郭英明,黃廷林,文 剛,曹 昕,叢 菁
(西安建筑科技大學(xué) 環(huán)境與市政工程學(xué)院,西安 710055)
?
脫膜劑對(duì)石英砂表面活性濾膜脫膜效果比較
郭英明,黃廷林,文剛,曹昕,叢菁
(西安建筑科技大學(xué) 環(huán)境與市政工程學(xué)院,西安 710055)
摘要:為解決水廠濾池反沖洗周期逐漸縮短的問題,利用HCl、Na2SO3與H2O23種脫膜劑,對(duì)表面濾膜過度增長(zhǎng)的石英砂活性濾料進(jìn)行靜態(tài)脫膜實(shí)驗(yàn),確定最適脫膜劑投量與脫膜時(shí)間,應(yīng)用于中試動(dòng)態(tài)過濾系統(tǒng)中.利用掃描電子顯微鏡(SEM)與X射線熒光光譜分析(XRF)對(duì)脫膜前后濾料進(jìn)行微觀表征.結(jié)果表明:靜態(tài)實(shí)驗(yàn)確定HCl的最適投量為14.6 mg/g,Na2SO3與H2O2的最適投量均為11.7 mg/g,3種脫膜劑最適脫膜時(shí)間均為40 min;中試系統(tǒng)經(jīng)脫膜劑處理后,濾層空隙率與反沖洗周期均明顯提高,HCl脫膜效果尤其突出,經(jīng)HCl處理后,濾層空隙率由脫膜前的27.7%提高至39.1%,反沖洗周期由脫膜前的33.7 h提高至61.6 h;同時(shí),濾柱內(nèi)石英砂濾料催化氧化活性并未受到影響,出水水質(zhì)仍穩(wěn)定達(dá)標(biāo).SEM及XRF表征結(jié)果表明,濾料表面的濾膜被部分剝離,濾膜表面形貌與元素組成均無明顯變化.綜合考慮反沖洗周期恢復(fù)效果與經(jīng)濟(jì)因素,HCl為最優(yōu)的脫膜劑選擇.
關(guān)鍵詞:脫膜;反沖洗周期;中試;HCl
水廠濾池通常使用石英砂作為濾料,在運(yùn)行過程中,濾料表面逐漸形成一層黑色氧化膜,其主要成分為錳、鐵、硅、鎂、鋁[1- 2].持續(xù)運(yùn)行1~2 a后,濾膜厚度逐漸增加,過度增長(zhǎng)的濾膜會(huì)導(dǎo)致濾層空隙率與截留效率降低,縮短濾料使用壽命[3],導(dǎo)致濾池反沖洗周期縮短,產(chǎn)水量下降[4-5].反沖洗周期是反映濾池運(yùn)行性能的重要參數(shù)[6-7],通過更換濾料實(shí)現(xiàn)對(duì)濾池反沖洗周期的恢復(fù),勢(shì)必導(dǎo)致較高的運(yùn)行成本[8-9],因此,通過投加脫膜劑實(shí)現(xiàn)對(duì)濾池反沖洗周期的恢復(fù)具有重要意義.
本研究利用HCl、Na2SO3和H2O2處理表面濾膜過厚的成熟石英砂濾料,通過靜態(tài)實(shí)驗(yàn)確定最適脫膜劑投量與脫膜時(shí)間,并應(yīng)用于動(dòng)態(tài)中試系統(tǒng)中.考察了各處理?xiàng)l件下濾層空隙率與反沖洗周期的恢復(fù)情況以及各脫膜過程對(duì)濾料催化氧化活性的影響.
1實(shí)驗(yàn)
1.1污染物負(fù)荷與中試系統(tǒng)
實(shí)驗(yàn)原水取自西北地區(qū)某市一飲用水水源井,取水深度位于地面以下40 m處,水質(zhì)情況如表1所示.由表1可知,氨氮、錳與總鐵為實(shí)驗(yàn)原水中主要污染物,分別超標(biāo)2.5倍、7.5倍、3倍左右[10].
