

[74]許慧男,王文杰,于興洋,賀海升,關(guān)宇,祖元?jiǎng)?菊科幾種入侵和非入侵植物種子需光發(fā)芽特性差異.生態(tài)學(xué)報(bào),2010,30(13):3433-3440.

Xu H N,Wang W J,Yu X Y,He H S,Guan Y,Zu Y G.The difference sinlight-demanding germination features of seeds between invasive and non invasive alien plants within Composita.Acta Ecologica Sinica,2010,30(13):3433-3440.(in Chinese)

[75] Navarri-Izzo F,Izzo R,Bottazzi F,Ranieri A.Effect of water stress and salinity on sterols inZeamaysshoots.Phytochemistry,1988,27(10):3109-3115.

[76]賓金華,潘瑞熾.甲基茉莉酸酯對花生種子萌發(fā)和貯藏物質(zhì)降解的影響.熱帶亞熱帶植物學(xué)報(bào),1998,6(3):239-244.

Bin J H,Pan R C.Effects of methyl jasmonate on the germination and degradation of reserve substances in peanut (ArachishypogaeaL.) seeds.Journal of Tropical and Subtropical Botany,1998,6(3):239-244.(in Chinese)

[77]賓金華,黃勝琴,何樹春,賀立紅,潘瑞熾.茉莉酸甲酯對水稻種子萌發(fā)和貯藏物質(zhì)降解的影響.植物學(xué)報(bào),2001,43(6):578-585.

Bin J H,Huang S Q,He S C,He L H,Pan R C.Effect of methyl jasmonate on the germination and the degradation of storage reserve in rice seed.Acta Botanica Sinica,2001,43(6):578-585.(in Chinese)

[78]Liu R H.Health benefits of fruit and vegetables are form additive and synergistic combinations of phytochemicals.The American Journal of Clinical Nutrtion,2003,78(3):517-520.

[79]朱艷喬,閆慧芳,夏方山,陳泉竹,王明亞,毛培勝.線粒體與種子老化的關(guān)系.草業(yè)科學(xué),2016,33(2):290-298.

Zhu Y Q,Yan H F,Xia F S,Chen Q Z,Wang M Y,Mao P S.The relationship between mitochondria and seed aging.Pratacultural Science,2016,33(2):290-298.(in Chinese)

(責(zé)任編輯武艷培)

Review on the non-enzymatic scavenging agent of reactive oxygen species in aged seeds

Xia Fang-shan, Yan Hui-fang, Zhu Yan-qiao, Wang Ming-ya, Mao Pei-sheng

(College of Animal Science and Technology, China Agricultural University;Beijing Key Laboratory of Grassland Science, Beijing 100193, China)

Abstract:Seed ageing was the pivotal problem to influence their storage, which could be delayed by the non-enzymatic scavenging agents of reactive oxygen species (ROS). However, the content of non-enzymatic scavenging agents reduced during seed ageing. Therefore, it was necessary that non-enzymatic scavenging agents were applied to extend the life span in seeds by eliminating ROS during storage, which would be an inevitable development tendency in ex-situ conservation of germplasm resources. This papermainly reviewed the types and their influences of non-enzymatic scavenging agents on aged seeds, and systematically analyzed their research status, existing problems, and future prospects during seed ageing. This paper might provide a theoretical foundation to study the mechanism of non-enzymatic scavenging agents during seed ageing.

Key word:seed; ageing; reactive oxygen species; scavenging agent; lipid peroxidation

DOI:10.11829/j.issn.1001-0629.2015-0547

*收稿日期:2015-10-10接受日期:2016-02-24

基金項(xiàng)目:國家“十二五”科技支撐課題“優(yōu)質(zhì)多抗牧草新品種選育與良種繁育關(guān)鍵技術(shù)研究與示范”(2011BAD17B01-02);國家“十二五”科技支撐計(jì)劃課題“天然草地合理利用與人工飼草基地建設(shè)技術(shù)研究”(2012BAD45B03)

通信作者:毛培勝(1970-),男,內(nèi)蒙古錫林浩特人,教授,博士,研究方向?yàn)椴蓊愑N與種子科學(xué)。E-mail:maops@cau.edu.cn

中圖分類號(hào):S339.5+1;Q945.48

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1001-0629(2016)6-1126-10*

Corresponding author:Mao Pei-shengE-mail:maops@cau.edu.cn

夏方山,閆慧芳,朱艷喬,王明亞,毛培勝.活性氧非酶促清除劑對老化種子的影響.草業(yè)科學(xué),2016,33(6):1126-1135.

Xia F S,Yan H F,Zhu Y Q,Wang M Y,Mao P S.Review on the non-enzymatic scavenging agent of reactive oxygen species in aged seeds.Pratacultural Science,2016,33(6):1126-1135.

第一作者:夏方山(1983-),男,山東安丘人,博士,研究方向?yàn)椴蓊愔参镉N與種子科學(xué)。E-mail:dqlxfs8583@163.com

猜你喜歡
清除劑活性氧老化
亞硝酸鹽清除劑研究進(jìn)展及其在肉制品中的應(yīng)用
延緩大腦老化,要怎樣吃
分子診斷實(shí)驗(yàn)室核酸污染清除方法研究
普立萬推出PET包裝用新款低霧氧氣清除劑
杭州化工(2020年2期)2020-01-16 15:26:40
節(jié)能技術(shù)在開關(guān)電源老化測試中的應(yīng)用
電子制作(2018年10期)2018-08-04 03:24:30
杜絕初春老化肌
Coco薇(2016年2期)2016-03-22 02:40:06
TLR3活化對正常人表皮黑素細(xì)胞內(nèi)活性氧簇表達(dá)的影響
道路廢舊標(biāo)線的處理方法及其研究進(jìn)展
安徽建筑(2014年6期)2014-08-15 00:50:38
硅酸鈉處理對杏果實(shí)活性氧和苯丙烷代謝的影響
O2聯(lián)合CO2氣調(diào)對西蘭花活性氧代謝及保鮮效果的影響
内江市| 大同市| 临武县| 九江市| 买车| 那曲县| 呼玛县| 湘潭县| 盖州市| 泉州市| 桐梓县| 柯坪县| 黄浦区| 颍上县| 临武县| 茶陵县| 大冶市| 肇源县| 永修县| 罗山县| 晋江市| 务川| 广元市| 清远市| 北票市| 安多县| 焦作市| 武乡县| 白玉县| 德安县| 会宁县| 弋阳县| 新源县| 尚义县| 义马市| 江津市| 肃宁县| 文安县| 嘉义市| 阜新| 辛集市|