鮑云杰,鄧 模,翟常博,劉友祥,呂俊祥,俞凌杰,曹濤濤
(1. 中國石化 石油勘探開發(fā)研究院 無錫石油地質(zhì)研究所, 江蘇 無錫 214126;2. 中國石化 油氣成藏重點(diǎn)實(shí)驗(yàn)室, 江蘇 無錫 214126)
?
頁巖對(duì)甲烷的吸附作用及其固氣效應(yīng)初步研究
——以渝東南殘留向斜為例
鮑云杰1,2,鄧模1,翟常博1,劉友祥1,2,呂俊祥1,俞凌杰1,2,曹濤濤1,2
(1. 中國石化 石油勘探開發(fā)研究院 無錫石油地質(zhì)研究所, 江蘇 無錫214126;2. 中國石化 油氣成藏重點(diǎn)實(shí)驗(yàn)室, 江蘇 無錫214126)
摘要:頁巖對(duì)甲烷的吸附作用既有普遍性,又有差異性,其對(duì)頁巖氣賦存狀態(tài)、保存、富集成藏影響的研究有待深化。采用等溫吸附、掃描電鏡、液氮吸附、有機(jī)質(zhì)地球化學(xué)等技術(shù)手段,對(duì)渝東南殘留向斜區(qū)常壓頁巖氣藏五峰—龍馬溪組頁巖的吸附作用進(jìn)行了研究。結(jié)果表明,頁巖吸附作用受控于頁巖的孔隙結(jié)構(gòu)、有機(jī)質(zhì)特征等內(nèi)在特性,以及其所處的溫度和壓力等外部環(huán)境條件;地層條件下頁巖的吸附作用強(qiáng)度可以利用Langmuir模型進(jìn)行預(yù)測,渝東南某殘留向斜五峰—龍馬溪組頁巖吸附作用強(qiáng)度存在臨界深度,在臨界深度吸附作用強(qiáng)度達(dá)到峰值。結(jié)合理論分析及三軸應(yīng)力吸附條件下頁巖滲透率測定實(shí)驗(yàn)數(shù)據(jù),認(rèn)為頁巖的吸附作用致使其滲透率降低,形成一種阻滯頁巖氣滲流擴(kuò)散的“固氣效應(yīng)”,這種固氣效應(yīng)對(duì)殘留向斜頁巖氣保存及富集邊界的影響值得進(jìn)一步研究。
關(guān)鍵詞:頁巖;吸附作用;固氣效應(yīng);殘留向斜;渝東南
頁巖的吸附能力主要由Langmuir體積表征,其影響因素包括頁巖礦物組成、有機(jī)質(zhì)特征、頁巖微孔結(jié)構(gòu)以及溫度和壓力等外部條件[1-4]。吸附能力預(yù)測研究取得進(jìn)展[5-7],這里不再贅述。由于溫度和壓力對(duì)頁巖吸附能力具有反向的競爭影響作用,頁巖吸附氣量隨埋深變化,存在一個(gè)深度轉(zhuǎn)折點(diǎn),這與煤巖相關(guān)研究成果相近[8-9]。頁巖氣形成聚集與富集模式研究取得重要成果[10-11],對(duì)于焦石壩等頁巖氣田而言,“封存箱”是五峰—龍馬溪組頁巖氣保存、富集成藏的重要模式[12-14],在這種保存富集模式中,頂板、底板裂縫不發(fā)育,作為隔板的斷層具有良好的封閉性能。當(dāng)含氣頁巖層系厚度較大時(shí),具有自封閉能力,有利于頁巖氣的保存[15]。而與焦石壩近鄰的渝東南地區(qū),具有構(gòu)造抬升時(shí)間早、變形強(qiáng)度較強(qiáng)、抬升幅度較大以至出露地表、保存條件復(fù)雜的特點(diǎn)。已有學(xué)者提出距離五峰—龍馬溪組頁巖露頭遠(yuǎn)近影響頁巖氣保存[16],側(cè)向擴(kuò)散是頁巖氣的主要散失通道,但距離露頭區(qū)多遠(yuǎn)為微弱擴(kuò)散區(qū)仍是一個(gè)復(fù)雜的問題[17-18],上述研究成果無疑對(duì)頁巖氣勘探開發(fā)具有指導(dǎo)作用。但由于頁巖中吸附氣量可以達(dá)20%~80%,頁巖氣的吸附聚集是一種重要的成藏機(jī)理[19-20],頁巖吸附作用對(duì)頁巖氣保存、富集成藏影響的研究有待深化。
本文從頁巖氣藏的重要屬性之一:頁巖的吸附作用出發(fā),分析了渝東南地區(qū)五峰—龍馬溪組頁巖的吸附作用及其影響因素,建立了頁巖吸附能力預(yù)測方法,結(jié)合三軸應(yīng)力下頁巖吸附甲烷前后滲透率測定實(shí)驗(yàn)數(shù)據(jù),提出了固氣效應(yīng)的觀點(diǎn),探討了固氣效應(yīng)對(duì)殘留向斜頁巖氣散失及保存富集邊界的影響。
