国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

6株高產(chǎn)油微擬球藻的中試培養(yǎng)評(píng)價(jià)研究?

2016-08-13 02:32朱葆華石紅萍孫發(fā)強(qiáng)韓吉昌楊官品潘克厚

朱葆華,石紅萍,孫發(fā)強(qiáng),韓吉昌,楊官品,潘克厚,3??

(中國(guó)海洋大學(xué) 1.海水養(yǎng)殖教育部重點(diǎn)實(shí)驗(yàn)室,2.海洋生命學(xué)院,3.青島海洋科學(xué)與技術(shù)國(guó)家實(shí)驗(yàn)室,海洋漁業(yè)科學(xué)與食物產(chǎn)出過(guò)程功能實(shí)驗(yàn)室,山東 青島 266003)

?

6株高產(chǎn)油微擬球藻的中試培養(yǎng)評(píng)價(jià)研究?

朱葆華1,石紅萍1,孫發(fā)強(qiáng)1,韓吉昌1,楊官品2,潘克厚1,3??

(中國(guó)海洋大學(xué) 1.海水養(yǎng)殖教育部重點(diǎn)實(shí)驗(yàn)室,2.海洋生命學(xué)院,3.青島海洋科學(xué)與技術(shù)國(guó)家實(shí)驗(yàn)室,海洋漁業(yè)科學(xué)與食物產(chǎn)出過(guò)程功能實(shí)驗(yàn)室,山東 青島 266003)

摘要:用50 L密閉式吊袋光生物反應(yīng)器,采用連續(xù)培養(yǎng)模式,對(duì)6株微擬球藻(Nannochloropsis oceanica)進(jìn)行產(chǎn)油性能的中試篩選。從藻種的比生長(zhǎng)速率、總脂含量、油脂產(chǎn)率,甘油三酯(TAG)含量和脂肪酸組成等方面評(píng)價(jià)藻種的產(chǎn)油性能。經(jīng)過(guò)10d的連續(xù)培養(yǎng),篩選到2株生長(zhǎng)速率快、油脂產(chǎn)率高的優(yōu)良能源微藻藻株:3-25和75B1,它們的總脂含量分別達(dá)到細(xì)胞干重的33.49%和29.36%;油脂產(chǎn)率分別為10.04和8.07mg·(L·d)-1;它們的C16與C18之和分別占到了總脂肪酸含量的72.71%和68.05%,且以飽和脂肪酸C16∶0及單不飽和脂肪酸C16∶1為主,適合生物柴油的生產(chǎn)。盡管藻株4-38的油脂產(chǎn)率較低,但其甘油三酯含量較高,C16和C18之和高達(dá)76.32%,其脂肪酸組成也非常適合生物柴油的生產(chǎn)。研究結(jié)果表明,3-25、75B1和4-38這3株微擬球藻有望作為生產(chǎn)生物柴油的候選藻株。

關(guān)鍵詞:生物柴油; 微擬球藻; 連續(xù)培養(yǎng); 中試規(guī)模

引用格式:朱葆華,石紅萍,孫發(fā)強(qiáng),等. 6株高產(chǎn)油微擬球藻的中試培養(yǎng)評(píng)價(jià)研究[J].中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版),2016, 46(7): 15-20.

ZHU Bao-Hua , SHI Hong-Ping, SUN Fa-Qiang,et al. Evaluation of sixN.oceanicastrains with high oil productivity in pilot scale [J].Periodical of Ocean University of China, 2016, 46(7): 15-20.

