余廷芳, 耿 平, 霍二光, 曹孟冰
(南昌大學(xué) 機(jī)電工程學(xué)院,南昌 330031)
?
基于智能算法的燃煤電站鍋爐燃燒優(yōu)化
余廷芳,耿平,霍二光,曹孟冰
(南昌大學(xué) 機(jī)電工程學(xué)院,南昌 330031)
基于Matlab人工智能工具包對(duì)某300 MW燃煤電站鍋爐進(jìn)行了燃燒優(yōu)化混合建模:利用BP神經(jīng)網(wǎng)絡(luò)建立了鍋爐燃燒特性的BP神經(jīng)網(wǎng)絡(luò)模型,用以預(yù)測(cè)鍋爐熱效率和NOx排放質(zhì)量濃度.基于該模型,以鍋爐熱效率和NOx排放質(zhì)量濃度為目標(biāo),結(jié)合Matlab遺傳算法工具包對(duì)鍋爐進(jìn)行燃燒優(yōu)化,并采用權(quán)重系數(shù)法將多目標(biāo)優(yōu)化問題轉(zhuǎn)化為單目標(biāo)優(yōu)化問題.結(jié)果表明:鍋爐熱效率和NOx排放質(zhì)量濃度校驗(yàn)樣本的相對(duì)誤差平均絕對(duì)值分別為0.142%和1.790%,該模型具有良好的準(zhǔn)確性和泛化能力;權(quán)重系數(shù)法可根據(jù)實(shí)際情況,以鍋爐熱效率或NOx排放質(zhì)量濃度為優(yōu)化重點(diǎn)選取相應(yīng)的權(quán)重系數(shù),對(duì)燃燒優(yōu)化具有一定的指導(dǎo)意義.
電站鍋爐; 鍋爐熱效率; NOx排放; 遺傳算法; 多目標(biāo)優(yōu)化
影響燃煤電站鍋爐熱效率和NOx排放的因素較復(fù)雜,對(duì)于既定鍋爐,鍋爐負(fù)荷、爐膛氧量、爐內(nèi)配風(fēng)方式和給煤機(jī)組合方式等因素都會(huì)影響鍋爐熱效率和NOx排放,并且這些影響因素相互耦合,呈現(xiàn)出復(fù)雜的非線性關(guān)系,使得鍋爐燃燒數(shù)據(jù)的分析較困難.
目前,智能算法在燃煤電站鍋爐熱效率和NOx排放建模中被大力推廣.尹凌霄等[1-5]基于智能算法,借助BP神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)建立了NOx排放濃度和鍋爐熱效率的預(yù)測(cè)模型;谷麗景等[6-7]基于神經(jīng)網(wǎng)絡(luò)建立了鍋爐燃燒的混合模型,實(shí)現(xiàn)了NOx排放量、飛灰含碳量及鍋爐熱效率等多種參數(shù)的軟測(cè)量;呂玉坤等[8-11]借助遺傳算法實(shí)現(xiàn)了對(duì)鍋爐燃燒的優(yōu)化.以上建模與優(yōu)化的很多思想和方法都有各自的特色,值得借鑒.
筆者在前人研究的基礎(chǔ)上,使用300 MW燃煤電站鍋爐的運(yùn)行數(shù)據(jù),基于Matlab人工智能工具包,利用BP神經(jīng)網(wǎng)絡(luò)建立鍋爐熱效率和NOx排放質(zhì)量濃度的鍋爐燃燒特性BP神經(jīng)網(wǎng)絡(luò)模型.在此基礎(chǔ)上,利用遺傳算法(GA)建立鍋爐燃燒的優(yōu)化模型,通過權(quán)重系數(shù)法變換權(quán)重系數(shù)將鍋爐熱效率和NOx排放質(zhì)量濃度多目標(biāo)優(yōu)化問題轉(zhuǎn)化為單目標(biāo)優(yōu)化問題,從而實(shí)現(xiàn)鍋爐熱效率和NOx排放質(zhì)量濃度多目標(biāo)優(yōu)化.