1頁巖的吸附作用
1.1頁巖吸附作用及其影響因素
頁巖吸附氣是頁巖氣的重要組成部分,可占總氣量的20%~80%。頁巖對(duì)甲烷的吸附作用在頁巖氣藏中具有普遍性,吸附作用強(qiáng)度一般以吸附氣量進(jìn)行表征。為了分析頁巖吸附作用的影響因素,通過對(duì)渝東南彭水、南川、焦石壩等地區(qū)五峰—龍馬溪組頁巖等溫吸附特征與有機(jī)質(zhì)特征、礦物組成、孔隙結(jié)構(gòu)等分析測試資料的對(duì)比研究,認(rèn)為五峰—龍馬溪組頁巖的吸附能力主要受頁巖自身特性要素和外部條件2個(gè)方面的影響和控制。自身特性要素的影響主要表現(xiàn)為比表面積越大、微孔孔容越大、有機(jī)質(zhì)豐度越高,頁巖吸附能力越強(qiáng)(圖1)。有機(jī)質(zhì)演化程度是關(guān)鍵性因素,影響單位有機(jī)碳對(duì)甲烷的吸附能力(圖2)。
溫度和壓力是影響和控制頁巖吸附能力的外部因素,隨著溫度的升高頁巖吸附能力下降(圖3),壓力越大頁巖的吸附能力越強(qiáng),溫度與壓力對(duì)頁巖吸附能力的影響呈競爭關(guān)系。
1.2地層條件下頁巖吸附作用的預(yù)測
不同地區(qū)、不同層位頁巖的埋深具有很大差異,埋藏深度從地表出露到數(shù)千米不等,頁巖所處溫度和壓力條件受控于地層壓力系數(shù)、地溫梯度、埋深等因素,有時(shí)頁巖層系地層壓力在50 MPa以上,溫度超過150 ℃。受實(shí)驗(yàn)條件的限制,如此高的溫度和壓力條件,難以通過實(shí)驗(yàn)的方法獲得吸附數(shù)據(jù)。因此,需要根據(jù)有限的實(shí)驗(yàn)溫度和壓力條件下獲得的吸附數(shù)據(jù),以一定的方法預(yù)測頁巖在地層條件下吸附氣量,進(jìn)而對(duì)頁巖地層條件下的吸附能力進(jìn)行預(yù)測和評(píng)價(jià)。
圖2 渝東南地區(qū)五峰—龍馬溪組頁巖 反射率與單位有機(jī)碳吸附量關(guān)系Fig.2 Reflectivity vs. organic carbon adsorption capacity of Wufeng-Longmaxi shale in the southeastern Chongqing
圖1 渝東南地區(qū)五峰—龍馬溪組頁巖比表面積、微孔孔容和有機(jī)碳與蘭氏體積交匯圖Fig.1 Specific surface area, micro-pore volume,organic carbon content vs. Langmuir volume of Wufeng-Longmaxi shale in the southeastern Chongqing
圖3 渝東南地區(qū)五峰—龍馬溪組頁巖實(shí)驗(yàn)溫度與蘭氏體積、壓力交匯圖Fig.3 Experimental temperature vs. Langmuir volume and pressure of Wufeng-Longmaxi shale in the southeastern Chongqing
為了對(duì)地層條件下頁巖的吸附氣量進(jìn)行預(yù)測,眾多學(xué)者開展過預(yù)測模型及方法研究,限于篇幅,不再贅述。本文在對(duì)吸附勢理論模型、Langmuir等模型分析的基礎(chǔ)上,利用多溫度條件下的等溫吸附數(shù)據(jù),通過建立VL、PL與溫度的關(guān)聯(lián)關(guān)系,形成了針對(duì)不同地區(qū)的頁巖氣吸附能力預(yù)測方法,可以對(duì)頁巖在任意埋深條件下的吸附氣量進(jìn)行預(yù)測:
Q=VLP/(PL+P)
(1)
式中:Q為預(yù)測吸附量,VL為某溫度下的蘭氏體積,為飽和吸附量,m3/t;P為地層壓力,MPa;PL為某溫度下的蘭氏壓力,MPa。