中試系統(tǒng)流程見圖1,包括4支有機(jī)玻璃濾柱,濾柱內(nèi)徑0.1 m,高3.8 m,過濾層高1.1 m,底部承托層高0.3 m,承托層下方配水布?xì)馐腋?.4 m,溢流口至濾柱頂端高0.4 m.過濾時(shí),所有濾柱運(yùn)行濾速均為8.0 m/h,接觸時(shí)間約8 min.當(dāng)水位達(dá)到溢流口(距濾層表面約1.6 m處),或出水水質(zhì)出現(xiàn)超標(biāo)現(xiàn)象,需對(duì)濾柱進(jìn)行反沖洗操作.反沖洗強(qiáng)度為:氣沖強(qiáng)度 14.1~20 L/(S·m2),水沖強(qiáng)度4.2~10 L/(S·m2).步驟為:?jiǎn)为?dú)氣沖3 min;氣水聯(lián)合沖4 min;水沖3 min.
表1 原水污染物負(fù)荷
圖1 中試實(shí)驗(yàn)系統(tǒng)流程
1.2靜態(tài)實(shí)驗(yàn)與中試動(dòng)態(tài)實(shí)驗(yàn)
靜態(tài)脫膜實(shí)驗(yàn)中,以不同質(zhì)量濃度HCl、Na2SO3及H2O2溶液作為脫膜劑.其中,HCl利用濃鹽酸稀釋制得(分析純,北京化工廠);Na2SO3利用分析純?cè)噭┡渲?分析純,天津市天力化學(xué)試劑有限公司);H2O2利用質(zhì)量分?jǐn)?shù)為30%的過氧化氫溶液制得(分析純,天津市天力化學(xué)試劑有限公司).HCl質(zhì)量濃度分別為0.1, 0.5, 1.0, 1.2, 1.5, 2.0 g/L,Na2SO3與H2O2質(zhì)量濃度分別為0.1, 0.5, 1.0, 1.2, 1.5 g/L.考察各質(zhì)量濃度下不同作用時(shí)間內(nèi)各脫膜劑對(duì)濾膜的剝離效果,作用時(shí)間分別為t=5, 10, 20, 40, 80 min.靜態(tài)實(shí)驗(yàn)使用的反應(yīng)器和具體實(shí)驗(yàn)步驟見文獻(xiàn)[11].
中試動(dòng)態(tài)脫膜實(shí)驗(yàn)在4支相同規(guī)格的有機(jī)玻璃濾柱中進(jìn)行,其中1支作為空白對(duì)照(未投加脫膜劑).參照靜態(tài)實(shí)驗(yàn)確定的最優(yōu)投量與脫膜時(shí)間,向另外3支中試濾柱中分別投加3種脫膜劑,濾柱內(nèi)脫膜劑液位高于濾料表面1 m左右,自濾柱底部持續(xù)通入一定量氣體,使部分濾料處于流態(tài)化狀態(tài),實(shí)現(xiàn)脫膜劑與濾料表面最大程度的接觸,達(dá)到剝離過度生長(zhǎng)濾膜的處理效果,從而實(shí)現(xiàn)恢復(fù)反沖洗周期的目的.濾層空隙率的計(jì)算過程見文獻(xiàn)[11].
1.3分析方法
利用納氏試劑比色法測(cè)定氨氮質(zhì)量濃度,利用鄰菲啰啉分光光度法測(cè)定總鐵質(zhì)量濃度,利用高碘酸鉀氧化分光光度法測(cè)定錳離子質(zhì)量濃度[12](HACH, DR5000).采用便攜式檢測(cè)儀(HACH, HQ30d)測(cè)定DO與pH.實(shí)驗(yàn)中選用的試劑為分析純,溶液由去離子水配制.
1.4表征方法
利用冷凍干燥機(jī)(FD-1D-50型)對(duì)脫膜前后石英砂成熟濾料進(jìn)行冷凍干燥,保存在密封真空管中[13].利用掃描電子顯微鏡(SEM, JEOL-JSM6360LV)分別對(duì)石英砂成熟濾料脫膜前后表面活性濾膜形貌進(jìn)行微觀表征.利用X射線熒光光譜分析(XRF, Bruker-AXS-S4 type)分別對(duì)石英砂活性濾料脫膜前后元素組成進(jìn)行分析.