某300 MW燃煤電站鍋爐為東方鍋爐股份有限公司制造的DG-1025/17.5-Ⅱ4型亞臨界參數(shù)、四角切圓燃燒、自然循環(huán)汽包爐.鍋爐采用單爐膛、露天布置、一次中間再熱、平衡通風(fēng)、固態(tài)排渣、全鋼架、全懸吊結(jié)構(gòu),燃用煙煤,爐頂帶金屬防雨罩.燃燒器采用水平濃淡型直流型擺動(dòng)煤粉燃燒器,濃淡兩股風(fēng)、粉氣流從爐膛四角噴入,每角燃燒器共布置13層噴口,包括5層一次風(fēng)口(A、B、C、D、E)和8層二次風(fēng)口(包括一層燃盡風(fēng)(OFA)噴口和7層二次風(fēng)口(AA、AB、BC、CC、DD、DE、EE)).制粉系統(tǒng)采用中速磨煤機(jī)、冷一次風(fēng)機(jī)、正壓直吹式制粉系統(tǒng),配備5臺(tái)磨煤機(jī)(A、B、C、D、E).
2.1建立BP神經(jīng)網(wǎng)絡(luò)模型
利用BP神經(jīng)網(wǎng)絡(luò)建立鍋爐熱效率和NOx排放質(zhì)量濃度的鍋爐燃燒特性BP神經(jīng)網(wǎng)絡(luò)模型,該模型有20維輸入,其中包括發(fā)電機(jī)功率、爐膛氧量、一次風(fēng)風(fēng)速、二次風(fēng)門開度和燃盡風(fēng)門開度等參數(shù),分別代表了鍋爐負(fù)荷、過量空氣系數(shù)、一二次風(fēng)配比和燃盡風(fēng)等因素對(duì)鍋爐燃燒特性的影響,輸出為鍋爐熱效率和NOx排放質(zhì)量濃度.該模型示意圖如圖1所示.
本次建模所選工況均在額定負(fù)荷300 MW附近,鍋爐燃燒特性的BP神經(jīng)網(wǎng)絡(luò)模型僅針對(duì)滿負(fù)荷工況.試驗(yàn)精選100組鍋爐運(yùn)行數(shù)據(jù),其中85組數(shù)據(jù)用來訓(xùn)練BP神經(jīng)網(wǎng)絡(luò),15組數(shù)據(jù)用于校驗(yàn).樣本數(shù)據(jù)如表1所示,其中ρ為NOx排放質(zhì)量濃度,η為鍋爐熱效率.在建立鍋爐熱效率和NOx排放質(zhì)量濃度鍋爐燃燒特性的BP神經(jīng)網(wǎng)絡(luò)模型時(shí),網(wǎng)絡(luò)的訓(xùn)練不能過于飽和,即網(wǎng)絡(luò)訓(xùn)練誤差不能過低,網(wǎng)絡(luò)訓(xùn)練過飽和會(huì)降低網(wǎng)絡(luò)的泛化性,應(yīng)該將其訓(xùn)練誤差控制在一個(gè)合理的區(qū)間之內(nèi).對(duì)于鍋爐熱效率,由于其本身的變化范圍比較狹窄,故對(duì)其預(yù)測(cè)的訓(xùn)練誤差應(yīng)控制在0.5%范圍內(nèi);而NOx排放質(zhì)量濃度的變化范圍較大,訓(xùn)練誤差應(yīng)控制在5%以內(nèi),在訓(xùn)練網(wǎng)絡(luò)時(shí)要將訓(xùn)練誤差與校驗(yàn)誤差結(jié)合并進(jìn)行對(duì)比,使鍋爐燃燒特性的BP神經(jīng)網(wǎng)絡(luò)模型同時(shí)滿足訓(xùn)練誤差要求和網(wǎng)絡(luò)泛化性要求.
圖1 鍋爐燃燒特性的BP神經(jīng)網(wǎng)絡(luò)模型
采用BP神經(jīng)網(wǎng)絡(luò)自帶的feedforwardnet函數(shù)創(chuàng)建BP神經(jīng)網(wǎng)絡(luò),采用3層網(wǎng)絡(luò),隱含層設(shè)為一層,采用trainlm函數(shù)作為網(wǎng)絡(luò)的訓(xùn)練函數(shù),傳遞函數(shù)和學(xué)習(xí)速率等采用feedforwardnet函數(shù)的默認(rèn)設(shè)置,經(jīng)過試驗(yàn),當(dāng)隱含層節(jié)點(diǎn)數(shù)為24時(shí)的訓(xùn)練效果最佳.