石化燃料的過(guò)度開(kāi)采和使用導(dǎo)致能源危機(jī)加劇,尋找一種新型、可持續(xù)的綠色清潔能源已成為當(dāng)今社會(huì)關(guān)注的焦點(diǎn)。生物柴油作為一種可再生、綠色環(huán)保的清潔能源已成為世界各國(guó)能源研究的熱點(diǎn)。

生產(chǎn)生物柴油的油脂大多來(lái)自植物油脂,在所有的油料作物中,微藻相對(duì)于傳統(tǒng)的油料作物具有明顯的優(yōu)勢(shì),已成為第三代生物柴油生產(chǎn)的理想原料[1-2]。到目前為止,微藻生物柴油盡管已經(jīng)有幾十年的研究歷史[3],但實(shí)現(xiàn)商業(yè)化生產(chǎn)還需要進(jìn)行很大的努力,而微藻大規(guī)模培養(yǎng)高昂的成本是主要的瓶頸之一[4-6]。因此,生長(zhǎng)速率快、抗逆性強(qiáng)、油脂產(chǎn)率高的優(yōu)良能源微藻藻種的篩選成為提高生物柴油產(chǎn)量、降低生產(chǎn)成本的重要突破點(diǎn)之一。

微擬球藻(Nannochloropsis.sp)屬大眼藻綱、微擬球藻屬,是一類(lèi)球形或近似球形的單細(xì)胞真核生物,其細(xì)胞小(通常2~4μm),形態(tài)簡(jiǎn)單,具有很高的光合作用效率、生物量和總脂含量;它的脂肪酸組成主要以C16,C18和C20為主[7],是生產(chǎn)生物柴油的理想原料,被公認(rèn)為最具潛力進(jìn)行商業(yè)化生產(chǎn)生物柴油的藻種之一[8]。

本研究采用一種封閉、連續(xù)培養(yǎng)方式的吊袋式反應(yīng)器對(duì)6株誘變海洋微擬球藻(Nanochloropsisoceanica)進(jìn)行中試培養(yǎng),通過(guò)分析總脂含量、油脂產(chǎn)率、中性脂以及脂肪酸組成對(duì)它們進(jìn)行篩選評(píng)價(jià),為進(jìn)一步進(jìn)行大規(guī)模培養(yǎng)并獲得可規(guī)?;囵B(yǎng)的優(yōu)良能源微藻藻株提供科學(xué)依據(jù)。

1 材料與方法

1.1 藻種

6株微擬球藻(Nanochloropsisoceanica)來(lái)自中國(guó)海洋大學(xué)水產(chǎn)學(xué)院應(yīng)用微藻生物學(xué)實(shí)驗(yàn)室,KA2以精喹禾靈(Quizalofop-p-ethyl)作為篩選壓篩選獲得[9],4-5、4-38、3-25、3-26、75B1通過(guò)甲基磺酸乙酯(Ethyl-methylsulfone, EMS)誘變,再通過(guò)平板涂布獲得單克隆藻株,在實(shí)驗(yàn)室內(nèi)證明這些藻株具有較大的比生長(zhǎng)速率和較高的油脂產(chǎn)率。

1.2 微藻培養(yǎng)

中試培養(yǎng)篩選驗(yàn)證在青島市中國(guó)海洋大學(xué)鰲山衛(wèi)實(shí)驗(yàn)基地進(jìn)行,中試培養(yǎng)時(shí)間為2014年10月8—17日,采用50 L的吊袋式反應(yīng)器進(jìn)行,工作原理如圖1所示:

(a:消毒海水和營(yíng)養(yǎng)鹽注入口 Disinfection water and nutrient sprue;b:藻液流出口 Algal flow export;;c:通氣入口 Air inlet; d:藻液接種口和取樣口 Fluid of algal inoculation and sampling; e:蠕動(dòng)泵 Peristaltic pump; f:培養(yǎng)基 Culture medium; g:營(yíng)養(yǎng)液加入和藻液排出通道 Nutrient solution to join and algal liquid discharge channels; h:藻液收集缸 Algae fluid collection cylinder; i:砂濾器 Sand filter;j:海水高溫滅菌設(shè)備 Water high temperature sterilization equipment; m:鼓風(fēng)機(jī) Air blower.)

