朱守彪, 繆淼
1 中國(guó)地震局地殼應(yīng)力研究所(地殼動(dòng)力學(xué)重點(diǎn)實(shí)驗(yàn)室), 北京 100085 2 中國(guó)科學(xué)院計(jì)算地球動(dòng)力學(xué)重點(diǎn)實(shí)驗(yàn)室, 北京 100049
?
地震觸發(fā)研究中庫侖應(yīng)力隨摩擦系數(shù)增加而增大的矛盾及其解決
朱守彪1,2, 繆淼1
1 中國(guó)地震局地殼應(yīng)力研究所(地殼動(dòng)力學(xué)重點(diǎn)實(shí)驗(yàn)室), 北京100085 2 中國(guó)科學(xué)院計(jì)算地球動(dòng)力學(xué)重點(diǎn)實(shí)驗(yàn)室, 北京100049
摘要近年來,通過計(jì)算庫侖破裂應(yīng)力變化研究地震觸發(fā)及斷層的相互作用,進(jìn)而估計(jì)地震災(zāi)害已經(jīng)成為國(guó)際上研究的熱點(diǎn).研究中,為考察庫侖模型觸發(fā)地震的效果,計(jì)算時(shí)往往要改變模型參數(shù)進(jìn)行檢驗(yàn),特別是讓有效摩擦系數(shù)從0.0到0.8之間變化.許多研究人員的計(jì)算結(jié)果表明,庫侖破裂應(yīng)力隨著摩擦系數(shù)的增加而增大,即斷層上摩擦系數(shù)的增大可以導(dǎo)致觸發(fā)地震能力的提高.這顯然與我們的常識(shí)相違背:摩擦總是阻礙斷層滑動(dòng)、抑制地震發(fā)生的,即斷層面上的摩擦越大,地震越是難以被觸發(fā).文中通過對(duì)庫侖破裂應(yīng)力的計(jì)算公式進(jìn)行詳細(xì)分析后發(fā)現(xiàn),之所以出現(xiàn)摩擦越大,地震越容易被觸發(fā)的現(xiàn)象,其原因是研究者在計(jì)算中沒有考慮在構(gòu)造應(yīng)力作用的環(huán)境里,摩擦系數(shù)本身的變化所帶來的附加庫侖應(yīng)力變化.若某個(gè)地震使一個(gè)位于地下15 km的典型斷層面上的正應(yīng)力增加2 MPa,如果只考慮靜巖壓力,當(dāng)摩擦系數(shù)從0.3增大到0.4后,傳統(tǒng)庫侖破裂應(yīng)力變化為0.8 MPa;而綜合庫侖應(yīng)力變化則大約為-39.2 MPa.所以,若從整體上來分析斷層在地震位錯(cuò)及摩擦系數(shù)變化所造成的綜合庫侖應(yīng)力改變,就不可能出現(xiàn)庫侖應(yīng)力隨摩擦系數(shù)增加而增加的不正?,F(xiàn)象.由此可見,今后在利用庫侖模型研究地震觸發(fā)問題時(shí),應(yīng)綜合考慮構(gòu)造應(yīng)力場(chǎng)及摩擦系數(shù)本身變化所帶來的庫侖應(yīng)力變化.