2.2BP神經(jīng)網(wǎng)絡(luò)模型的效果驗(yàn)證
為了直觀地觀察和對(duì)比,對(duì)BP神經(jīng)網(wǎng)絡(luò)模型的二維輸出(即鍋爐熱效率和NOx排放質(zhì)量濃度)分別進(jìn)行整理,將鍋爐熱效率的85組訓(xùn)練樣本和15組校驗(yàn)樣本的訓(xùn)練效果和相對(duì)誤差匯總,分別整理在同一個(gè)圖中,并將NOx排放質(zhì)量濃度訓(xùn)練效果和相對(duì)誤差匯總和整理,結(jié)果見圖2~圖5.
圖2給出了鍋爐熱效率的訓(xùn)練效果.圖3為鍋爐熱效率樣本的相對(duì)誤差圖.由圖3可知,鍋爐熱效率訓(xùn)練樣本的最大相對(duì)誤差絕對(duì)值為0.176%,相對(duì)誤差的平均絕對(duì)值為0.048%;校驗(yàn)樣本的最大相對(duì)誤差絕對(duì)值為0.314%,相對(duì)誤差平均絕對(duì)值為0.142%,訓(xùn)練精度滿足要求,具有較高的泛化性.
表1 試驗(yàn)樣本數(shù)據(jù)
圖2 鍋爐熱效率的訓(xùn)練效果
圖3 鍋爐熱效率樣本的相對(duì)誤差
圖4 NOx排放質(zhì)量濃度的訓(xùn)練效果
圖5 NOx排放質(zhì)量濃度樣本的相對(duì)誤差
圖4給出了NOx排放質(zhì)量濃度的訓(xùn)練效果.圖5為NOx排放質(zhì)量濃度樣本的相對(duì)誤差圖.由圖5可知,NOx排放質(zhì)量濃度訓(xùn)練樣本的最大相對(duì)誤差絕對(duì)值為3.312%,相對(duì)誤差平均絕對(duì)值為0.469%;校驗(yàn)樣本的最大相對(duì)誤差絕對(duì)值為4%,相對(duì)誤差平均絕對(duì)值為1.790%,訓(xùn)練和校驗(yàn)的精度都達(dá)到了要求.
3.1燃燒優(yōu)化模型的建立
基于前文已建立的鍋爐熱效率和NOx排放質(zhì)量濃度鍋爐燃燒特性的BP神經(jīng)網(wǎng)絡(luò)模型,建立基于遺傳算法的鍋爐燃燒優(yōu)化模型,優(yōu)化模型中的適應(yīng)度函數(shù)采用BP神經(jīng)網(wǎng)絡(luò)模型來代替,用BP神經(jīng)網(wǎng)絡(luò)模型來評(píng)估優(yōu)化效果,優(yōu)化的目標(biāo)為鍋爐熱效率和NOx排放質(zhì)量濃度,本質(zhì)上屬于多目標(biāo)優(yōu)化的范疇.筆者對(duì)2個(gè)要優(yōu)化的目標(biāo)分別給定一個(gè)權(quán)重系數(shù),并進(jìn)行線性相加,將多目標(biāo)優(yōu)化問題轉(zhuǎn)化為單目標(biāo)優(yōu)化問題,由于鍋爐熱效率和NOx排放質(zhì)量濃度兩者數(shù)量級(jí)不同,直接分配權(quán)重系數(shù)進(jìn)行優(yōu)化得不到理想的優(yōu)化結(jié)果,所以要進(jìn)行數(shù)據(jù)歸一化處理,分別將兩者的數(shù)據(jù)歸一化到[0,1].
遺傳算法的適應(yīng)度函數(shù)可以表示為
(1)
式中:α、β為鍋爐熱效率和NOx排放質(zhì)量濃度的權(quán)重系數(shù),分別取0.3、0.7,0.4、0.6,0.5、0.5,0.6、0.4,0.7、0.3;最后一項(xiàng)加1是為了保證適應(yīng)度值始終為正值.
