周廣濤,張 華,陳志偉,郭玉龍
(華僑大學(xué)機(jī)電及自動(dòng)化學(xué)院,福建廈門(mén)361021)
裝載機(jī)虎頭結(jié)構(gòu)焊接順序優(yōu)化數(shù)值模擬分析
周廣濤,張華,陳志偉,郭玉龍
(華僑大學(xué)機(jī)電及自動(dòng)化學(xué)院,福建廈門(mén)361021)
裝載機(jī)虎頭存在突出的焊接變形問(wèn)題,為了減小焊接變形,得到最優(yōu)焊接順序方案,利用熱彈塑性有限元方法建立了有限元模型,并對(duì)裝載機(jī)后車(chē)架虎頭結(jié)構(gòu)焊接變形進(jìn)行了數(shù)值模擬計(jì)算.分析了虎頭結(jié)構(gòu)的四種變形趨勢(shì),定量地對(duì)比了不同焊接順序下虎頭結(jié)構(gòu)各部位的最大焊接變形點(diǎn),得到優(yōu)化的焊接順序.該順序模擬結(jié)果:側(cè)臂最大撓曲變形量為8 mm,框架扭轉(zhuǎn)變形量為4 mm,側(cè)臂收縮變形為12 mm.對(duì)預(yù)測(cè)的最佳焊接順序下的變形模擬值和實(shí)測(cè)值進(jìn)行了對(duì)比,結(jié)果表明,兩者吻合良好.
虎頭結(jié)構(gòu);焊接順序;焊接變形;數(shù)值模擬
虎頭結(jié)構(gòu)(絞座)為裝載機(jī)前車(chē)架與后車(chē)架的連接部分,起著轉(zhuǎn)動(dòng)樞紐的作用,是一個(gè)關(guān)鍵的焊接結(jié)構(gòu).虎頭結(jié)構(gòu)位于后車(chē)架前端,在焊接生產(chǎn)過(guò)程中最突出的問(wèn)題就是存在較大的焊接變形,焊接變形將會(huì)影響焊接結(jié)構(gòu)的正常裝配及使用[1-7].在實(shí)際生產(chǎn)中,預(yù)測(cè)和控制焊接變形主要依靠經(jīng)驗(yàn)和大量的試驗(yàn),且在焊接結(jié)構(gòu)出現(xiàn)焊接變形超出設(shè)計(jì)尺寸要求時(shí)還需要采取矯正措施,這樣做既增加了成本又會(huì)改變焊接結(jié)構(gòu)殘余應(yīng)力的分布情況[8-12].焊接變形受焊接順序影響很大,因此合理地優(yōu)化焊接順序可以良好地控制焊接變形,同時(shí)可以降低成本[13-16].
隨著有限元數(shù)值模擬仿真技術(shù)的快速發(fā)展,越來(lái)越多國(guó)內(nèi)外學(xué)者利用其預(yù)測(cè)復(fù)雜結(jié)構(gòu)件的焊接變形[17-25].文中使用有限元分析軟件MARC,以裝載機(jī)后車(chē)架的虎頭結(jié)構(gòu)為研究對(duì)象,研究虎頭結(jié)構(gòu)復(fù)雜分布的32條焊縫焊接過(guò)程,針對(duì)不同焊接順序方案下整體結(jié)構(gòu)的焊接變形進(jìn)行了定量數(shù)值模擬分析,為實(shí)際工程生產(chǎn)提供參考數(shù)據(jù).
1.1虎頭結(jié)構(gòu)有限元模型
虎頭的結(jié)構(gòu)與尺寸如圖1所示.虎頭由下連接板①、上/中連接板③與②、條板④、2塊立板⑤、左右外側(cè)板⑥、左右內(nèi)側(cè)板⑦、連接彎板⑧及連接底板⑨組成,主要外形尺寸為:1 004 mm,738 mm,483 mm,840 mm等.
圖1 虎頭結(jié)構(gòu)
建立虎頭三維實(shí)體有限元模型,采用分塊建模方式并劃分網(wǎng)格,焊縫為角焊縫.由于模型尺寸大,為了減少計(jì)算量,提高計(jì)算效率并保證計(jì)算精度,網(wǎng)格劃分整體上表現(xiàn)為由密到疏的過(guò)渡方式,即由于焊縫及其附近區(qū)域的溫度和應(yīng)力梯度變化大,因此對(duì)焊縫及其附近區(qū)域的網(wǎng)格加密處理,最小單元長(zhǎng)為5 mm,對(duì)于尺寸超過(guò)1 m的模型,該尺寸能滿足精度要求也能提高計(jì)算速度,在遠(yuǎn)離焊縫的區(qū)域網(wǎng)格劃分較為稀疏.模型單元為八節(jié)點(diǎn)六面體類(lèi)型,共含51 836個(gè)單元、84 100個(gè)節(jié)點(diǎn),劃分網(wǎng)格后的虎頭有限元模型如圖2所示.