關(guān)鍵詞庫侖破裂應(yīng)力; 地震觸發(fā); 摩擦系數(shù); 綜合庫侖應(yīng)力
1引言
庫侖應(yīng)力模型在研究余震觸發(fā)及主震對(duì)后續(xù)強(qiáng)震的觸發(fā)方面發(fā)揮著非常重要的作用,國(guó)內(nèi)外很多科學(xué)工作者研究了地震觸發(fā)問題,并取得了引人矚目的成果(King and Stein, 1994; Harris, 1998; Stein, 1999; King and Cocco,2001; Freed, 2005; Toda et al., 2008;Parsons et al., 2008; 萬永革等,2000;石耀霖,2001;張竹琪等,2008;繆淼和朱守彪,2012,2013).特別是Stein等(1997)通過計(jì)算1939—1992年發(fā)生在土耳其North Anatolian斷裂帶10個(gè)6.7級(jí)以上地震的庫侖破裂應(yīng)力變化,發(fā)現(xiàn)其中90%的地震是被先前地震所觸發(fā),從而成功地預(yù)測(cè)了1999年Izmit地區(qū)強(qiáng)震的發(fā)生.同樣,Parsons等(2008)計(jì)算了2008年汶川地震產(chǎn)生的庫侖應(yīng)力變化,發(fā)現(xiàn)雅安地區(qū)為庫侖應(yīng)力的增加區(qū)域,該區(qū)域?yàn)榈卣鹞kU(xiǎn)區(qū).果然,在2013年雅安地區(qū)發(fā)生了蘆山MS7.0地震,這進(jìn)一步說明了庫侖觸發(fā)模型的有效性和可預(yù)測(cè)性(繆淼和朱守彪, 2013).
根據(jù)前人的研究(King et al.,1994;Harris,1998), 庫侖破裂應(yīng)力變化(ΔCFS )可以用下式表示:
(1)
式中,Δτ為接受斷層上的剪切應(yīng)力(與滑動(dòng)方向一致為正),Δσn為正應(yīng)力變化(壓為負(fù)),μ′為有效摩擦系數(shù)(或視摩擦系數(shù)).特別是,很多研究者為考察庫侖應(yīng)力觸發(fā)地震的效果,通常要改變模型參數(shù),將摩擦系數(shù)從小到大變化(如:從0.0到0.8).在研究地震觸發(fā)方面有代表性的經(jīng)典著作中, King等(1994)計(jì)算了1992年美國(guó)Landers地震(MW=7.3)引起的庫侖應(yīng)力變化沿著San Andreas斷層的分布,其結(jié)果清晰地展示: 在摩擦系數(shù)為0.75時(shí)的應(yīng)力值明顯高于摩擦系數(shù)為0.0時(shí)的結(jié)果; 同樣, Freed和Lin(2001)計(jì)算了Landers地震在1999年Hector Mine地震(MW=7.1)震源處的庫侖應(yīng)力變化,結(jié)果也是摩擦系數(shù)為0.8的庫侖應(yīng)力明顯高于摩擦系數(shù)為0.2時(shí)的庫侖應(yīng)力變化.類似的情況還有:Parsons等(1999)計(jì)算了Santa Clara Valley地區(qū)逆沖斷裂帶上4條斷層面上的庫侖應(yīng)力,發(fā)現(xiàn)地震活動(dòng)與斷層面的庫侖應(yīng)力在摩擦很大時(shí)存在強(qiáng)相關(guān);Bilek與Bertelloni(2005)計(jì)算了1999年Quepos地震(MW=6.9)在深度為15 km的斷層面造成的庫侖應(yīng)力變化,并讓摩擦系數(shù)在0.1~0.9之間變化,結(jié)果表明庫侖應(yīng)力隨著摩擦系數(shù)的增大而增大;Gahalaut和Gahalaut(2008)也通過計(jì)算發(fā)現(xiàn)對(duì)于所有正斷層型地震,當(dāng)摩擦系數(shù)從0.0到1.0之間變化時(shí),庫侖應(yīng)力隨著摩擦系數(shù)的增大而升高.同樣,Toda等(2011)計(jì)算了2011年日本東北地震(MW=9.0)同震位錯(cuò)造成的在余震震源機(jī)制解中2個(gè)節(jié)面上的庫侖應(yīng)力,分別讓摩擦系數(shù)為0.4和0.8,結(jié)果也是摩擦系數(shù)大者,庫侖應(yīng)力就大.此類的結(jié)果還有很多,這里不再贅述.事實(shí)上,根據(jù)公式(1),我們很容易看到,只要斷層面上的正應(yīng)力變化大于0,不管在什么情況下,庫侖應(yīng)力都是隨著摩擦系數(shù)的增大而增大的.