2結(jié)果與分析
2.1靜態(tài)脫膜效率分析
在一定的污染物進(jìn)水負(fù)荷條件下,中試系統(tǒng)持續(xù)運(yùn)行了兩年,反沖洗周期逐漸縮短,從最初的65 h降至35 h[11].這是由于石英砂濾料表面的濾膜逐漸增厚,使得濾層空隙率降低,導(dǎo)致反沖洗周期縮短.反沖洗過程是減小濾層阻塞的必要步驟[14-15],然而,傳統(tǒng)反沖洗工藝難以破壞濾膜結(jié)構(gòu),對(duì)濾膜的剝離能力有限,即使提高反沖洗強(qiáng)度,也很難實(shí)現(xiàn)對(duì)反沖洗周期的恢復(fù)[16-17].本文以HCl、Na2SO3及H2O2作為脫膜劑,對(duì)濾膜物質(zhì)進(jìn)行化學(xué)剝離.
靜態(tài)實(shí)驗(yàn)每組中石英砂活性濾料用量均為650 g,濾膜物質(zhì)占濾料總質(zhì)量的6.3%左右[11],約 40.95 g.HCl質(zhì)量濃度分別為0.1, 0.5, 1.0, 1.2, 1.5, 2.0 g/L,Na2SO3及H2O2質(zhì)量濃度分別為0.1, 0.5, 1.0, 1.2, 1.5 g/L.不同處理?xiàng)l件下脫膜結(jié)果如圖2所示.可以看出,在3種脫膜劑作用下,濾料的脫膜量于40 min后均趨于穩(wěn)定,故最適脫膜時(shí)間均為40 min.從經(jīng)濟(jì)成本與脫膜效果兩方面因素考慮,HCl的最適投量為14.6 mg/g,Na2SO3和H2O2的最適投量均為11.7 mg/g.
圖2 不同脫膜劑在不同條件下的脫膜量
不同脫膜劑對(duì)濾膜物質(zhì)剝離的原理不盡相同,各自的具體作用機(jī)理正在進(jìn)一步研究中,大體如下:鹽酸對(duì)濾膜表面的金屬氧化物具有溶解作用,破壞了氧化物晶格結(jié)構(gòu),實(shí)現(xiàn)了對(duì)濾膜物質(zhì)的剝離;亞硫酸鈉對(duì)濾膜中氧化物物質(zhì)具有還原效應(yīng),破壞濾膜結(jié)構(gòu);過氧化氫具有強(qiáng)氧化性,對(duì)濾膜結(jié)構(gòu)中對(duì)氧化物顆粒起交聯(lián)的骨架結(jié)構(gòu)具有破壞作用,以此來實(shí)現(xiàn)對(duì)濾膜物質(zhì)的剝離.
一般情況下,脫膜量越大,反沖洗周期恢復(fù)效果越好,然而若脫膜量過大可能對(duì)濾料表面濾膜活性產(chǎn)生影響,進(jìn)而降低濾池的處理效果[18].因此,需利用動(dòng)態(tài)中試實(shí)驗(yàn)對(duì)靜態(tài)實(shí)驗(yàn)所確定的最適脫膜條件加以驗(yàn)證.
2.2動(dòng)態(tài)中試系統(tǒng)過濾效果
2.2.1脫膜過程對(duì)反沖洗周期恢復(fù)的影響
于中試系統(tǒng)中對(duì)靜態(tài)實(shí)驗(yàn)所確定的最適脫膜條件進(jìn)行驗(yàn)證,濾層空隙率與反沖洗周期變化如圖3所示.可以看出,中試濾柱經(jīng)3種脫膜劑處理后,濾層空隙率與反沖洗周期均明顯提高.HCl脫膜效果尤其突出,經(jīng)HCl處理后,反沖洗周期提高約28個(gè)小時(shí).脫膜處理破壞了濾膜表面結(jié)構(gòu),使部分濾膜被剝離,從而達(dá)到脫膜的目的,恢復(fù)了濾柱的反沖洗周期.
圖3脫膜處理后中試濾層空隙率和反沖洗周期的變化
Fig.3Effects of peeling treatments on the bed voidages and backwashing intervals of filter columns
2.2.2脫膜過程對(duì)濾柱過濾能力的影響
由表1可知,原水中主要污染物(氨氮、錳和總鐵)均嚴(yán)重超標(biāo),實(shí)現(xiàn)對(duì)濾柱反沖洗周期的恢復(fù)須以出水水質(zhì)穩(wěn)定達(dá)標(biāo)為前提.不同脫膜劑處理后濾柱對(duì)污染物去除效果如圖4所示.
