王雪瑩,黃文婷,黃雪莉
(新疆煤炭潔凈轉(zhuǎn)化與化工過(guò)程重點(diǎn)實(shí)驗(yàn)室,新疆大學(xué)化學(xué)化工學(xué)院,新疆 烏魯木齊 830046)
?
多元水鹽體系冰鹽共晶點(diǎn)的測(cè)定和圖形表達(dá)
王雪瑩,黃文婷,黃雪莉
(新疆煤炭潔凈轉(zhuǎn)化與化工過(guò)程重點(diǎn)實(shí)驗(yàn)室,新疆大學(xué)化學(xué)化工學(xué)院,新疆 烏魯木齊 830046)
水鹽體系共晶點(diǎn)的數(shù)據(jù)可以為鹽湖鹵水低溫加工工藝開(kāi)發(fā)提供必要的理論依據(jù),采用低溫冷卻法,針對(duì)四元同離子體系和四元交互體系及其相關(guān)的6個(gè)三元子體系,測(cè)定研究了其冰點(diǎn)、共晶點(diǎn)以及析鹽規(guī)律,繪制出了共晶點(diǎn)溫度-液相組成圖。研究結(jié)果表明:通過(guò)測(cè)定多元水鹽體系降溫過(guò)程中的時(shí)間-溫度圖,可以判斷鹽類(lèi)析出規(guī)律、測(cè)定冰和鹽的共晶點(diǎn)溫度;上述體系中,常溫下存在的復(fù)鹽鉀芒硝,在共晶點(diǎn)溫度下均不再出現(xiàn),水鹽體系相關(guān)系得以簡(jiǎn)化;用棱柱圖可以簡(jiǎn)單直觀地表達(dá)三元體系、四元同離子體系和四元交互體系的相、冰點(diǎn)或共晶點(diǎn)的溫度和溶液組成的關(guān)系;在三元體系的共晶點(diǎn)溫度-液相組成圖中,存在兩條單鹽與冰的共晶線、一個(gè)兩種鹽與冰的共晶點(diǎn)、一個(gè)冰析出面;在四元同離子體系和四元交互體系共晶點(diǎn)溫度-液相組成圖中,分別有3個(gè)和4個(gè)單鹽與冰的共晶面、3條和5條兩種鹽與冰的共晶線、1個(gè)和2個(gè)3種鹽與冰的共晶點(diǎn)。
水鹽體系;共晶點(diǎn);溫度;相
DOI:10.11949/j.issn.0438—1157.20151485
鹽湖資源的利用,大多采用自然或強(qiáng)制蒸發(fā)的方式分離鹽類(lèi),能耗水耗較高。開(kāi)發(fā)新技術(shù)實(shí)現(xiàn)高效節(jié)能、節(jié)水、益于環(huán)境的鹽湖化工生產(chǎn)非常有必要。鹵水冷凍至冰點(diǎn)或共晶點(diǎn)溫度時(shí)冰、鹽分別析出,進(jìn)行分離后可獲得純水和相應(yīng)的鹽類(lèi),也即共晶冷凍結(jié)晶技術(shù)[1-6]。該技術(shù)和蒸發(fā)相比,能耗低[7],可獲得純水,并可以利用冬季冷能。不過(guò)能否采用該技術(shù),還取決于不同鹵水的冷凍性質(zhì),也即冰點(diǎn)或共晶點(diǎn)數(shù)據(jù)和鹵水組成、降溫析鹽規(guī)律等。因此有必要針對(duì)不同鹵水進(jìn)行此類(lèi)研究,為探索鹽湖化工低溫分離工藝提供理論依據(jù)。
對(duì)于二元水鹽體系的冰點(diǎn)和共晶點(diǎn)的研究數(shù)據(jù)較多[8-9]。但三元體系的數(shù)據(jù)較少[10-14],四元及以上的體系鮮有報(bào)道。對(duì)于多元水鹽體系,一些研究者進(jìn)行了模型預(yù)測(cè)。Sander等[15]研究了一種改進(jìn)的擴(kuò)展UNIQUAC模型;Thomsen等[16-17]提出了對(duì)多組分溶液冰點(diǎn)的預(yù)測(cè)模型;Peralta等[18-19]提出了一個(gè)用過(guò)量Gibbs自由能來(lái)預(yù)測(cè)溶液的熱容、密度和冰點(diǎn)的模型。