然而另一方面,庫侖應(yīng)力變化越大說明斷層越是接近于破裂,即越容易發(fā)生地震.所以,根據(jù)上面討論的結(jié)果,可以得出這樣的結(jié)論:“摩擦系數(shù)越大,地震就越容易被觸發(fā)”.顯然,這個(gè)結(jié)論與常識(shí)相違背.常識(shí)告訴我們,摩擦是阻礙斷層相互滑移的,摩擦越大斷層就越不容易產(chǎn)生滑動(dòng),即摩擦系數(shù)越大地震就越不容易發(fā)生.
那么上文的矛盾是如何產(chǎn)生的?這是在利用庫侖模型研究地震觸發(fā)現(xiàn)象時(shí)應(yīng)該正視的一個(gè)基本力學(xué)問題,但迄今為止沒有人對(duì)這一基本問題進(jìn)行討論.本文將從庫侖應(yīng)力計(jì)算的基本定義出發(fā),分析由于摩擦系數(shù)變化帶來的庫侖應(yīng)力改變,解釋矛盾產(chǎn)生的根源,并給出解決的辦法.
2摩擦系數(shù)變化引起的庫侖應(yīng)力變化
通常斷層面上的庫侖應(yīng)力利用下面公式來表達(dá)(如:Harris and Simpson, 1992; Reasenberg and Simpson, 1992; Stein et al., 1997, 1999; Simpson and Reasenberg, 1994; King et al., 1994; Harris et al., 1995; Nostro et al., 1997).
(2)
(3)
B是用來考慮孔隙壓引起的有效正應(yīng)力的改變.
(4)
顯然,在沒有地震時(shí),由于摩擦系數(shù)的變化,斷層上的庫侖破裂應(yīng)力的變化量為
(5)
由此可見,只要斷層面上的摩擦系數(shù)發(fā)生改變,就導(dǎo)致庫侖應(yīng)力發(fā)生很大的變化.但是,這個(gè)變化往往被不少研究觸發(fā)的人員在計(jì)算庫侖應(yīng)力時(shí),特別是在考察摩擦系數(shù)變化時(shí)所忽略.
3同震位錯(cuò)產(chǎn)生的庫侖應(yīng)力變化
當(dāng)?shù)卣鸢l(fā)生時(shí),同震位錯(cuò)將造成斷層周邊應(yīng)力狀態(tài)發(fā)生改變,這樣根據(jù)公式(2),斷層面上的庫侖應(yīng)力為
(6)
式中,Δτ是由于同震位錯(cuò)在斷層面上產(chǎn)生的剪切應(yīng)力變化,Δσn是地震對(duì)斷層產(chǎn)生的正應(yīng)力變化.
(7)
這樣,地震同震位錯(cuò)及摩擦系數(shù)變化兩者共同作用造成的綜合庫侖應(yīng)力變化就可以寫為下式:
(8)
4討論與結(jié)論
利用庫侖破裂應(yīng)力變化研究地震觸發(fā)問題越來越受到廣泛的關(guān)注,模型本身由原來的基于Okada(1985,1992)提出的解析解發(fā)展到分層均勻模型、甚至還可以考慮介質(zhì)不均勻、各向異性等更為復(fù)雜的符合地質(zhì)實(shí)際的情況.由于實(shí)際計(jì)算庫侖應(yīng)力變化是利用公式(1)來完成的,所以有時(shí)會(huì)忽視綜合庫侖破裂應(yīng)力的計(jì)算形式,從而沒有考慮構(gòu)造應(yīng)力場(chǎng)對(duì)計(jì)算的影響.這也是目前利用庫侖模型研究地震觸發(fā)的缺點(diǎn)之一.隨著近于符合實(shí)際地質(zhì)構(gòu)造的數(shù)值模型的不斷引入,通過計(jì)算庫侖應(yīng)力變化來研究地震觸發(fā)問題可能會(huì)更加符合實(shí)際,庫侖模型在理論上會(huì)更加科學(xué)與完善,因而更有利于對(duì)地震災(zāi)害的評(píng)估.