通過前述的頁巖吸附能力影響因素分析可見,溫度對(duì)氣體吸附能力具有重要影響,不同樣品的溫度敏感性不同,據(jù)此可以建立VL、PL與溫度的關(guān)系,代入公式(1)即可預(yù)測任意溫度、壓力條件下的吸附氣量,進(jìn)而對(duì)頁巖地層條件下的吸附能力進(jìn)行預(yù)測。
為驗(yàn)證預(yù)測方法的有效性,選取桑柘坪向斜五峰—龍馬溪組優(yōu)質(zhì)頁巖進(jìn)行了30,60,90,125 ℃的等溫吸附實(shí)驗(yàn),以建立的預(yù)測方法擬合了30,60,90 ℃條件下的吸附量,預(yù)測了125 ℃、最高壓力50 MPa的吸附量(圖4)。預(yù)測/擬合平均偏差0.032,相關(guān)系數(shù)0.994,說明了預(yù)測方法的有效性。
2頁巖固氣效應(yīng)初步研究
2.1頁巖固氣效應(yīng)及其對(duì)頁巖氣滲流擴(kuò)散的影響
頁巖氣藏的突出特點(diǎn)之一是吸附氣占總氣量的20%~80%。從頁巖氣流動(dòng)機(jī)理不難理解,頁巖中吸附氣的占比影響頁巖氣的擴(kuò)散及流動(dòng)能力,頁巖對(duì)甲烷的吸附作用引發(fā)阻滯頁巖氣擴(kuò)散滲流的“固氣效應(yīng)”。
吸附作用對(duì)氣體滲流影響的實(shí)驗(yàn)研究始于煤層氣研究領(lǐng)域。吸附作用對(duì)煤巖的滲透率影響顯著,吸附作用越強(qiáng),吸附的甲烷越多,煤的滲透率越小[21-22]。在頁巖氣領(lǐng)域,吸附對(duì)頁巖氣滲流、擴(kuò)散影響的理論研究取得了進(jìn)展,眾多學(xué)者認(rèn)為,頁巖吸附甲烷會(huì)在孔隙系統(tǒng)中形成“吸附層”,由于吸附層的存在使頁巖有效流通孔道減小,視滲透率減小[23-24]。
圖4 渝東南地區(qū)桑柘坪向斜五峰—龍馬溪組頁巖 擬合/預(yù)測與實(shí)測吸附氣量交匯圖Fig.4 Fitting/predicted vs. measured adsorption gas volume of Wufeng-Longmaxi shale from Sangtuoping syncline in the southeastern Chongqing
為驗(yàn)證頁巖吸附作用對(duì)其滲透性能的影響,本文進(jìn)行了樣品吸附甲烷前后的滲透率測定實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果顯示,頁巖樣品在吸附甲烷前后,滲透率差異明顯(圖5),滲透率下降幅度達(dá)81%~86%;隨著滲透壓的增大,滲透率下降幅度具有增大的趨勢,滲透壓力為11 MPa時(shí),滲透率下降幅度達(dá)到86%。初步分析認(rèn)為,由于該樣品滲透率低,測試時(shí)間長,在測試過程中發(fā)生了頁巖對(duì)甲烷的二次吸附,滲透壓越大滲透率下降幅度越大,反映了吸附氣量大小對(duì)頁巖滲透率的影響。
從另外一個(gè)方面來看,擴(kuò)散作為頁巖氣的重要流動(dòng)形式,頁巖吸附作用對(duì)其擴(kuò)散能力影響顯著,頁巖中游離氣量越大,擴(kuò)散能力越強(qiáng)[25],佐證了頁巖由吸附作用引發(fā)的固氣效應(yīng)對(duì)頁巖氣滲流擴(kuò)散的影響。
圖5 渝東南地區(qū)五峰—龍馬溪組 頁巖樣品吸附甲烷前后滲透率Fig.5 Permeability before and after methane adsorption of Wufeng-Longmaxi shale in the southeastern Chongqing
2.2固氣效應(yīng)對(duì)頁巖氣側(cè)向散失封堵作用探討
某殘留向斜位于齊岳山斷裂以東的川東南隔槽式褶皺帶,屬較強(qiáng)構(gòu)造改造區(qū),在該向斜部署鉆探的3口井在五峰—龍馬溪組頁巖層系均獲得工業(yè)氣流。生產(chǎn)實(shí)踐證實(shí),五峰—龍馬溪組頁巖由出露區(qū)到向斜核部,地層壓力系數(shù)、產(chǎn)量具有增大的趨勢。采用巖樣三向滲透率檢測方法(專利號(hào):201210400962.7)對(duì)其頁巖滲透率進(jìn)行了測定,發(fā)現(xiàn)與焦石壩地區(qū)五峰—龍馬溪組頁巖相近,其滲透率具有明顯的各向異性特征,橫向滲透率是垂向滲透率的幾倍到數(shù)十倍,說明頁巖氣具有優(yōu)先側(cè)向滲流、擴(kuò)散的基礎(chǔ)條件。