目前國(guó)內(nèi)對(duì)于多元水鹽體系低溫下的相平衡的研究已有相關(guān)報(bào)道[20-21],但對(duì)水鹽體系冰點(diǎn)和共晶點(diǎn)的實(shí)驗(yàn)測(cè)定和表達(dá)方法的研究未見(jiàn)相關(guān)報(bào)道。硝酸鹽類(lèi)鹽湖,是新疆特有的干鹽湖化學(xué)類(lèi)型,其中一類(lèi)雜硝礬礦用水溶浸后的體系屬于五元體系,研究其基礎(chǔ)數(shù)據(jù)可以為綜合利用硝酸鹽資源提供技術(shù)支持和保證,具有重要的意義,而對(duì)此五元體系的冰點(diǎn)及共晶點(diǎn)的研究,需要相關(guān)的次級(jí)體系(四元、三元及二元體系)的共晶點(diǎn)數(shù)據(jù)。故本文以其子體系四元同離子體系和四元交互體系及其相關(guān)的6個(gè)三元子體系為例,進(jìn)行了冰點(diǎn)及共晶點(diǎn)研究。測(cè)定了共晶點(diǎn)的溫度和組成,分析鑒定相應(yīng)的固相,研究并繪制出共晶點(diǎn)溫度-液相組成圖、干鹽投影圖和共晶點(diǎn)溫度投影圖,并加以分析。
1.1實(shí)驗(yàn)試劑和儀器
試劑:均為分析純或基準(zhǔn)試劑;儀器:DHJF-4010低溫恒溫?cái)嚢璺磻?yīng)?。ǚ秶?40℃~99℃,精度±0.2℃);精密電子溫差測(cè)量?jī)x(范圍-50℃~100℃,精度±0.001℃);754型紫外可見(jiàn)分光光度計(jì)等。
1.2實(shí)驗(yàn)裝置
本實(shí)驗(yàn)裝置由低溫恒溫?cái)嚢璺磻?yīng)浴、精密溫差測(cè)量?jī)x和計(jì)算機(jī)組成,實(shí)驗(yàn)裝置如圖1所示。為檢驗(yàn)裝置及實(shí)驗(yàn)方法的可靠性,對(duì)不同濃度的多種單鹽和三元體系的冰點(diǎn)和共晶點(diǎn),進(jìn)行了多次的實(shí)驗(yàn)測(cè)定,實(shí)驗(yàn)結(jié)果與文獻(xiàn)值[8-9]吻合良好。
圖1 冰點(diǎn)測(cè)量實(shí)驗(yàn)裝置Fig.1 Sketch of freezing point measurement 1—reaction bath struction; 2—liquid outlet; 3—casing; 4—loading test tube;5—agitator ;6—thermometer probe; 7—electronic temperature measuring instrument; 8—computer
1.3實(shí)驗(yàn)方法
圖2 實(shí)驗(yàn)體系時(shí)間-溫度圖Fig.2 Time-temperature diagram of experimental system
圖3 K+//Cl-,NO-3,SO24--H2O 體系共晶點(diǎn)XRD譜圖Fig.3 XRD pattern of system
1.3.2多元體系共晶點(diǎn)溶液組成的測(cè)定取上述留用的溶液300 g左右,加入到燒瓶中,置于低溫恒溫裝置中,溫度調(diào)至略低于已測(cè)出的共晶點(diǎn)或冰點(diǎn)溫度下,攪拌,使其緩慢析出較多冰鹽時(shí),取液相進(jìn)行分析,并鑒定固相(測(cè)出的XRD如圖3所示),從而得到共晶點(diǎn)溶液的組成。實(shí)驗(yàn)證明,由于傳熱溫差很小,冰鹽析出速度較慢且穩(wěn)定,此時(shí)溶液組成維持不變。
1.4化學(xué)分析方法
Cl-:硝酸銀容量法;K+:四苯硼鈉重量法;SO42-:比濁法;NO3-:重鉻酸鉀氧化法;Na+:差減法,偏差小于0.4%。固相鑒定采用X射線晶體衍射法綜合進(jìn)行。
2.1三元體系研究結(jié)果
上述6個(gè)三元體系的共晶點(diǎn)的液相組成和溫度數(shù)據(jù)列于表1中。
圖4 體系共晶點(diǎn)溫度-液相組成(局部放大圖)Fig.4 Eutectic point temperature-liquid composition diagram of system(enlarged partial)