順便指出,目前基于庫侖破裂應(yīng)力變化模型研究地震觸發(fā)問題,幾乎都沒有考慮初始應(yīng)力場(chǎng)的作用.實(shí)際上,若一個(gè)區(qū)域,應(yīng)力的初始狀態(tài)遠(yuǎn)離破裂水平,即使大地震造成很高的庫侖應(yīng)力增加,這里的斷層也很難被觸發(fā)而產(chǎn)生地震;反之,若一個(gè)地區(qū),已經(jīng)達(dá)到臨界破裂狀態(tài),這時(shí)若給一個(gè)不太大的作用力,也可以觸發(fā)產(chǎn)生地震.可見,在研究地震觸發(fā)時(shí),最好能夠?qū)靵瞿P团c局部的構(gòu)造應(yīng)力場(chǎng)結(jié)合進(jìn)行全面分析.
通過以上分析與推導(dǎo),得出如下初步認(rèn)識(shí):
1) 若摩擦系數(shù)有一個(gè)很小的變化,斷層面上的庫侖破裂應(yīng)力就會(huì)有很大的改變;對(duì)于一個(gè)深度為15 km的斷層表面,若摩擦系數(shù)變化0.1,則庫侖應(yīng)力變化可達(dá)40 MPa.
2) 地震同震位錯(cuò)產(chǎn)生的庫侖應(yīng)力模型,當(dāng)斷層面上的摩擦系數(shù)改變時(shí),綜合庫侖破裂應(yīng)力由兩個(gè)部分組成:一部分來自于構(gòu)造應(yīng)力,另一部分來自地震位錯(cuò),而構(gòu)造應(yīng)力導(dǎo)致的庫侖應(yīng)力變化比地震引起的還要大.當(dāng)摩擦系數(shù)變化0.1時(shí),斷層面上的傳統(tǒng)庫侖應(yīng)力增大0.8 MPa, 但綜合庫侖應(yīng)力可以降低39.2 MPa.這就解釋了目前研究中庫侖應(yīng)力隨著摩擦系數(shù)增大而增大的矛盾,其根本原因是忽略了構(gòu)造應(yīng)力場(chǎng)的作用.
因此,在利用庫侖模型研究地震觸發(fā)時(shí),當(dāng)涉及到摩擦系數(shù)改變的情況時(shí),要特別謹(jǐn)慎,尤其注意構(gòu)造應(yīng)力場(chǎng)本身的影響,這樣才能不斷地完善庫侖模型,使之在研究地震觸發(fā)及災(zāi)害評(píng)估中發(fā)揮更加重要的作用.
致謝兩位審稿專家提出了十分寶貴的建議,在此表示衷心的感謝!
References
Bilek S L, Lithgow-Bertelloni C L. 2005. Stress changes in the Costa Rica subduction zone due to the 1999Mw=6.9 Quepos earthquake.EarthPlanet.Sci.Lett., 230(1-2): 97-112.
Deng J S, Sykes L R. 1997. Evolution of the stress field in southern California and triggering of moderate-size earthquakes: A 200-year perspective.J.Geophys.Res., 102(B5): 9859-9886.
Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer.Nature, 411(6834): 180-183.
Freed A M. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer.Annu.Rev.EarthPlanet.Sci.,33:335-367. Gahalaut K, Gahalaut V K. 2008. Stress triggering of normal aftershocks due to strike slip earthquakes in compressive regime.JournalofAsianEarthSciences, 33(5-6): 379-382.