圖1吊袋式反應(yīng)器簡(jiǎn)圖

Fig.1Diagram of reactor with punching bag

通過(guò)加料口(a)每天將10 L新鮮培養(yǎng)液24h持續(xù)不斷的以恒定流速注入到反應(yīng)器中,新鮮培養(yǎng)液由培養(yǎng)基(f)和經(jīng)過(guò)滅菌的海水按一定比例混合而成,海水先經(jīng)沙濾裝置(i)過(guò)濾后再經(jīng)海水高溫滅菌裝置(j)滅菌才進(jìn)入到反應(yīng)器內(nèi)。反應(yīng)器上端還有另一出口(b),當(dāng)培養(yǎng)的藻液液面達(dá)到(b)口時(shí),每天有10 L藻液進(jìn)入藻液收集缸(h)。反應(yīng)器下端有通氣孔(c)和取樣孔兼接種口(d),通氣孔處裝有氣體流量調(diào)節(jié)器,調(diào)節(jié)進(jìn)入到反應(yīng)器中的氣體流量(氣體流量為1000mL/min),通入反應(yīng)器的氣體經(jīng)紫外線(xiàn)殺菌后由鼓風(fēng)機(jī)(m)提供。培養(yǎng)體系為一個(gè)密閉系統(tǒng),保證培養(yǎng)過(guò)程始終處于無(wú)污染的狀態(tài)。

反應(yīng)器吊袋為透明強(qiáng)力聚乙烯薄膜,具有耐高壓和韌度強(qiáng)等優(yōu)點(diǎn),接種時(shí)控制藻種密度為1.7×107cell/mL、體積10L。培養(yǎng)條件,溫度(24±3)℃,光強(qiáng)(20~131)μmol·m-2·s-1全光照培養(yǎng)(白天為自然光,晚上采用人工光源),每株微擬球藻設(shè)置3個(gè)平行。培養(yǎng)過(guò)程中,每天定時(shí)測(cè)定培養(yǎng)液的pH。

培養(yǎng)10d后,每個(gè)平行取2000mL 藻液,7000r/min、5min離心(Ependorf , Germany)收集,沉淀用50mL蒸餾水重懸洗鹽2次(離心條件同上),通過(guò)真空冷凍干燥得到藻粉(稱(chēng)重獲得生物量干重),用于總脂、脂肪酸分析。

1.3 比生長(zhǎng)速率測(cè)定

比生長(zhǎng)速率通過(guò)公式u=(lnx2-lnx1)/(t2-t1)進(jìn)行計(jì)算[10]。式中:u為比生長(zhǎng)速率(d-1);x1和x2分別為開(kāi)始和結(jié)束時(shí)反應(yīng)器中總細(xì)胞數(shù)量;t1和t2分別為培養(yǎng)開(kāi)始和結(jié)束的時(shí)間。

1.4 總脂含量和油脂產(chǎn)率

總脂測(cè)量參考Bligh and Dyer[11]的方法,稱(chēng)取50mg藻粉于干燥試管中,依次加入2mL 氯仿(CHCl3)和1mL 甲醇(CH3OH),震蕩15min,5000r/min 離心10min,將提取液轉(zhuǎn)到新試管;重復(fù)上述操作,合并2次提取液,加入0.9%生理鹽水1.2mL,振蕩,靜置15min,吸取提取液中的氯仿層于預(yù)先稱(chēng)重的新試管中,水浴鍋蒸干氯仿層稱(chēng)重,計(jì)算總脂含量。

油脂產(chǎn)率計(jì)算公式:P=1 000C·B/D。式中:P表示每升藻液每天積累油脂的含量(mg·L-1·d-1);C是藻細(xì)胞積累的油脂含量占藻粉干重的百分比(% of DW);B表示微藻培養(yǎng)過(guò)程中的干重(g/L),D表示培養(yǎng)時(shí)間(d)[12]。

1.5 甘油三酯(TAG)分析

甘油三酯分析采用薄層層析法[13-14]進(jìn)行。上樣量為3μL,展層劑為正己烷∶乙醚∶甲酸體積比為70∶30∶1(v/ v/ v)。展層后將層析板置于通風(fēng)櫥內(nèi)吹干, 然后置于含有碘顆粒的燒杯中,37℃恒溫顯色5~10min,三酰甘油標(biāo)準(zhǔn)品為美國(guó)Sigma 產(chǎn)品(Glyceryl trioleate T7140-500MG)。