種群個(gè)體全部采用二進(jìn)制編碼,總種群個(gè)體數(shù)設(shè)為50,每個(gè)變量的二進(jìn)制位數(shù)為20,共計(jì)20維,交叉概率為0.7,變異概率為0.035,設(shè)置其最大迭代次數(shù)為60.為了保證優(yōu)化結(jié)果的合理性,要將種群中每個(gè)個(gè)體的變量即鍋爐燃燒參數(shù)約束到一定范圍之內(nèi),約束范圍根據(jù)電廠實(shí)際運(yùn)行經(jīng)驗(yàn)確定,即將每個(gè)變量的二進(jìn)制編碼所代表的十進(jìn)制參數(shù)約束在一定范圍內(nèi),這樣能縮小尋優(yōu)范圍,提高優(yōu)化結(jié)果的可行性,參數(shù)的約束范圍見表2.
表2 參數(shù)約束范圍
3.2優(yōu)化結(jié)果
不同權(quán)重系數(shù)比例下鍋爐熱效率和NOx排放質(zhì)量濃度的優(yōu)化結(jié)果見圖6~圖10.為了更好地對(duì)比優(yōu)化結(jié)果,表3列出了2組鍋爐原始運(yùn)行數(shù)據(jù)和5組不同權(quán)重系數(shù)比例下的優(yōu)化結(jié)果,其中第1組和第2組數(shù)據(jù)為原始運(yùn)行數(shù)據(jù),第3組~第7組對(duì)應(yīng)鍋爐熱效率與NOx排放質(zhì)量濃度的權(quán)重系數(shù)比例分別為0.3∶0.7、0.4∶0.6、0.5∶0.5、0.6∶0.4、0.7∶0.3時(shí)的優(yōu)化結(jié)果.
當(dāng)α=0.3、β=0.7(見圖6),即鍋爐熱效率的權(quán)重系數(shù)比例為30%,NOx排放質(zhì)量濃度的權(quán)重系數(shù)比例為70%時(shí),更應(yīng)關(guān)注的是NOx排放質(zhì)量濃度,此時(shí)NOx排放質(zhì)量濃度降低到316.77 mg/m3,比100組運(yùn)行數(shù)據(jù)的NOx排放質(zhì)量濃度平均值(440 mg/m3)降低了近28%,NOx排放質(zhì)量濃度優(yōu)化效果顯著.同時(shí),鍋爐熱效率提升到92.3%,比100組運(yùn)行數(shù)據(jù)的鍋爐熱效率平均值(91.7%)提升了0.6%,其優(yōu)化效果沒有NOx排放質(zhì)量濃度的優(yōu)化效果明顯.由表3可知,與原始運(yùn)行數(shù)據(jù)相比,優(yōu)化后的鍋爐燃燒參數(shù)表現(xiàn)為各層給煤量更加均勻,配風(fēng)形式為下部缺氧燃燒的方式,鍋爐熱效率和NOx排放質(zhì)量濃度均有所改善.
當(dāng)α=0.4、β=0.6(見圖7),即鍋爐熱效率的權(quán)重系數(shù)比例為40%,NOx排放質(zhì)量濃度的權(quán)重系數(shù)比例為60%時(shí),較為關(guān)注的是NOx排放質(zhì)量濃度,NOx排放質(zhì)量濃度由平均值降低到361.68 mg/m3,降低約18%,NOx排放質(zhì)量濃度優(yōu)化效果比較顯著;此時(shí),鍋爐熱效率由平均值提升到92.75%,提升了1.05%,其優(yōu)化效果比α=0.3、β=0.7時(shí)的優(yōu)化效果更明顯.
當(dāng)α=0.5、β=0.5(見圖8),即鍋爐熱效率與NOx排放質(zhì)量濃度的權(quán)重系數(shù)比例相同時(shí),兩者的關(guān)注程度也相同,NOx排放質(zhì)量濃度由平均值降低到379. 04 mg/m3,降低約14%;鍋爐熱效率由平均值提升到93.37%,提升了1.67%,相對(duì)鍋爐熱效率的現(xiàn)狀來說,其優(yōu)化效果顯著,這個(gè)權(quán)重系數(shù)比例也是大部分電廠比較傾向的,在這個(gè)權(quán)重系數(shù)比例下可以進(jìn)行更深層次的研究.