圖4 中試濾柱在不同脫膜劑脫膜處理后的進(jìn)水負(fù)荷率和出水水質(zhì)變化
由圖4可以看出,經(jīng)不同脫膜劑處理后,中試系統(tǒng)出水中各污染物(氨氮,錳和總鐵)均可保持穩(wěn)定達(dá)標(biāo).同時(shí)由圖3可知,反沖洗周期恢復(fù)效果明顯,其中HCl處理效果最好.前期實(shí)驗(yàn)結(jié)果表明,HCl對(duì)濾柱進(jìn)行脫膜處理后,中試濾柱沿程以及出水pH只降低了0.3~0.5個(gè)單位,并未影響出水水質(zhì).因此,HCl作為脫膜劑是可行的.值得注意的是,當(dāng)脫膜劑質(zhì)量濃度過高,脫膜量過大,濾料表面濾膜催化氧化活性遭到破壞,會(huì)導(dǎo)致出水中氨氮質(zhì)量濃度超標(biāo),需經(jīng)12 d左右才可恢復(fù)對(duì)氨氮的有效去除.故脫膜劑投量不宜過高.
2.3脫膜前后濾料表面微觀表征
2.3.1濾料表面形貌的變化(SEM)
通過SEM表征濾膜表面結(jié)構(gòu)的變化,結(jié)果如圖5所示.由低倍(30~50倍)SEM圖可知,石英砂濾料表面濾膜經(jīng)脫膜劑處理后,部分濾膜剝離脫落,此為反沖洗周期恢復(fù)的主要原因.由高倍(5 000倍)SEM圖可知,濾膜表面存在粒徑為1~6 μm的氧化物顆粒物質(zhì),為氨氮等其他污染物氧化過程提供了活性位.脫膜劑處理后,濾膜表面形貌未發(fā)生明顯變化,故對(duì)氨氮等污染物的去除效果基本不變,微觀表征結(jié)果與中試實(shí)驗(yàn)結(jié)果一致.
2.3.2濾料元素組成變化(XRF)
利用XRF對(duì)脫膜前后濾料元素組成變化進(jìn)行表征,結(jié)果如圖6所示.可以看出,脫膜前后濾料主要元素組成變化不大,鐵錳氧化物為濾膜物質(zhì)的主要成分.除此之外,Mg、P、S、Cl等其他元素由于含量較少并沒有給出.濾膜中氧化物成分對(duì)氨氮等污染物的去除起關(guān)鍵作用[18].
圖5 不同處理?xiàng)l件下脫膜前后石英砂濾料表面的SEM表征
圖6 脫膜(1.5 g/L的HCl溶液)前后石英砂濾料表面的元素組成
Fig.6Elemental composition of the filter sands before and after peeling treatment (HCl of 1.5 g/L)
2.4不同脫膜劑的經(jīng)濟(jì)分析
脫膜處理的目的是在不影響活性濾料處理效果的前提下,對(duì)濾膜進(jìn)行一定程度的破壞,實(shí)現(xiàn)對(duì)反沖洗周期的恢復(fù),操作時(shí)機(jī)視濾池反沖洗周期變化情況而定,不屬于常規(guī)工藝范疇.一次脫膜處理后,濾柱往往可維持較長(zhǎng)時(shí)間的穩(wěn)定運(yùn)行,因此,較高的單次投藥成本是可以接受的.按CJ24·1—88《水處理用石英砂濾料》附錄A之3.2規(guī)定的檢驗(yàn)方法即比重法,測(cè)定石英砂活性濾料密度為2.2 g/cm3.單位體積濾料所消耗脫膜劑質(zhì)量記為W(t/ m3),處理單位體積濾料所需藥劑費(fèi)用記為Q(元/m3),經(jīng)濟(jì)分析見表2.可以看出,以HCl作為脫膜劑,藥劑費(fèi)用明顯低于另兩種,且其剝離效果最佳,反沖洗周期恢復(fù)效果最顯著.綜合考慮反沖洗周期恢復(fù)效果與經(jīng)濟(jì)因素,HCl為最優(yōu)的脫膜劑選擇.
表2 不同脫膜劑經(jīng)濟(jì)分析
注:☆越多,表示剝離效果越好;★越多,表示優(yōu)越性越高.
3結(jié)論
1)由靜態(tài)實(shí)驗(yàn)結(jié)果可知,各脫膜劑的最優(yōu)脫膜時(shí)間均為40 min.HCl最適投量為14.6 mg/g,Na2SO3與H2O2最適投量均為11.7 mg/g.