1.6 脂肪酸組成分析

脂肪酸組成采用氣相色譜法[15]。稱(chēng)取15mg 藻粉至干燥試管中,加入 2mol/L的氫氧化鉀-甲醇(KOH-CH3OH)溶液2mL,充分混勻, 75℃水浴30min , 冷卻至室溫后加入3mol/L 鹽酸-甲醇(HCl-CH3OH)溶液2mL,振蕩1min,75℃水浴30min ,冷卻至室溫,加入正己烷(C6H14)0.1mL及少量蒸餾水促進(jìn)分層, 充分振蕩, 離心后取正己烷層,上樣1μL進(jìn)行氣相色譜分析。

氣相分析采用外標(biāo)法,進(jìn)樣量1μL,脂肪酸標(biāo)準(zhǔn)品為Sigma 公司產(chǎn)品(Supelco 37, USA)。儀器型號(hào)為HP 5890II,氫火焰離子化檢測(cè)器,毛細(xì)管柱型號(hào)為007-CW。程序升溫: 150℃保持1min,以15℃/min 升至200 ℃,再以2℃/min 升至250℃;汽化室溫度270℃;檢測(cè)器溫度270℃;載氣為高純氮?dú)猓魉?.5mL/min。

1.7 數(shù)據(jù)分析

采用軟件Spss 20(美國(guó)IBM公司)進(jìn)行單因素方差分析(LSD,Duncan),并進(jìn)行多重比較,顯著性水平為P<0.05;采用Microsoft office 2007的Excel繪圖。

2 結(jié)果與分析

2.1 比生長(zhǎng)速率和生物量

培養(yǎng)過(guò)程中6株藻一直以平均0.2d-1的比生長(zhǎng)速率迅速生長(zhǎng)。藻株3-26的比生長(zhǎng)速率為0.18d-1顯著小于其他5株(P<0.05),4-38、3-25和75B1的比生長(zhǎng)速率均為0.19d-1,3-5和KA2的比生長(zhǎng)速率達(dá)到0.21d-1是6株藻中最大的(見(jiàn)表1)。

6株藻收獲時(shí)的生物量如表1所示,生物量分別為241、234、239、192、217和224mg/L,3-26的生物量顯著低于其他5個(gè)藻株(P<0.05),其他5株藻之間生物量差異不顯著(P>0.05),6株藻的生長(zhǎng)趨勢(shì)與生物量的增加趨勢(shì)基本一致。

表1 6株微擬球藻的比生長(zhǎng)速率、細(xì)胞密度、生物量、總脂含量和油脂產(chǎn)率

注:a、b、c、d、e分別表示方差分析差異程度,同一列中有相同字母的組之間差異不顯著(P>0.05)。

Note:Values in the same row with the same supersxripts are not significantly different(P>0.05).

2.2 總脂和油脂產(chǎn)率

總脂含量和油脂產(chǎn)率是衡量一株藻產(chǎn)油能力的重要指標(biāo)。由表1可以看出,6株藻收獲時(shí)的總脂含量和油脂產(chǎn)率,藻株3-25的總脂含量和油脂產(chǎn)率分別達(dá)到33.49%和10.04mg·(L·d)-1,顯著高于其他5個(gè)藻株,是6株藻中最高的;75B1的總脂含量和油脂產(chǎn)率僅次于3-25,顯著高于其他4個(gè)藻株;4-38的總脂含量在6株藻中最低,其油脂產(chǎn)率僅高于3-26。

2.3 甘油三酯(TAG)分析

6株微擬球藻總脂中的甘油三酯(TAG)通過(guò)薄層層析法進(jìn)行分析。由圖2可以看出,藻株4-38的甘油三酯(TAG)含量最高,75B1次之,3-5含量最少,而其他3株藻(3-25、3-26和KA2)的含量相當(dāng)。