當(dāng)α=0.6、β=0.4(見圖9),即鍋爐熱效率的權(quán)重系數(shù)比例為60%,NOx排放質(zhì)量濃度的權(quán)重系數(shù)比例為40%時(shí),比較關(guān)注的是鍋爐熱效率,希望進(jìn)一步提升鍋爐熱效率,此時(shí)NOx排放質(zhì)量濃度降低到423.94 mg/m3,較平均值降低了近4%,優(yōu)化效果明顯比之前的權(quán)重系數(shù)比例(70%,60%和50%)差了許多;鍋爐熱效率由平均值提升到93.71%,提升了2.01%,其優(yōu)化效果顯著,但這是以犧牲了一定的NOx排放質(zhì)量濃度為前提的.
圖6 α=0.3、β=0.7時(shí)的優(yōu)化結(jié)果
圖7 α=0.4、β=0.6時(shí)的優(yōu)化結(jié)果
圖8 α=0.5、β=0.5時(shí)的優(yōu)化結(jié)果
圖9 α=0.6、β=0.4時(shí)的優(yōu)化結(jié)果
序號(hào)功率/MW各一次風(fēng)風(fēng)速/(m·s-1)各給煤機(jī)給煤量/(t·h-1)ABCDEABCDE1297.6730.4533.7930.7338.6934.3647.0024.1633.6527.1435.842305.0732.6035.3132.9642.9934.7449.0027.4939.4928.9727.513300.0026.6726.9326.6033.1630.2039.4936.6333.4330.8227.314300.0027.5127.4928.5732.2529.8838.1133.3930.6936.4228.875300.0027.9828.9227.2634.8731.9635.6732.8335.4230.6932.856300.0028.5729.3128.1233.1130.4134.3330.2234.5333.1934.247300.0028.1729.5129.1335.6631.9632.9630.0234.2033.2135.21序號(hào)氧質(zhì)量分?jǐn)?shù)/%各二次風(fēng)門開度/%AAABBCCCDDDEEE燃盡風(fēng)門開度/%ρ/(mg·m-3)η/%12.7370.6044.9944.1935.4634.8352.2546.3269.76489.8492.12923.1965.5549.8740.3339.6240.5156.9849.1670.46429.1990.96032.5934.0644.2058.5673.8445.2356.4351.4371.15316.7792.30042.7336.4546.0062.7970.8349.5453.9253.5161.56361.6892.75052.9545.5535.1863.2668.2846.0856.3851.0755.82379.0493.37063.2851.9761.8349.6363.0253.0746.1955.0150.24423.9493.71073.5449.1959.5755.4765.2165.1851.0056.2342.18477.5093.960
當(dāng)α=0.7、β=0.3(見圖10),即鍋爐熱效率的權(quán)重系數(shù)比例為70%,NOx排放質(zhì)量濃度的權(quán)重系數(shù)比例為30%時(shí),更應(yīng)關(guān)注的是鍋爐熱效率,這種方案大部分是將NOx排放質(zhì)量濃度控制在某個(gè)限定值之內(nèi),尋求鍋爐熱效率最大化,此時(shí)NOx的排放質(zhì)量濃度優(yōu)化到477.50 mg/m3,NOx排放質(zhì)量濃度沒有得到有效的降低,而此時(shí)鍋爐熱效率卻達(dá)到最高,由平均值提升到93.96%,提升了2.26%,達(dá)到本次優(yōu)化鍋爐熱效率的最高值.從表3中第7組優(yōu)化后的運(yùn)行數(shù)據(jù)來看,氧質(zhì)量分?jǐn)?shù)提高了,二次風(fēng)基本對(duì)應(yīng)均等配風(fēng),對(duì)應(yīng)的鍋爐熱效率提高,但NOx排放質(zhì)量濃度明顯升高,可見鍋爐熱效率的提高是以NOx排放質(zhì)量濃度提高為代價(jià)的.這種方案的前提是NOx排放質(zhì)量濃度在后續(xù)的脫氮工藝流程中會(huì)得到有效控制,從而達(dá)到國(guó)家規(guī)定排放標(biāo)準(zhǔn).