Harris R A, Simpson R W. 1992. Changes in static stress on southern California faults after the 1992 Landers earthquake.Nature, 360(6401): 251-254.
Harris R A, Simpson R W, Reasenberg P A. 1995. Influence of static stress changes on earthquake locations in southern California.Nature, 375(6528): 221-224.
Harris R A. 1998. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard.JournalofGeophysicalResearch:SolidEarth(1978-2012), 103(B10): 24347-24358.
King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes.BulletinoftheSeismologicalSocietyofAmerica, 84(3): 935-953.
King G C P, Cocco M. 2001. Fault interaction by elastic stress changes: New clues from earthquake sequences.AdvancesinGeophysics, 44: 1-38, I-VIII1-36.
Miao M, Zhu S B. 2012. A study of the impact of static Coulomb stress changes of megathrust earthquakes along subduction zone on the following aftershocks.ChineseJ.Geophys. (in Chinese), 55(9): 2982-2993, doi: 10.6038/j.issn.0001-5733.2012.09.017. Miao M, Zhu S B. 2013. The static Coulomb stress change of the 2013 LushanMs7.0 earthquake and its impact on the spatial distribution of aftershocks.ActaSeismologicaSinica(in Chinese), 35(5): 619-631. Nostro C, Cocco M, Belardinelli M E. 1997. Static stress changes in extensional regimes: an application to southern Apennines (Italy).BulletinoftheSeismologicalSocietyofAmerica, 87(1): 234-248.
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space.BulletinoftheSeismologicalSocietyofAmerica, 75(4): 1135-1154.Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space.BulletinoftheSeismologicalSocietyofAmerica, 82(2): 1018-1040.
Parsons T, Stein R S, Simpson R W, Reasenberg P Aet al. 1999. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults.JournalofGeophysicalResearch:SolidEarth(1978-2012), 104(B9): 20183-20202.
Parsons T, Ji C, Kirby E. 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin.Nature, 454(7203): 509-510.
Reasenberg P A, Simpson R W. 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake.Science, 255(5052), 1687-1690.
Shi Y L. 2001. Stress triggers and stress shadows: How to apply these concepts to earthquake prediction.Earthquake(in Chinese)., 21(3): 1-7. Simpson R W, Reasenberg P A. 1994. Earthquake-induced static stress changes on central California faults. // Simpson R W ed. The Loma Prieta, California Earthquake of October 17, 1989-Tectonic Processes and Models. U S Geol Surv Prof Pap, 55-89.
Stein R S, Barka A A, Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering.GeophysicalJournalInternational, 128(3): 594-604.Stein R S. 1999. The role of stress transfer in earthquake occurrence.Nature, 402(6762): 605-609.Toda S, Lin J, Meghraoui M, Stein R Set al. 2008. 12 May 2008M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems.Geophys.Res.Lett., 35(17): L17305.
Toda S, Lin J, Stein R S. 2011. Using the 2011Mw=9.0 off the Pacific coast of Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure.Earth,PlanetsandSpace, 63(7): 725-730.
Wan Y G, Wu Z L, Zhou G W, Huang Jet al. 2000. “Stress triggering” between different rupture events in several earthquakes.ActaSeismologicaSinica(in Chinese), 2000, 22(6): 568-576.Zhang Z Q, Chen J Y S, Lin J. 2008. Stress interactions between normal faults and adjacent strike-slip faults in of 1997 Jiashi earthquake group 1997 swarm.Sci.ChinaEarthSci., 3851(3):334431-342440.Zhu S B, Miao M. 2015. How did the 2013 Lushan earthquake(Ms=7.0) trigger its aftershocks? Insights from static Coulomb stress changes calculations.PureandAppliedGeophysics, 172(10): 2481-2494.