底面正三角形的3個(gè)頂點(diǎn)分別為KNO3、K2SO4和水;三條邊表示3個(gè)二元體系分別為KNO3-H2O、K2SO4-H2O和KNO3-K2SO4;三角形內(nèi)部為三元體系組成的點(diǎn)。任一實(shí)驗(yàn)數(shù)據(jù)點(diǎn)在該圖中的標(biāo)繪方法是:將液相各組分的百分含量作為坐標(biāo),在底面上標(biāo)出共晶點(diǎn)的液相組成點(diǎn),垂直升高到相應(yīng)的共晶點(diǎn)溫度。將表1中的數(shù)據(jù)按此方法繪制,再依次把單鹽-冰的共晶點(diǎn)連接起來(lái),形成兩條單鹽-冰的共晶點(diǎn)線,相交于兩鹽-冰的共晶點(diǎn),可得到共晶點(diǎn)溫度-液相組成圖。圖4中,三棱柱底面上a1、b1、a2三點(diǎn)分別為 KNO3-H2O、KNO3-K2SO4-H2O和K2SO4-H2O體系的共晶點(diǎn)液相組成,a1′、b1′、a2′為各對(duì)應(yīng)的共晶點(diǎn)溫度,C為純水的冰點(diǎn)。曲線C-a1′為KNO3-H2O冰點(diǎn)線、C-a2′為K2SO4-H2O冰點(diǎn)線;a1′-b1′為不同K2SO4的含量下,KNO3與冰的共晶點(diǎn)曲線;a2′-b1′為不同的KNO3含量下,K2SO4與冰的共晶點(diǎn)曲線??臻g曲面 a1′-b1′-a2′-C為KNO3-K2SO4-H2O體系的冰點(diǎn)溫度曲面,在此組成范圍內(nèi)的溶液,冰點(diǎn)均在 a1′-b1′-a2′-C曲面上。超過(guò)此組成范圍的溶液,共晶點(diǎn)溫度均為b1′點(diǎn)。
表1 R三元體系共晶點(diǎn)溫度及液相組成Table 1 Liquid compositions and temperatures of eutectic points of ternary systems
本文所研究的三元體系,無(wú)論常溫下是否存在復(fù)鹽,在共晶點(diǎn)或冰點(diǎn)下均為簡(jiǎn)單體系,即復(fù)鹽不再存在,共晶點(diǎn)溫度-液相組成圖中存在兩條單鹽與冰的共晶線、一個(gè)兩種鹽與冰的共晶點(diǎn)以及一個(gè)冰點(diǎn)面。
2.2四元體系實(shí)驗(yàn)研究結(jié)果
圖5 K+//Cl-,NO-3,SO24--H2O 體系共晶點(diǎn)溫度-液相組成Fig.5 Eutectic point temperature-liquid composition diagram of system
同離子四元體系的冰點(diǎn)、共晶點(diǎn)相圖的表達(dá)方法和三元體系類(lèi)似,采用三棱柱法。三棱柱的棱表示溫度的絕對(duì)值,底面為干鹽組成投影圖,其坐標(biāo)為相應(yīng)的J?necke指數(shù),列于表2。據(jù)此繪制出相應(yīng)的共晶點(diǎn)溫度-液相組成圖、干鹽投影圖和共晶點(diǎn)溫度投影圖,見(jiàn)圖5~圖7。圖5中,底面正三角形的3個(gè)頂點(diǎn)分別為二元體系 KNO3-H2O、K2SO4-H2O和 KCl-H2O,三條邊表示 3個(gè)三元體系分別為KNO3-KCl-H2O、K2SO4-KCl-H2O和KNO3-K2SO4-H2O,三角形內(nèi)部表示四元體系,標(biāo)繪方法是把每一個(gè)實(shí)驗(yàn)點(diǎn)的液相組成按J?necke指數(shù)在底面上標(biāo)出,再垂直升高到相應(yīng)的共晶點(diǎn)溫度,最后再連線獲得共晶點(diǎn)溫度-液相相圖。三棱柱底面b1、b4、b5點(diǎn)為各三元體系的兩鹽共晶點(diǎn)液相組成點(diǎn),b1′、b4′、b5′為各對(duì)應(yīng)的共晶點(diǎn)溫度;c1為此體系的三鹽共晶點(diǎn)液相組成點(diǎn),c1′為其對(duì)應(yīng)的溫度;a1′、a2′、a5′為各單鹽和冰的共晶點(diǎn)溫度。b4′-c1′為 KCl+ KNO3+Ice的共晶曲線、b5′-c1′為 KCl+K2SO4+Ice的共晶曲線、b1′-c1′為K2SO4+ KNO3+Ice的共晶曲線。a5′-b5′-c1′-b4′-a5′為 KCl和冰的共晶曲面;a2′-b1′-c1′-b5′-a2′為 K2SO4和冰的共晶曲面;a1′-b1′-c1′-b4′-a1′為KNO3和冰共晶曲面。
圖6 體系干鹽投影Fig.6 Dry salt projection diagram of system
圖7 K+//Cl-,NO-3,SO24--H2O 體系共晶點(diǎn)溫度投影Fig.7 Eutectictemperature projection diagram of system