圖10 α=0.7、β=0.3時(shí)的優(yōu)化結(jié)果
(1)鍋爐熱效率訓(xùn)練樣本的相對(duì)誤差平均絕對(duì)值為0.048%,校驗(yàn)樣本的相對(duì)誤差平均絕對(duì)值為0.142%,NOx排放質(zhì)量濃度訓(xùn)練樣本的相對(duì)誤差平均絕對(duì)值為0.469%,校驗(yàn)樣本的相對(duì)誤差平均絕對(duì)值為1.790%,可以滿足要求.
(2)當(dāng)α=0.3、β=0.7時(shí),NOx排放質(zhì)量濃度降低了近28%,鍋爐熱效率提升了0.6%;當(dāng)α=0.4、β=0.6時(shí),NOx排放質(zhì)量濃度降低約18%,鍋爐熱效率提升了1.05%;當(dāng)α=0.5、β=0.5時(shí),NOx排放質(zhì)量濃度降低約14%,鍋爐熱效率提升了1.67%;當(dāng)α=0.6、β=0.4時(shí),NOx排放質(zhì)量濃度降低了近4%,鍋爐熱效率提升了2.01%;當(dāng)α=0.7、β=0.3時(shí),NOx排放質(zhì)量濃度沒有得到有效降低,而鍋爐熱效率卻提升了2.26%.
(3)優(yōu)化后的一次風(fēng)風(fēng)速在保證煤粉輸運(yùn)的前提下較原始運(yùn)行數(shù)據(jù)有所降低,各層給煤量基本均勻,燃燒器下部缺氧燃燒及提高燃盡風(fēng)量有利于抑制NOx的生成,而適當(dāng)提高氧質(zhì)量分?jǐn)?shù)及采用均等配風(fēng)有利于提高鍋爐熱效率.
[1]尹凌霄,王明春,尚強(qiáng).燃煤鍋爐NOx排放濃度的智能預(yù)報(bào)[J].熱能動(dòng)力工程,2014,29(3):279-283,343.
YIN Lingxiao, WANG Mingchun, SHANG Qiang. Intelligent prediction of the NOxemissions concentration of a coal-fired boiler[J]. Journal of Engineering for Thermal Energy and Power, 2014, 29(3): 279-283,343.
[2]顧燕萍,趙文杰,吳占松.基于最小二乘支持向量機(jī)的電站鍋爐燃燒優(yōu)化[J].中國(guó)電機(jī)工程學(xué)報(bào),2010,30(17):91-97.
GU Yanping, ZHAO Wenjie, WU Zhansong. Combustion optimization for utility boiler based on least square-support vector machine[J]. Proceedings of the CSEE, 2010, 30(17): 91-97.
[3]王春林,張樂.電站鍋爐低NOx燃燒建模優(yōu)化研究與應(yīng)用[J].熱能動(dòng)力工程,2013,28(4): 390-394,438.
WANG Chunlin, ZHANG Le. Optimization study and application of the modeling of the low NOxcombustion of a utility boiler[J]. Journal of Engineering for Thermal Energy and Power, 2013, 28(4): 390-394,438.
[4]牛玉廣,沙超,康俊杰. 基于數(shù)值模擬與試驗(yàn)運(yùn)行數(shù)據(jù)的電站鍋爐燃燒系統(tǒng)復(fù)合建模[J]. 動(dòng)力工程學(xué)報(bào), 2014, 34(10): 765-770,795.
NIU Yuguang, SHA Chao, KANG Junjie. Hybrid modeling of boiler combustion system based on numerical simulation and experimental data[J]. Journal of Chinese Society of Power Engineering, 2014, 34(10): 765-770,795.
[5]高芳,翟永杰,卓越,等. 基于共享最小二乘支持向量機(jī)模型的電站鍋爐燃燒系統(tǒng)的優(yōu)化[J]. 動(dòng)力工程學(xué)報(bào), 2012, 32(12): 928-933,940.
GAO Fang, ZHAI Yongjie, ZHUO Yue,etal. Combustion optimization for utility boilers based on sharing LSSVM model[J]. Journal of Chinese Society of Power Engineering, 2012, 32(12): 928-933,940.