附中文參考文獻(xiàn)
繆淼, 朱守彪. 2012. 俯沖帶上特大地震靜態(tài)庫侖應(yīng)力變化對(duì)后續(xù)余震觸發(fā)效果的研究. 地球物理學(xué)報(bào), 55(9),: 2982-2993, doi: 10.6038/j.issn.0001-5733.2012.09.017.
繆淼, 朱守彪. 2013. 2013年蘆山Ms7.0地震產(chǎn)生的靜態(tài)庫侖應(yīng)力變化及其對(duì)余震空間分布的影響. 地震學(xué)報(bào), 35(5): 619-631.
石耀霖. 2001. 關(guān)于應(yīng)力觸發(fā)和應(yīng)力影概念在地震預(yù)報(bào)中應(yīng)用的一些思考. 地震, 21(3): 1-7.
萬永革, 吳忠良, 周公威等. 2000. 幾次復(fù)雜地震中不同破裂事件之間的“應(yīng)力觸發(fā)”問題. 地震學(xué)報(bào), 22(6): 568-576.
張竹琪, 陳永順, 林間. 2008. 1997年伽師震群中相鄰正斷層和走滑斷層之間相互應(yīng)力作用. 中國(guó)科學(xué): D輯, 38(3): 334-342.
(本文編輯汪海英)
基金項(xiàng)目國(guó)家自然科學(xué)基金項(xiàng)目(41574041),北京市自然科學(xué)基金項(xiàng)目(8152034),地震動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(LED2012B01),廣西科技攻關(guān)項(xiàng)目(桂科攻1377002)以及中央級(jí)科研院所科研業(yè)務(wù)專項(xiàng)共同資助.
作者簡(jiǎn)介朱守彪,男,1964年生,研究員,理學(xué)博士.主要從事地球動(dòng)力學(xué)及地震活動(dòng)性研究.E-mail:zhushoubiao@gmail.com
doi:10.6038/cjg20160114 中圖分類號(hào)P315
收稿日期2014-09-18,2015-09-15收修定稿
On the study of earthquake triggering: Solution to paradox that Coulomb stresses increase with frictional coefficients
ZHU Shou-Biao1,2, MIAO Miao1
1InstituteofCrustalDynamics,ChinaEarthquakeAdministration,Beijing100085,China2KeyLabofComputationalGeodynamics,ChineseAcademyofSciences,Beijing100049,China
AbstractCoulomb stress change calculation has been playing an important part in investigating fault interactions and earthquake triggering. However, the results of most workers showed that Coulomb stress changes (or earthquake triggering effects) would become larger and larger with the increase of apparent frictional coefficients. This phenomenon is clearly in contradiction with our common knowledge in which frictional stress should resist fault slip and inhibit earthquakes under any circumstances. By analyzing the formula for calculating Coulomb stress changes (?CFS), we found that previous research did not take into account the additional ?CFS which are only resulted from the variations of frictional coefficients. Suppose the depth of typical receiver fault is 15 km, the value of combined ?CFS will be as large as about 39.2 MPa when the variation of apparent friction coefficient is 0.1(e.g., from 0.3 to 0.4), whereas traditional ?CFS is only 0.8 MPa. If we incorporated the additional ?CFS in calculation, the above contradiction will disappear completely. Therefore, it is suggested that we should consider changes of combined ?CFS due to the variation of the friction coefficient, especially when we compare different Coulomb stress models with different apparent frictional coefficients.
KeywordsCoulomb failure stress; Earthquake triggering; Frictional coefficient; Combined Coulomb stress
朱守彪, 繆淼. 2016. 地震觸發(fā)研究中庫侖應(yīng)力隨摩擦系數(shù)增加而增大的矛盾及其解決.地球物理學(xué)報(bào),59(1):169-173,doi:10.6038/cjg20160114.
Zhu S B, Miao M. 2016. On the study of earthquake triggering: Solution to paradox that Coulomb stresses increase with frictional coefficients.ChineseJ.Geophys. (in Chinese),59(1):169-173,doi:10.6038/cjg20160114.