2)石英砂活性濾料經(jīng)HCl、Na2SO3和H2O2處理后,空隙率與反沖洗周期均明顯提高,其中HCl處理后反沖洗周期恢復(fù)效果最佳.在本研究所確定的處理?xiàng)l件下,各脫膜劑對(duì)中試系統(tǒng)中污染物處理效果并無顯著影響.
3)由SEM與XRF表征結(jié)果可知,脫膜劑處理后,部分濾膜自濾料表面剝離脫落,此為反沖洗周期恢復(fù)的主要原因.同時(shí),濾膜表面形貌與濾料元素組成無明顯變化,濾料去除污染物能力未受脫膜處理過程影響,與中試實(shí)驗(yàn)結(jié)果一致.
4)從經(jīng)濟(jì)和脫膜效果因素綜合考慮,選擇HCl作為最優(yōu)的脫膜劑.
參考文獻(xiàn)
[1] 湯光明,郭雪松.濾料表面黑化物質(zhì)的組成及其洗除技術(shù)研究[J].凈水技術(shù), 2002, 21(1): 35-37.TANG Guangming, GUO Xuesong.Study on the chemical composition and clean methods of surface adhesive materials of blackened sand filter [J]. Water Purification Technology, 2002, 21(1): 35-37.
[2] 郭雪松,施周,邱振華,等.黑化砂與清洗再生砂過濾效果研究[J].給水排水, 2003, 29(10): 76-80.
GUO Xuesong, SHI Zhou, QIU Zhenhua, et al. Blackened sand reclaimed sand filtration and cleaning effectiveness research[J]. Water Supply and Drainage, 2003, 29(10): 76-80.
[3] 紀(jì)銀傳,莊金練,曾華屹,等.梅嶺水廠V型濾池黑化石英砂濾料解決方案[J].城鎮(zhèn)供水, 2010(1): 22-25.
JI Yinzhuan, ZHUANG Jinlian, ZENG Huayi, et al. The solutions of blackening quartz sand in Mei-Ling water plant V-filter[J]. Urban Water Supply, 2010(1): 22-25.
[4] CHIPPS M J, BAUER M J, BAYLEY R G. Achieving enhanced filter backwashing with combined air scour and sub-fluidising water at pilot and operational scale [J]. Filtration & Separation, 1995, 32(1): 55-54.
[5] SERRA C, DURAND B L, CLIFTON M J, et al. Use of air sparging to improve backwash efficiency in hollow-fiber modules [J]. Journal of Membrane Science, 1999, 161(1): 95-113.
[6] 張寶杰,閆立龍,甄捷,等.曝氣生物濾池最佳反沖洗周期及反沖洗方式研究[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2006, 38(7): 1045-1046.
ZHANG Baojie, YAN Lilong, ZHEN Jie, et al. Research on the optimum backwashed cycle and the backwashed methods of the bioloigical aerated filtrated reactor [J]. Journal of Harbin Institute of Technology, 2006, 38(7): 1045-1046.
[7] 程慶鋒,李冬,李相昆,等.反沖洗周期對(duì)生物除錳濾池去除效果的影響[J].環(huán)境工程學(xué)報(bào), 2014, 8(1): 72-76.
CHENG Qingfeng, LI Dong, LI Xiangkun, et al. Influence of backwashing period on removal efficiency in a biological manganese removal filter [J]. Chinese Journal of Environmental Engineering, 2014, 8(1): 72-76.
[8] HONG S, KRISHNA P, HOBBS C, et al. Variations in backwash efficiency during colloidal filtration of hollow-fiber microfiltration membranes [J]. Desalination, 2005, 173(3): 257-268.
[9] 施周,祁亞娟.黑化砂在運(yùn)行中的過濾效果評(píng)價(jià)[J].凈水技術(shù), 2006, 25(3): 65-67.
SHI Zhou, QI Yajuan.Evaluation of filtration performance property of darkened sands [J]. Water Purification Technology, 2006, 25(3): 65-67.
[10]中華人民共和國(guó)衛(wèi)生部,國(guó)家標(biāo)準(zhǔn)化管理委員會(huì).生活飲用水衛(wèi)生標(biāo)準(zhǔn):GB/5749—2006 [S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2006.