圖2 6株微擬球藻的薄層層析圖譜

2.4 6株微擬球藻脂肪酸分析結(jié)果

由表2可以看出,6株藻的主要脂肪酸組成為C16、C18和C20,其中C16 (C16∶0 和C16∶1)占到了總脂肪酸的56%以上,C16和C18之和占到了總脂肪酸含量的65.92%以上。藻株4-38的C16和C18之和高達(dá)76.32%,其次為藻株3-25,達(dá)到了72.18%;3-26、KA2和75B1三株藻的C16和C18之和沒(méi)有顯著差異,但75B1的C20∶5(EPA)含量最高,占總脂肪酸含量的22.39%。

3 討論

本實(shí)驗(yàn)采用連續(xù)培養(yǎng)模式,相比批次培養(yǎng)模式具有如下優(yōu)點(diǎn):結(jié)果可靠、可重復(fù)性強(qiáng),生長(zhǎng)速率和生物量可通過(guò)改變稀釋比例進(jìn)行調(diào)節(jié)控制,并且可長(zhǎng)期維持在較高水平[16]。連續(xù)式培養(yǎng)模式以一定的流速連續(xù)向培養(yǎng)系統(tǒng)內(nèi)添加新鮮培養(yǎng)液,同時(shí)以相同的流速?gòu)呐囵B(yǎng)體系中放出藻液,藻細(xì)胞的生長(zhǎng)速度、代謝水平處于相對(duì)恒定的狀態(tài),能夠穩(wěn)定、快速培養(yǎng)微藻產(chǎn)生相應(yīng)的代謝產(chǎn)物[17-18]。

微藻細(xì)胞的油脂積累主要在指數(shù)生長(zhǎng)期末期,生長(zhǎng)速率越快,油脂積累越緩慢。在連續(xù)培養(yǎng)模式下,由于藻細(xì)胞始終處于指數(shù)生長(zhǎng)狀態(tài),油脂積累與實(shí)驗(yàn)室理性狀態(tài)(6株藻的總脂含量在30.3%~34.6 %之間)相比有一定差距,所研究的6個(gè)藻株總脂含量仍達(dá)到了22.31%~33.49%(見(jiàn)表1),相信通過(guò)改變培養(yǎng)模式,比如開(kāi)放跑道池大規(guī)模培養(yǎng),由于光照和溫度等條件的改變,最重要的是,在跑道池中培養(yǎng),藻細(xì)胞可在一定時(shí)間內(nèi)達(dá)到指數(shù)生長(zhǎng)末期,它們的總脂含量一定會(huì)有所升高的。

表2 6株誘變微擬球藻的脂肪酸組成(占總脂肪酸的百分比)

注:a、b、c、d、e表示方差分析差異程度,同一行中有相同字母的組之間差異不顯著(P>0.05)。

Note:Values in the same row with the same superscrpts are not significantly different(P>0.05).

油脂產(chǎn)率是微藻培養(yǎng)過(guò)程中油脂產(chǎn)生數(shù)量的量度,用單位時(shí)間單位體積產(chǎn)生油脂的多少表示。由表1可以看出,藻株3-25的油脂產(chǎn)率為10.04mg·(L·d)-1,顯著高于其他5個(gè)藻株,其次為75B1,但這與實(shí)驗(yàn)室通過(guò)柱狀反應(yīng)器所得數(shù)據(jù)(藻株3-25的油脂產(chǎn)率為16.63mg·(L·d)-1相比仍有較大差距。一方面藻細(xì)胞始終處于指數(shù)生長(zhǎng)狀態(tài),不利于油脂積累,藻液不斷流出也不利于生物量的增加;另一方面,本實(shí)驗(yàn)中,盡管晚上采用人工光源,一定程度上減少了呼吸作用對(duì)生物量的消耗,但白天采用自然光源,相對(duì)光照強(qiáng)度較低(20~131μmol·m-2·s-1),仍是導(dǎo)致油脂產(chǎn)率較低的主要原因[19]。另外,氮限制、高鹽脅迫等[20-21]有利于油脂積累,在后續(xù)大規(guī)模培養(yǎng)過(guò)程中,可考慮在指數(shù)生長(zhǎng)末期對(duì)藻細(xì)胞進(jìn)行一定的脅迫,從而提高油脂產(chǎn)率[22-23]。