通過對(duì)五峰—龍馬溪組優(yōu)質(zhì)頁巖層段的研究,發(fā)現(xiàn)頁巖總含氣量、吸附氣量及吸附氣占比隨埋藏深度呈規(guī)律性變化(表1)。隨著埋藏深度的加大,頁巖的總含氣量、游離氣量增加,在埋深1 km左右(臨界深度)的頁巖的吸附氣量最大,吸附氣占比最高。按照本文前述分析,在埋深1 km左右頁巖的固氣效應(yīng)最強(qiáng),頁巖氣的擴(kuò)散滲流能力勢必減弱,形成一個(gè)頁巖氣流動(dòng)性較弱的“固氣效應(yīng)環(huán)帶”,其對(duì)頁巖氣側(cè)向運(yùn)移、擴(kuò)散具有阻滯和封堵作用。
頁巖氣勘探實(shí)踐表明,五峰—龍馬溪組頁巖含氣性與其埋藏深度具有一定的相關(guān)關(guān)系,渝頁1井、黔頁1井、黔淺1井、寧210井、YQ1井均具有五峰—龍馬溪組優(yōu)質(zhì)頁巖埋藏淺(最大埋深1 km)或距離出露區(qū)較近的特點(diǎn),測試日產(chǎn)氣量一般小于0.5×104m3。以往的研究之中,根據(jù)覆壓條件下頁巖滲透率的變化規(guī)律,分析殘留向斜頁巖滲透率隨埋深的變化,認(rèn)為由向斜翼部到核部方向頁巖滲透率下降,頁巖氣側(cè)向散失強(qiáng)度由向斜翼部到核部方向降低,但強(qiáng)擴(kuò)散與弱擴(kuò)散的邊界難以確定[18]。本文認(rèn)為,優(yōu)質(zhì)頁巖埋藏的臨界深度是頁巖氣富集邊界研究應(yīng)該關(guān)注的重要因素之一。在臨界深度形成的頁巖固氣效應(yīng)環(huán)帶與頂板、底板的共同作用,使得殘留構(gòu)造五峰—龍馬溪組優(yōu)質(zhì)層段頁巖氣得以保存和富集,這對(duì)于深化頁巖氣的保存和富集研究具有重要意義。
表1 渝東南地區(qū)某向斜典型井五峰—龍馬溪組 頁巖不同埋藏深度含氣性預(yù)測數(shù)據(jù)Table 1 Gas bearing prediction data of different buried depths of Wufeng-Longmaxi shale in a typical well from a syncline in the southeastern Chongqing
3結(jié)論
(1)頁巖的吸附能力依賴于頁巖的自身特性及其所處的溫度、壓力條件。在殘留構(gòu)造背景下,頁巖吸附能力主要受埋藏深度控制,在臨界深度頁巖吸附作用最強(qiáng),形成頁巖氣賦存空間中吸附氣占比高、游離氣占比低的固氣效應(yīng)環(huán)帶。
(2)頁巖吸附作用引發(fā)固氣效應(yīng),其對(duì)頁巖氣的擴(kuò)散滲流具有一定的阻滯作用,進(jìn)一步以實(shí)驗(yàn)手段量化其阻滯作用強(qiáng)度及其影響因素,對(duì)于殘留構(gòu)造區(qū)頁巖氣側(cè)向散失強(qiáng)度變化規(guī)律的刻畫,以及確定頁巖氣富集邊界具有理論和實(shí)踐意義。
致謝:在本文成文過程中,審稿專家提出了中肯、富有建設(shè)性的意見,在此表示衷心的感謝!
參考文獻(xiàn):
[1]Ross D J K,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26(6):916-927.
[2]吉利明,邱軍利,夏燕青,等.常見黏土礦物電鏡掃描微孔隙特征與甲烷吸附性[J].石油學(xué)報(bào),2012,33(2):249-256.
Ji Liming,Qiu Junli,Xia Yanqing,et al.Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J].Acta Petrolei Sinica,2012,33(2):249-256.