People′s Republic of China Ministry of Health, the National Standardization Management Committee. Standards for Drinking Water Quality: GB/5749—2006 [S].Beijing: China Standard Press, 2006.
[11]GUO Yingming, HUANG Tinglin, WEN Gang, et al. Comparisons of the film peeling from the composite oxides of quartz sand filters using ozone, hydrogen peroxide and chlorine dioxide [J]. Journal of Environmental Sciences, 2015, 34: 20-27.
[12]國(guó)家環(huán)境保護(hù)總局, 水和廢水監(jiān)測(cè)分析方法編委會(huì).水和廢水監(jiān)測(cè)分析方法[M].4版. 北京:中國(guó)環(huán)境科學(xué)出版社,2002.
State Environmental Protection Administration, Water and Wastewater Monitoring and Analysis Methods Editorial Board. Water and wastewater monitoring and analysis methods [M] .4th edition. Beijing: China Environmental Science Press, 2002. [13]ZHAO Liyan, WANG Xuekai, GUO Yuguo, et al. Adsorption of methylene blue on the muscovite [J]. Acta Physico-chimica Sinica, 2003, 19(10): 896-901.
[14]RITTMANN B E, STILWELL D, GARSIDE J C, et al. Treatment of a colored groundwater by ozone-biofiltration: pilot studies and modeling interpretation [J]. Water Research, 2002, 36(13): 3387-3397.
[15]LIU Bing, GU Li, YU Xin, et al. Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration [J]. Science of the Total Environment, 2012, 414: 508-514.
[16]熊云,周建東,米海蓉.濾池中污染濾料的清洗再生與再利用[J].黑龍江水專學(xué)報(bào), 2004, 31(3): 82-83.
XIONG Yun, ZHOU Jiandong, MI Hairong. Cleaning and recycle-use of polluted filter material at a filter bed [J]. Heilongjiang Hydraulic Engineering College, 2004, 31(3): 82-83.
[17]YANG Jinshui, LIU Weijie, LI Baozhen, et al. Application of a novel backwashing process in upflow biological aerated filter [J]. Journal of Environmental Sciences, 2010, 22(3): 362-366.
[18]HUANG Tinglin, CAO Xin, ZHANG Qian, et al. Catalytic oxidation of high-concentration ammonia in groundwater by a naturally formed co-oxide filter film [J]. Desalination and Water Treatment, 2014, 52(7/8/9): 1615-1623.
(編輯劉彤)
doi:10.11918/j.issn.0367-6234.2016.08.015
收稿日期:2015-06-10
基金項(xiàng)目:國(guó)家自然科學(xué)基金(51278409,51308438);陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2014JZ015);中建股份科技研發(fā)課題(CSCEC-2014-Z-32)
作者簡(jiǎn)介:郭英明(1987—),男,博士研究生; 黃廷林(1962—),男,教授,博士生導(dǎo)師
通信作者:黃廷林,huangtinglin@xauat.edu.cn
中圖分類號(hào):X52
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0367-6234(2016)08-0091-05
Comparisons of the film peeling from the quartz sands filter using film peeling solvents
GUO Yingming, HUANG Tinglin, WEN Gang, CAO Xin, CONG Jing
(School of Environmental and Municipal Engineering,Xi’an University of Architecture and Technology, Xi’an 710055, China)
Abstract:To solve the problem of backwashing interval shortness of water plants, several film peeling solvents including HCl, Na2SO3 and H2O2 were examined to peel off the overgrown filter film from filter sands surface. An optimized dosage and time were determined by batch tests. Subsequently, the optimized conditions were tested in the pilot-scale columns. The filter sands before and after treatment were characterized by scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (XRF). The results demonstrated that the optimized dosage and time by HCl peeling were found to be 14.6 mg/g film and 40 min, and they were 11.7 mg/g film and 40 min for both Na2SO3 and H2O2. After treatment by the film peeling solvents, the backwashing interval could be efficiently recovered. Especially for HCl, the bed voidage increased from 27.7% to 39.1%, and the backwashing interval increased from 33.7 h to 61.6 h. At the same time,the catalytic oxidation activity was not affected by the peeling, and the water quality of effluent was still lower than the permitted limit. From the results of SEM and XRF, the morphologies and elements of some films were rarely changed. Considering the recovery of the backwashing interval and economic factors, HCl is a suitable choice for peeling off the filter film.
Keywords:peeling off film; backwashing interval; pilot-scale; HCl