生物柴油是脂肪酸烷基酯的混合物,主要以甘油三酯(TAG)為底物通過(guò)酯交換反應(yīng)(Transesterification)生成[24]。用于生產(chǎn)生物柴油的優(yōu)良藻株,不僅要有高的油脂產(chǎn)率,具有較高的中性脂含量(主要是甘油三酯,TAG)和適宜的脂肪酸組成也尤為重要。由圖2可以看出,藻株4-38的TAG含量最高,其次為75B1,3-5含量最少,而其他3株藻(3-25、3-26和KA2)的含量相當(dāng)。

微藻的脂肪酸組成是衡量生物柴油質(zhì)量的一個(gè)重要指標(biāo)[25],對(duì)生物柴油的燃燒性能產(chǎn)生重要影響[26]。另外,生物柴油的濁點(diǎn)僅由飽和脂肪酸的數(shù)量決定[27],而低溫流動(dòng)性則取決于不飽和脂肪酸。C16與C18含量之和(占總脂肪酸的百分含量)已經(jīng)被用來(lái)評(píng)價(jià)生物柴油的產(chǎn)率[28]。由表2可以看出,6株藻的C16與C18之和占到了總脂肪酸含量的65.92%以上,藻株4-38則高達(dá)76.32%,且主要以飽和脂肪酸(C16∶0) 與單不飽和脂肪酸(C16∶1)為主,其脂肪酸組成非常適合生物柴油的生產(chǎn)[29-30]。

結(jié)合油脂產(chǎn)率、中性脂和脂肪酸組成分析,3-25、75B1具有較好的生產(chǎn)生物柴油的潛力,

雖然4-38的油脂產(chǎn)率較低,但由于較高的甘油三酯含量以及優(yōu)良的、適合生產(chǎn)生物柴油的脂肪酸組成,有望在后續(xù)規(guī)?;囵B(yǎng)中通過(guò)改變培養(yǎng)條件大幅提高其油脂產(chǎn)率。另外,75B1的C20∶5(EPA)含量最高,占總脂肪酸含量的22.39%,還可以作為生產(chǎn)EPA的優(yōu)良藻株。

致謝:本實(shí)驗(yàn)在青島即墨中國(guó)海洋大學(xué)鰲山衛(wèi)基地完成,對(duì)赫勇老師在實(shí)驗(yàn)初期給予的大力幫助表示衷心感謝。

參考文獻(xiàn):

[1]Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances [J]. Plant, 2008, 54: 621-639.

[2]Huang G H, Chen F, Wei D, et al. Biodiesel production by microalgal biotechnology [J]. Applied Energy, 2010, 87(1): 38-46.

[3]Wijffels R H, Barbosa M J. An outlook on microalgal biofuels [J]. Science, 2010, 329: 796-799.

[4]Chisti Y. Biodiesel from microalgae [J]. Biotechnol, 2007, 25(3): 294-306.

[5]Li Y G, Xu L, Huang Y M, et al. Microalgal biodiesel in China:Opportunities and challenges [J]. Applied Energy, 2011, 88:3432-3437.

[6]Sing S F, Isdepsky A, Borowitzka M A, et al. Production of biofuels from microalgae [J]. Mitig Adapt Strateg Glob Change, 2013, 18: 47-72.

[7]李秀波, 徐旭東, 孔任秋,等.五種微綠球藻產(chǎn)油和產(chǎn)多不飽和脂肪酸的研究 [J].水生生物學(xué)報(bào), 2010, 34(5): 893-897.

Li X B, Xu X D, Kong R Q, et al. Studies on the production of oil and polyunsaturated fatty acids in five species ofNannochloropsis[J]. Acta Hydrobiologica Sinica, 2010, 34(5):893-897.