[3]王思波,宋之光,曹濤濤,等.中國南方古生界頁巖吸附特征及控制因素[J].地球化學(xué),2014,43(5):429-436.
Wang Sibo,Song Zhiguang,Cao Taotao,et al.Characterizing the methane sorption and its controlling factors in Paleozoic shales of South China[J].Geochimica,2014,43(5):429-436.
[4]Zhang Tongwei,Ellis G S,Ruppel S C,et al.Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J].Organic Geochemistry,2012,47:120-131.
[5]熊健,劉向君,梁利喜,等.頁巖氣超臨界吸附的Dubibin-Astakhov改進(jìn)模型[J].石油學(xué)報(bào),2015,36(7):849-857.
Xiong Jian,Liu Xiangjun,Liang Lixi,et al.Improved Dubibin-Astakhov model for shale-gas supercritical adsorption[J].Acta Petrolei Sinica,2015,36(7):849-857.
[6]鮑云杰,周永炳.頁巖—?dú)怏w吸附特性曲線應(yīng)用研究[J].石油實(shí)驗(yàn)地質(zhì),2015,37(5):660-664.
Bao Yunjie,Zhou Yongbing.Application of characteristic gas adsorption curves for shales[J].Petroleum Geology & Experiment,2015,37(5):660-664.
[7]邢金艷,姜振學(xué),陳磊,等.泥頁巖吸附氣量隨地層埋深變化趨勢預(yù)測分析[J].現(xiàn)代地質(zhì),2014,28(5):1041-1045.
Xing Jinyan,Jiang Zhenxue,Chen Lei,et al.Reasonable utilization of isothermal adsorption experiment data to predict the shale adsorbed gas content changing with burial depth[J].Geoscience,2014,28(5):1041-1045.
[8]秦勇,宋全友,傅雪海.煤層氣與常規(guī)油氣共采可行性探討:深部煤儲(chǔ)層平衡水條件下的吸附效應(yīng)[J].天然氣地球科學(xué),2005,16(4):492-498.
Qin Yong,Song Quanyou,Fu Xuehai.Discussion on reliability for co-mining the coalbed gas and normal petroleum and natural gas:Absorptive effect of deep coal reservoir under condition of ba-lanced water[J].Natural Gas Geoscience,2005,16(4):492-498.
[9]Hildenbrand A,Krooss B M,Busch A,et al.Evolution of methane sorption capacity of coal seams as a function of burial history:A case study from the Campine basin,NE Belgium [J] .International Journal of Coal Geology,2006,66(3):179-203.