[6]谷麗景,李永華,李路.電站鍋爐燃燒優(yōu)化混合模型預(yù)測(cè)[J].中國(guó)電機(jī)工程學(xué)報(bào),2015,35(9):2231-2237.
GU Lijing, LI Yonghua, LI Lu. Hybrid model prediction of utility boiler combustion optimization[J]. Proceedings of the CSEE, 2015, 35(9): 2231-2237.
[7]劉芳,張德珍,趙文杰.電站鍋爐燃燒系統(tǒng)的神經(jīng)網(wǎng)絡(luò)建模[J].電力科學(xué)與工程,2010,26(6): 33-37.
LIU Fang, ZHANG Dezhen, ZHAO Wenjie. Neural network modeling for combustion system of power plant boiler[J]. Electric Power Science and Engineering, 2010, 26(6): 33-37.
[8]呂玉坤,彭鑫,趙鍇.電站鍋爐熱效率和NOx排放混合建模與優(yōu)化[J].中國(guó)電機(jī)工程學(xué)報(bào),2011,31(26):16-22.
Lü Yukun, PENG Xin, ZHAO Kai. Hybrid modeling optimization of thermal efficiency and NOxemission of utility boiler[J]. Proceedings of the CSEE, 2011, 31(26): 16-22.
[9]王金龍,李恩家.600 MW燃煤電站鍋爐效率和NOx排放濃度多目標(biāo)優(yōu)化[J].電站系統(tǒng)工程,2015,31(3):47-48.
WANG Jinlong, LI Enjia. Multi-objective optimization of 600 MW utility boiler efficiency and NOxemission [J]. Power System Engineering, 2015, 31(3): 47-48.
[10]吳鋒,周昊,鄭立剛,等.基于非支配排序遺傳算法的鍋爐燃燒多目標(biāo)優(yōu)化[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2009,29(29):7-12.
WU Feng, ZHOU Hao, ZHENG Ligang,etal. Multi-objective optimization of coal-fired boiler combustion based on nondominated sorting genetic algorithm[J]. Proceedings of the CSEE, 2009, 29(29): 7-12.
[11]余廷芳,王林,彭春華.改進(jìn)NSGA-Ⅱ算法在鍋爐燃燒多目標(biāo)優(yōu)化中的應(yīng)用[J].計(jì)算機(jī)應(yīng)用研究,2013,30(1):179-182.
YU Tingfang, WANG Lin, PENG Chunhua. Improve non-dominated sorting genetic algorithm applied in multi-objective optimization of coal-fired boiler combustion[J]. Application Research of Computers, 2013, 30(1): 179-182.
Combustion Optimization of a Coal-fired Boiler Based on Intelligent Algorithm
YUTingfang,GENGPing,HUOErguang,CAOMengbing
(School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China)
A hybrid model was set up using Matlab artificial intelligence toolkit to optimize the combustion in a 300 MW coal-fired boiler. The specific way is to establish a BP (back propagation) neural network model for boiler combustion properties to predict the thermal efficiency and NOxemission concentration of the boiler, and then to optimize the boiler combustion with Matlab artificial intelligence toolkit based on the model by taking the thermal efficiency and NOxemission concentration as the target variables, during which the multi-objective optimization problems were transformed into single-objective optimization problems by weight coefficient method. Results show that the average relative errors of boiler thermal efficiency and NOxemission are 0.142% and 1.790% respectively, indicating good accuracy and strong generalization ability of the model. By weight coefficient method, boiler thermal efficiency and NOxemission concentration can be chosen as the key optimization objectives by selecting corresponding weight coefficients, which therefore may serve as a reference for combustion optimization of similar coal-fired boilers.
utility boiler; boiler thermal efficiency; NOxemission; genetic algorithm; multi-objective optimization
2015-08-05
2015-09-29
國(guó)家自然科學(xué)基金資助項(xiàng)目(61262048)
余廷芳(1974-),男,江西樂平人,副教授,博士,研究方向?yàn)殄仩t燃燒優(yōu)化及人工智能應(yīng)用.
耿平(通信作者),男,碩士研究生,電話(Tel.):18270872013;E-mail:1398624822@qq.com.
1674-7607(2016)08-0594-06
TK227.1
A學(xué)科分類號(hào):470.30