[8]Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor [J].Biotechnology and Bioengineering, 2009, 102(1): 100-112

[9]曲曉梅, 宓文義, 朱葆華, 等.精喹禾靈篩選高脂微藻的有效性研究 [J].中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 43(6): 25-28

Qu X M, Mi W Y, Zhu B H, et al. Applicability of herbicide quizalofop-p-ethyl to the screening of lipid richNannochloropsisoceanic[J]. Periodical of Ocean University of China, 2013,43(6):25-28.

[10]Zhu B H, Sun F Q, Yang M, et al. Large-scale biodiesel production using flue gas from coal-fired powerplants withNannochloropsismicroalgal biomass in open raceway ponds [J].Bioresource Technology, 2014,174: 53-59.

[11]Bligh E G, Dyer W G. A rapid method of total lipid extraction and purification [J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917.

[12]Liu A Y, Chen W, Zheng L L, et al. Identification of high-lipid producers for biodiesel production from forty-three green algal isolates in China [J]. Materials International, 2011, 21: 269-276.

[13]Reiser S, Somerville C. Isolation of mutants ofAcinetobactercalcoaceticusdeficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl-coenzyme A reductase [J]. Journal Bacteriology, 1997, 179(9): 2969-2975.

[14]Yu E T, Zendejas F J, Lane P D, et al. Triacylglycerol accumulation and profiling in the model diatomsThalassiosirapseudonanaandPhaeodactylumtricornutum(Baccilariophyceae) during starvation [J]. Journal Applied Phycology, 2009, 21(6): 669-681

[15]Lepage G, Roy C C. Improved recovery of fatty acid through direct transecsterification without prior extraction purification [J]. J Lipid Res, 1984, 25(12): 1391-1396.

[16]Williams J A. Keys to bioreactor selection [J]. Chemical Engineering Progress, 2002, 98(3): 34-41.

[17]蔣禮玲, 張亞杰, 李瀟萍, 等. 微藻培養(yǎng)模式研究進(jìn)展 [J]. 可再生能源, 2010, 28(1): 56-62.

Jiang L L, Zhang Y J, Li X P, et al.Research developments in cultivation modes in microalgae [J]. Renewable Energy, 2010, 28(1): 56-62.

[18]Marsot P, Pelletier E, St-Louis R. Effects of triphenyltin chloride on growth of the marine microalgaPavlovalutheriin continuous culture [J]. Bull Environ Contam Toxicol Bulle tin of Environmental Contamination and Toxicology, 1995, 54(3): 389-395.

[19]Sforza E, Bertucco A, Morosinotto T, et al. Photobioreactors for microalgal growth and oil production withNannochloropsissalina, from lab-scale experiments to large-scale design [J]. Chemical Engineering Research and Design, 2012, 90: 1151-1158.

[20]Courcchesne N M, Prisien A , Wang B, et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches [J]. Journal of Biotechnology, 2009, 141: 31-41.

[21]Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms [J]. Renewable Energy, 2009, 34(1): 1-5.

[22]Gouveia L, Oliveira A C. Microalgae as a raw material for biofuels production [J]. Journal of Industrial Microbiology and Biotechnology, 2009, 36(2): 269-274.

[23]Hsieh C H, Wu W T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation [J]. Bioresource Technology, 2009, 100(17): 3921-3926.

[24]Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications:A review [J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 217-232.

[25]Ji M K, Abou-Shanab R A I, Kim S H, et al. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production [J]. Ecological Engineering, 2013, 58: 142-148.

[26]Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters [J]. Fuel Processing Technology, 2005, 86: 1059-1070.

[27]Imahara H, Minami E, Saka S. Thermodynamic study on cloud point of biodiesel with its fatty acid composition [J]. Fuel, 2006, 85: 1666-1670.

[28]Tang D, Han W, Li P, et al. CO2biofixation and fatty acid composition ofScenedesmusobliquusandChlorellapyrenoidosain response to different CO2levels [J]. Bioresour Technol, 2011, 102: 3071-3076.

