【摘要】首先對(duì)中值定理及其幾何意義進(jìn)行了簡(jiǎn)單描述,并說明了它們之間的關(guān)系,以及在什么條件下是等同的,然后通過例題證明了各個(gè)中值定理在證明等式和不等式中的不同用法。并列舉實(shí)例介紹了它們的綜合用法及解題思路。
【關(guān)鍵詞】不等式 等式 微分中值定理
【Abstract】This paper describes The Mean Value Theorem and its geometric significance roughly, firstly, and then we illustrates their relation, and under what conditions they are equivalent, besides, we discuss the different usages of Mean Value Theorem in proving equality and inequality. At last, we introduce its comprehensive usages and use what ideas on how to solve problem by citing some examples.
【Key words】inequality; equation; mean value theorem
【中圖分類號(hào)】G64 【文獻(xiàn)標(biāo)識(shí)碼】A 【文章編號(hào)】2095-3089(2016)06-0099-02
參考文獻(xiàn):
[1]華東師范大學(xué)數(shù)學(xué)系.數(shù)學(xué)分析[M]. 北京:高等教育出版社,2001.
[2]菲赫金哥爾茨.微積分學(xué)教程[M] .北京:人民教育出版社,1978.
[3]江澤堅(jiān).數(shù)學(xué)分析[M].北京:人民教育出版社,1978.
[4]劉廣云.數(shù)學(xué)分析選講[M].黑龍江教育出版社.
[5]同濟(jì)大學(xué)數(shù)學(xué)教研室.高等數(shù)學(xué)(第五版)[M].北京:高等教育出版社,2002.
[6]李勇,張佐剛.高等數(shù)學(xué)知識(shí)儲(chǔ)備與解題對(duì)策[M].沈陽:東北大學(xué)出版社,2001.
作者簡(jiǎn)介:
吳德宇(1987-),男,助教,碩士;研究方向:應(yīng)用泛函分析。