本文所研究的同離子四元體系,共晶點(diǎn)溫度-液相組成圖中存在3個(gè)單鹽與冰的共晶面、3條兩種鹽與冰的共晶線以及1個(gè)3種鹽與冰的共晶點(diǎn)。
由圖可直觀發(fā)現(xiàn)KCl的濃度對(duì)共晶點(diǎn)溫度的影響最大,其與冰相共結(jié)晶區(qū)最小,表明KCl和冰不易共晶析出,相比之下,硫酸鉀溶液在很大的組成范圍內(nèi),都有可能與冰共晶。
四元交互體系的共晶點(diǎn)溫度-液相組成圖的表達(dá)方法與三元體系類(lèi)似,可以采用四棱柱法表達(dá),在此不再詳述,相應(yīng)的J?necke指數(shù)列于表3,據(jù)此繪制出相應(yīng)的共晶點(diǎn)溫度-液相組成圖、干鹽投影圖和共晶點(diǎn)溫度投影圖,見(jiàn)圖8~圖10。圖8中,底面四邊形的4個(gè)頂點(diǎn)分別為二元體系NaNO3-H2O、KNO3-H2O、K2SO4-H2O和Na2SO4-H2O,四條邊表示 4個(gè)三元體系分別為 NaNO3-Na2SO4-H2O、KNO3-NaNO3-H2O、K2SO4-KNO3-H2O和 Na2SO4-K2SO4-H2O,四邊形內(nèi)部表示四元體系。此四棱柱底面b1、b2、b3、b6點(diǎn)為各三元體系的兩鹽共晶點(diǎn)液相組成,b1′、b2′、b3′、b6′為各對(duì)應(yīng)的共晶點(diǎn)溫度;c2、c3為此體系的三鹽共晶點(diǎn)液相組成,c2′、c3′為其對(duì)應(yīng)的溫度;a1′、a2′、a3′、a4′為各單鹽和冰的共晶點(diǎn)溫度。兩鹽和冰的共晶曲線 b6′-c2′、b3′-c2′、b1′-c3′、b2′-c3′、c2′-c3′分別對(duì)應(yīng)為Na2SO4·10H2O+NaNO3+Ice、NaNO3+KNO3+Ice、K2SO4+KNO3+Ice、K2SO4+Na2SO4·10H2O+Ice和Na2SO4·10H2O+KNO3+Ice。a4′-b3′-c2′-b6′-a4′為NaNO3和冰的共晶曲面;a1′-b1′-c3′-c2′-b3′-a1′為KNO3和冰的共晶曲面;a2′-b2′-c3′-b1′-a2′為K2SO4和 冰 的 共 晶 曲 面 ; a3′-b2′-c3′-c2′-b6′-a3′為Na2SO4·10H2O和冰的共晶曲面。
表2 R四元體系共晶點(diǎn)液相組成和溫度Table 2 Liquid compositions and temperatures of eutectic points of quaternary system
表2 R四元體系共晶點(diǎn)液相組成和溫度Table 2 Liquid compositions and temperatures of eutectic points of quaternary system
Composition of solution/g·(100 g solution)-1 J?necke index J/mol·[100 mol(2Cl-+SO42-+2NO3-)]-1No. Cl- NO3- SO42- 2Cl- SO42- H2O Eutectic point/℃ Solid phase1(b4) 8.968 2.533 0 86.11 0 1455 -11.829 Sy+KN+Ice 2(c1) 8.735 2.443 0.542 82.93 3.796 2865 -11.849 Sy+KN+Ar+Ice 3 8.919 1.317 0.614 88.08 4.475 3031 -11.652 Sy+Ar+Ice 4(b5) 9.159 0 0.457 96.40 3.600 3184 -11.297 Sy+Ar+Ice 5 5.811 3.002 1.786 65.68 14.90 3543 -8.216 Ar+KN+Ice 6 3.348 3.709 2.416 46.17 24.59 4459 -5.601 Ar+KN+Ice 7 1.353 4.767 2.758 22.13 33.29 5432 -4.587 Ar+KN+Ice 8(b1) 0 5.549 2.819 0 39.60 6431 -3.768 Ar+KN+Ice