[10]Loucks R G,Ruppel S C.Mississippian Barnett Shale:Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas[J].AAPG Bulletin,2007,91(4):579-601.
[11]Ross D J K,Bustin R M.Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin:Application of an integrated formation evaluation[J].AAPG Bulletin,2008,92(1):87-125.
[12]鄒才能,董大忠,王玉滿,等.中國頁巖氣特征、挑戰(zhàn)及前景(一)[J].石油勘探與開發(fā),2015,42(6):689-701.
Zou Caineng,Dong Dazhong,Wang Yuman,et al.Shale gas in China:Characteristics,challenges and prospects(Ⅰ)[J].Petroleum Exploration and Development,2015,42(6):689-701.
[13]肖朝暉,李昌鴻,胡曉鳳.建南構(gòu)造志留系流體封存箱與油氣運(yùn)聚[J].石油天然氣學(xué)報(bào)(江漢石油學(xué)院學(xué)報(bào)),2011,33(2):45-49.
Xiao Zhaohui,Li Changhong,Hu Xiaofeng.Silurian fluid compartment and hydrocarbon migration in Jiannan structure[J].Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute),2011,33(2):45-49.
[14]董大忠,高世葵,黃金亮,等.論四川盆地頁巖氣資源勘探開發(fā)前景[J].天然氣工業(yè),2014,34(12):1-15.
Dong Dazhong,Gao Shikui,Huang Jinliang,et al.A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J].Natural Gas Industry,2014,34(12):1-15.
[15]李建青,高玉巧,花彩霞,等.北美頁巖氣勘探經(jīng)驗(yàn)對(duì)建立中國南方海相頁巖氣選區(qū)評(píng)價(jià)體系的啟示[J].油氣地質(zhì)與采收率,2014,21(4):23-27.
Li Jianqing,Gao Yuqiao,Hua Caixia,et al.Marine shale gas evaluation system of regional selection in South China:Enlightenment from North American exploration experience[J].Petroleum Geology and Recovery Efficiency,2014,21(4):23-27.
[16]聶海寬,包書景,高波,等.四川盆地及其周緣下古生界頁巖氣保存條件研究[J].地學(xué)前緣,2012,19(3):280-294.
Nie Haikuan,Bao Shujing,Gao Bo,et al.A study of shale gas pre-servation conditions for the Lower Paleozoic in Sichuan Basin and its periphery[J].Earth Science Frontiers,2012,19(3):280-294.
[17]胡東風(fēng),張漢榮,倪楷,等.四川盆地東南緣海相頁巖氣保存條件及其主控因素[J].天然氣工業(yè),2014,34(6):17-23.
Hu Dongfeng,Zhang Hanrong,Ni Kai,et al.Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J].Natural Gas Industry,2014,34(6):17-23.
[18]魏志紅.四川盆地及其周緣五峰組—龍馬溪組頁巖氣的晚期逸散[J].石油與天然氣地質(zhì),2015,36(4):659-665.
Wei Zhihong.Late fugitive emission of shale gas from Wufeng-Longmaxi formation in Sichuan Basin and its periphery[J].Oil & Gas Geology,2015,36(4):659-665.
[19]Ross D J K,Bustin R M.Early Jurassic Nordegg Member,northeastern British Columbia:Gas shale potential[EB/OL]. (2005-05-15).http://www.searchanddiscovery.com/documents/abstracts/2005annual_calgary.
[20]張金川,汪宗余,聶海寬,等.頁巖氣及其勘探研究意義[J].現(xiàn)代地質(zhì),2008,22(4):640-646.
Zhang Jinchuan,Wang Zongyu,Nie Haikuan,et al.Shale gas and its significance for exploration[J]. Geoscience,2008,22(4):640-646.
[21]隆清明,趙旭生,孫東玲,等.吸附作用對(duì)煤的滲透率影響規(guī)律實(shí)驗(yàn)研究[J].煤炭學(xué)報(bào),2008,33(9):1030-1034.
Long Qingming,Zhao Xusheng,Sun Dongling,et al.Experimental study on coal permeability by adsorption[J].Journal of China Coal Society,2008,33(9):1030-1034.