[29]Francisco E, Neves D, Lopes E, et al. Microalgae as feedstock for biodiesel production:carbon dioxide sequestration, lipid production and biofuel quality [J]. Journal of Chemical Technology and Biotechnology, 2009, 85: 395-403.

[30]Pal D, Khozin-Goldberg I , Cohen Z, et al. The effect of light, salinity, and nitrogen availability on lipid production byNannochloropsissp. [J]. Appl Microbiol Biotechnol, 2011, 90(4): 1429-1441.

責(zé)任編輯朱寶象

基金項(xiàng)目:? 國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(2011CB200901;2011CB200904);國(guó)家自然科學(xué)基金項(xiàng)目(31372518)資助

收稿日期:2015-04-08 ;

修訂日期:2015-05-29

作者簡(jiǎn)介:朱葆華(1971-),男,副教授,主要從事微藻生理、生化與分子生物學(xué)方面的研究。E-mail:zhubaohua@ouc.edu.cn ??通訊作者:E-mail:qdkhpan@126.com

中圖法分類(lèi)號(hào):Q948.12

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1672-5174(2016)07-015-06

DOI:10.16441/j.cnki.hdxb.20150136

Evaluation of SixN.oceanicaStrains with High Oil Productivity in Pilot Scale

ZHU Bao-Hua1, SHI Hong-Ping1, SUN Fa-Qiang1, HAN Ji-Chang1,YANG Guan-Pin2, PAN Ke-Hou1,3

(Ocean University of China, 1. The Key Laboratory of Mariculture, Ministry of Education; 2. College of Marine Life Sciences; 3.Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology,Qingdao 266003, China)

Abstract:Renewable energy as microalgal biodiesel has raised broad interest; it is characterized by higher lipid productivity per ground area than oleaginous agricultural crops and does not compete for arable land or bio-diversifies natural landscapes. Unfortunately, a great deal of developments must occur before such product reaches the marketplace. One of the key bottlenecks is the high cost of microalgal cultivation. For the successful commercialization of microalgae-based fuels, it is crucial to minimize culture cost and breed oil-rich microalgae. Therefore, it is imperative that the strain selected for large-scale cultivation produces the appropriate lipids suitable for biodiesel production in pilot scale. Selection criteria should be based on a number of factors including growth rate, lipid quantity and quality, strong adaptability to the change in environment and determination of preferred nutrients and nutrient uptake rate. Nannochloropsis have proved to be suitable as raw materials for commercial production due to their high biomass and oil content. In this study, six Nannochloropsis oceanica strains were screened for their oil productivity by continuous cultivation mode in pilot scale with 50 L inclosed punching bag - light bioreactors. Oil-producing characteri-stics were evaluated from several aspects such as specific growth rate, content of total lipids, oil productivity, triglyceride content and fatty acid composition. Two excellent strains (3-25 and 75B1) with rapid growth and high oil productivity were obtained by continuous cultivation for ten days. The content of total lipids and oil productivity of the two strains were 33.49% and 29.36%, and 10.04mg·L-1·d-1and 8.07mg·L-1·d-1, respectively. The C16 and C18 series contents of the two algal strains accounted for 72.71% to 68.05%, respectively, and were found to consist largely of the saturated fatty acid (SAFA) palmitic acid (C16∶0) and the monounsaturated fatty acid (MUFA) palmitoleic acid (C16∶1), which are ideal for biodiesel production. Strain 4-38 performed better than the other five; it contained higher amount of triacylglycerols and fatty acids (the C16 and C18 series contents reach up to 76.32%), which are used for biodiesel production. Our results showed that three strains among six are perspective to be used for biodiesel production, which will provide scientific basis for further cultivation and obtain excellent strains suitable for large scale culture to produce biodiesel.

Key words:biodiesel production; Nannochloropsis oceanica; continuous cultivation mode; pilot scale production

Supported by Major State Basic Research Development Program of China(2011CB200901;2011CB200904); National Natural Science Foundation of China(31372518)