表3 R四元體系Na+,K+//NO-3,SO24--H2O 共晶點(diǎn)液相組成和溫度Table 3 Liquid compositions and temperatures of eutectic points of quaternary system
表3 R四元體系Na+,K+//NO-3,SO24--H2O 共晶點(diǎn)液相組成和溫度Table 3 Liquid compositions and temperatures of eutectic points of quaternary system
Composition of solution/g·(100 g solution)J?necke index J/mol·[100 mol(2NO3+SO4)]No. K+ NO3- SO42- 2Na+ SO42- H2O Eutectic point/℃ Solid phase 1(b6) 0 28.99 0.162 100 0.717 1414 -18.401 Na+S10+Ice 2(c2) 2.086 30.55 0.115 89.23 0.484 1280 -19.512 Na+S10+KN+Ice 3(b3) 2.146 30.79 0 88.95 0 636 -19.627 Na+KN+Ice 4 2.548 21.69 0.339 81.73 1.979 2138 -11.498 S10+KN+Ice 5 2.928 14.96 0.786 70.94 6.355 3323 -7.103 S10+KN+Ice 6 3.565 9.511 2.134 53.91 22.46 4620 -5.364 S10+KN+Ice 7 4.682 7.142 4.207 40.94 43.19 4493 -4.962 S10+KN+Ice 8(c3) 4.997 6.569 4.897 38.52 49.04 4362 -5.001 S10+KN+Ar+Ice 9 5.478 6.037 4.518 26.79 49.13 4801 -4.793 KN+Ar+Ice 10 5.772 5.682 3.944 15.01 47.26 5367 -4.194 KN+Ar+Ice 11(b1) 5.794 5.549 2.819 0 39.61 6431 -3.768 KN+Ar+Ice 12(b2) 3.679 0 7.614 40.61 100 6108 -3.115 S10+Ar+Ice 13 5.069 2.237 8.093 36.63 82.36 4498 -3.995 S10+Ar+Ice 14 5.104 4.349 6.377 35.67 65.43 4515 -4.283 S10+Ar+Ice 15 5.635 6.072 5.908 34.76 55.67 4051 -5.151 S10+Ar+Ice
同樣,本文所研究的四元體系,無(wú)論常溫下是否存在復(fù)鹽,在共晶點(diǎn)或冰點(diǎn)溫度下均為簡(jiǎn)單體系,即復(fù)鹽不再存在,共晶點(diǎn)溫度-液相組成圖中存在4個(gè)單鹽與冰的共晶面、5條兩種鹽與冰的共晶線以及兩個(gè)3種鹽與冰的共晶點(diǎn)。
圖8 Na+,K+//NO-3,SO24--H2O 體系共晶點(diǎn)溫度-液相組成(為清晰所見(jiàn),未給出線上的點(diǎn))Fig.8 Eutectic point temperature-liquid composition diagram of systemNa+,K+// NO-3,SO24--H2O
圖9 體系干鹽投影Fig.9 Dry salt projection diagram of system
同樣由圖可直觀發(fā)現(xiàn) NaNO3的濃度對(duì)共晶點(diǎn)溫度的影響最大,其單鹽和冰的共晶區(qū)最小,不易共晶析出;Na2SO4·10H2O與冰的共晶區(qū)最大,較易共晶析出。
(1)通過(guò)測(cè)定多元水鹽體系降溫過(guò)程中的時(shí)間-溫度圖,可以判斷鹽類(lèi)析出規(guī)律,測(cè)定冰鹽的共晶點(diǎn)溫度與溶液組成;