[22]周軍平,鮮學(xué)福,李曉紅,等.吸附不同氣體對(duì)煤巖滲透特性的影響[J].巖石力學(xué)與工程學(xué)報(bào),2010,29(11):2256-2262.
Zhou Junping,Xian Xuefu,Li Xiaohong,et al.Effect of different adsorptional gases on permeability of coal[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):2256-2262.
[23]折文旭,陳軍斌,張杰.考慮吸附和多流動(dòng)形式共存的頁巖氣藏納米級(jí)孔隙基質(zhì)視滲透率計(jì)算方法[J].西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,30(4):39-42.
She Wenxu,Chen Junbin,Zhang Jie.Calculation method of apparent permeability of shale gas reservoir with nano-pore in which there are gas adsorption and multiple gas flow patterns[J].Journal of Xi’an Shiyou University (Natural Science Edition),2015,30(4):39-42.
[24]郭肖,任影,吳紅琴.考慮應(yīng)力敏感和吸附的頁巖表觀滲透率模型[J].巖性油氣藏,2015,27(4):109-112.
Guo Xiao,Ren Ying,Wu Hongqin.Apparent permeability model of shale gas considering stress sensitivity and adsorption[J].Lithologic Reservoirs,2015,27(4):109-112.
[25]李武廣,鐘兵,楊洪志,等.頁巖儲(chǔ)層基質(zhì)氣體擴(kuò)散能力評(píng)價(jià)新方法[J].石油學(xué)報(bào),2016,37(1):88-96.
Li Wuguang,Zhong Bing,Yang Hongzhi,et al.A new method for gas diffusivity evaluation in matrix rocks of shale reservoir[J].Acta Petrolei Sinica,2016,37(1):88-96.
(編輯黃娟)
文章編號(hào):1001-6112(2016)04-0509-05
doi:10.11781/sysydz201604509
收稿日期:2016-02-29;
修訂日期:2016-06-20。
作者簡介:鮑云杰(1963—),男,蒙古族,高級(jí)工程師,從事儲(chǔ)蓋層及頁巖油氣綜合評(píng)價(jià)研究。E-mail:baoyj.syky@sinopec.com。
基金項(xiàng)目:中國石化石油勘探開發(fā)研究院院控項(xiàng)目“地層溫壓條件下頁巖吸附能力預(yù)測技術(shù)與應(yīng)用”(G5800-15-ZS-YK013)資助。
中圖分類號(hào):TE132.2
文獻(xiàn)標(biāo)識(shí)碼:A
Methane adsorption and sealing effects of shale:A case study of relict synclines in the southeastern Chongqing
Bao Yunjie1,2, Deng Mo1, Zhai Changbo1, Liu Youxiang1,2, Lü Junxiang1, Yu Lingjie1,2, Cao Taotao1,2
(1.Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi, Jiangsu 214126, China;2.SINOPECKeyLaboratoryofPetroleumAccumulationMechanisms,Wuxi,Jiangsu214126,China)
Abstract:Universality and difference both exist in the methane adsorption of shale. This study concerns the influencing factors of shale gas occurrence, preservation and accumulation. The gas adsorption capacity of the Wufeng-Longmaxi shale in the relict synclinal district in the southeastern Chongqing was studied by means of isothermal adsorption, scanning electron microscopy, nitrogen adsorption and organic geochemical methods. The adsorption capacity of shale is controlled by some internal characteristics such as pore structure and organic matter features, and some external environment conditions such as temperature and pressure. The adsorption strength of shale under subsurface conditions can be predicted using a Langmuir model. The adsorption strength of Wufeng-Longmaxi shale from the relict synclinal district in the southeastern Chongqing has a critical depth at which adsorption strength reaches its peak value. Theore-tical analysis and experimental data of shale permeability determination under three axial stress concluded that the adsorption effect of shale resulted in the decrease of permeability which blocked the diffusion influences to shale gas flow, which was called as ‘gas sealing effect’. The influences from this effect on gas preservation and enrichment boundary should be further studied.
Keywords:shale; adsorption effect; gas sealing effect; relict syncline; southeastern Chongqing