(2)用棱柱圖可以簡(jiǎn)單直觀表達(dá)三元體系、四元同離子體系和四元交互體系的相、冰點(diǎn)或共晶點(diǎn)的溫度和溶液組成的關(guān)系;
圖10 體系共晶點(diǎn)溫度投影Fig.10 Eutectictemperature projection diagram of system
(3)無(wú)復(fù)鹽存在的簡(jiǎn)單三元體系共晶點(diǎn)溫度-液相組成圖中,存在兩條單鹽與冰的共晶線、一個(gè)兩種鹽與冰的共晶點(diǎn)、一個(gè)冰析出面;無(wú)復(fù)鹽存在的四元同離子體系和交互體系共晶點(diǎn)溫度-液相組成圖中,分別有3和4個(gè)單鹽與冰的共晶面、3和5條兩種鹽與冰的共晶線、1和2個(gè)3種鹽與冰的共晶點(diǎn)。
References
[1] STEPAKOFF G L, SIEGELMAN D, JOHNSON R, et al. Development of an eutectic freeze process for brine disposal [J]. Desalination, 1974, 15(1): 25-38.
[2] VAN DER HAM F, SECKLER M M, WITKAMP G J. Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer [J]. Chem. Eng. Process., 2004, 43(2): 161-167.
[3] HIMAWAN C, KRAMER H J M, WITKAMP G J. Study on the recovery of purified MgSO4·7H2O crystals from industrial solution by eutectic freezing [J]. Sep. Purif. Technol., 2006, 50(2): 240-248.
[4] VAN SPRONSEN J, PASCUAL M R, GENCELI F E, et al. Eutectic freeze crystallization from the ternary Na2CO3-NaHCO3-H2O system:a novel scraped wall crystallizer for the recovery of soda from an industrial aqueous stream [J]. Chem. Eng. Res. Des., 2009, 88(9):1259-1263.
[5] REDDY S T, LEWIS A E, WITKAMP G J, et al. Recovery of Na2SO4·10H2O from a reverse osmosis retentate by eutectic freeze crystallization technology [J]. Chem. Eng. Res. Des., 2010, 88(9):1153-1157.
[6] LEWIS A E, NATHOO J, THOMSEN K, et al. Design of a eutectic freeze crystallization process for multicomponent waste water stream[J]. Chem. Eng. Res. Des., 2010, 88(9): 1290-1296.
[7] 李卜義, 王建友. 濃海水處理及綜合利用技術(shù)的新進(jìn)展 [J]. 化工進(jìn)展, 2014, 33(11): 3067-3074. LI B Y, WANG J Y. Progress on treatment and comprehensive utilization of concentrated seawater [J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3067-3074.
[8] SILCOK H. Solubililies of Inorganic and Organic Compounds[M]. 3rd ed. Oxford: New York Pergamon Press, 1979.
[9] 牛自得, 程芳琴. 水鹽體系相圖及應(yīng)用[M]. 天津: 天津大學(xué)出版社, 2002. NIU Z D, CHENG F Q. The Phase Diagram of Salt-water System and Its Application[M]. Tianjin: Tianjin University Press, 2002.
[10] WEAST R C. CRC Handbook of Chemistry and Physics[M]. BocaRaton, USA: CRC Press, 1974.
[11] HALL D L, STERNER S M , BODNAR R J. Freezing point depression of NaCl-KCl-H2O solutions [J]. Economic Geology, 1988,83(1): 197-202.
[12] OAKES C S, BODNAR R J, SIMONSON J M. The system NaCl-CaCl2-H2O(Ⅰ): The ice liquidus at 1 atm total pressure [J]. Geochimica et Cosmochimica Acta, 1990, 54(3): 603-610.
[13] GIBBARD JR H F, GOSSMANN A F. Freezing points of electrolyte mixtures (Ⅰ): Mixtures of sodium chloride and magnesium chloride in water [J]. Journal of Solution Chemistry, 1974, 3(5): 385-393.
[14] DUBOIS M, MARIGNAC C. The H2O-NaCl-MgCl2ternary phase diagram with special application to fluid inclusion studies [J]. Economic Geology, 1997, 92(1): 114-119.
[15] SANDER B, FREDENSLUND A, RASMUSSEN P. Calculation of vapor-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation [J]. Chemical Engineering Science,1986, 41(5): 1171-1183.
[16] THOMSEN K, RASMUSSEN P, GANI R. Correlation and prediction of thermal properties and phase behavior for a class of aqueous electrolyte systems [J]. Chemical Engineering Science, 1996, 51(14):3675-3683.
[17] THOMSEN K. Aqueous electrolytes: model parameters and process simulation[D]. Denmark: Technical University of Denmark, 1997.
[18] ALONSO H A T, PERALTA J M, RUBIOLO A C, et al. Prediction of the freezing point of multicomponent liquid refrigerant solutions [J]. Journal of Food Engineering, 2011, 104(1): 143-148.
[19] PERALTA J M, RUBIOLO A C, ZORRILLA S E. Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model [J]. Journal of Food Engineering,2007, 82(4): 548-558.
Determination and graphics expression of ice-salt eutectic points of multicomponent salt-water systems
WANG Xueying, HUANG Wenting, HUANG Xueli
(Key Laboratory of Cleaner Transition of Coal & Chemicals Engineering of Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China)
For the quaternary salt-water systems, such as the homo-ion systemand interaction system, as well as their six ternary subsystems, the freezing points, eutectic points and the crystallization regularities of salts were studied by cooling method. According to experimental data,the eutectic point temperature-liquid composition diagrams for these systems were plotted. The results were as follows: (1) The crystallization regularity of salts and the eutectic point temperatures can be obtained by measuring the time-temperature curves for multicomponent salt-water systems during cooling process; (2) In these systems above, 3K2SO4·Na2SO4existing under normal temperature did not appear at the eutectic point temperature. As a result, the phase relationships in these systems were simplified; (3) The prism can be used to describe the relationships among the phases, freezing points or eutectic points and the compositions of liquids for the ternary systems, the quaternary homo-ion systems and interaction systems concisely and visually; (4) In the eutectic point temperature-liquid composition diagrams, for ternary systems without double-salts, there were twoeutectic curves with single salt and ice, one eutectic point with two salts and ice, and one ice crystallizing region. For the quaternary homo-ion systems and interaction systems, there were three and four eutectic regions with single salt and ice, three and five eutectic curves with two salts and ice, and one and two eutectic points with three salts and ice, respectively.
date: 2015-09-23.
Prof. HUANG Xueli, xuelih@163.com
supported by the National Natural Science Foundation of China (21166022).
salt-water system; eutectic point; temperature; phase
O 642.5+4
A
0438—1157(2016)05—1687—07
2015-09-23收到初稿,2016-01-25收到修改稿。
聯(lián)系人:黃雪莉。第一作者:王雪瑩(1988—),女,碩士研究生。
國(guó)家自然科學(xué)基金項(xiàng)目(21166022)。