圖2 有限元網(wǎng)格模型
1.2材料特性
材料的熱物理及力學(xué)參數(shù)均是溫度的函數(shù),隨溫度而變化,這對(duì)于焊接模擬結(jié)果的準(zhǔn)確性有著重要的作用,文中模擬采用的材料為Q345,其各項(xiàng)性能參數(shù)隨溫度變化的情況見(jiàn)表1.
表1 Q345材料熱物理及力學(xué)參數(shù)[1-14]
1.3熱源模型
焊接熱源模型是實(shí)現(xiàn)焊接過(guò)程數(shù)值模擬的基本條件.為了提高有限元計(jì)算的效率和精確性,選擇恰當(dāng)?shù)臒嵩词欠浅1匾?本實(shí)驗(yàn)采用的是CO2氣體保護(hù)焊,因此為了讓數(shù)值模擬更符合實(shí)際情況,文中采用最能接近電弧焊熔池精度的三維雙橢球熱源模型[20],如圖3所示.雙橢球熱源模型是一個(gè)體熱源模型,前后兩部分采用不同的表達(dá)式.
前半部分橢球熱源表達(dá)式為
后半部分橢球熱源表達(dá)式為
式中:Q為熱源總功率,Q=ηIU,η為焊接熱源熱效率;v為焊接速度;ff和fr為前后橢球熱源能量分?jǐn)?shù),且ff+fr=2;w為熱源半寬;h為熱源深度;c1為前半球長(zhǎng)度;c2為后半球長(zhǎng)度.
圖3 雙橢球熱源模型[12]
計(jì)算時(shí)焊接規(guī)范按照生產(chǎn)參數(shù)為:電流I= 350 A,電壓U=30 V,焊接速度v=7 mm/s,熱源效率η=0.7;熱源參數(shù):前半球長(zhǎng)度c1=4 mm,后半球長(zhǎng)度c2=7 mm,熱源半寬w=4mm,熱源深度h=5 mm,前橢球熱源能量分?jǐn)?shù)ff=1.4,后橢球熱源能量分?jǐn)?shù)fr=0.6.
另外位移邊界條件的施加按照實(shí)際焊接生產(chǎn)的定位,虎頭底部放在平臺(tái)上,故Z方向位移約束;兩臂的中心方向左右位移約束(Y向);連接板前后位移約束(X向),以便消除整體剛性位移.計(jì)算時(shí),不同焊接順序計(jì)算皆在同一邊界條件下,因此焊接變形結(jié)果的對(duì)比性突出.
2.1焊縫布置
以學(xué)校牽頭組建貴州省護(hù)理職業(yè)教育集團(tuán)為平臺(tái),各成員共同遵守協(xié)議為紐帶,多元主體,利益共通,任務(wù)分?jǐn)?,分別核算,共建共享,風(fēng)險(xiǎn)共擔(dān),項(xiàng)目驅(qū)動(dòng),實(shí)行新的校院合作模式。我們從最基礎(chǔ)、最容易入手的合作項(xiàng)目開(kāi)始,由易到難,由淺入深,逐漸增加合作的內(nèi)容和深度。2014年6月,學(xué)校牽頭完成了護(hù)理專(zhuān)業(yè)人才培養(yǎng)模式的重構(gòu),項(xiàng)目中多方合作,各展所長(zhǎng),成果獲得中國(guó)職教學(xué)會(huì)優(yōu)秀成果二等獎(jiǎng)。2015年,學(xué)校成為貴州省康復(fù)學(xué)會(huì)康復(fù)護(hù)理專(zhuān)業(yè)主任委員單位,學(xué)校與行業(yè)的深度對(duì)接,使護(hù)理專(zhuān)業(yè)教育教學(xué)改革更具有前瞻性、可預(yù)見(jiàn)性和實(shí)用性。
虎頭結(jié)構(gòu)復(fù)雜,由各個(gè)組成板焊接形成一體,共含32條主要焊縫,彩色單元為焊縫,其序號(hào)分配及具體位置如圖4所示.由于焊縫較多,不能完全顯示,圖中括號(hào)內(nèi)表示被遮擋住的焊縫,可以從結(jié)構(gòu)的對(duì)稱(chēng)性判斷出被遮擋焊縫位置.從圖4可以看出,在虎頭正面,‘焊縫2’與‘焊縫4’、‘焊縫5’與‘焊縫6’為對(duì)稱(chēng)焊縫;下連接板與立板的焊縫為‘焊縫9’;上連接板與左內(nèi)側(cè)板之間的‘焊縫16’,‘焊縫17’與之對(duì)稱(chēng);上連接板與立板之間的‘焊縫32’,‘焊縫9’與之關(guān)于立板對(duì)稱(chēng).表2顯示了對(duì)稱(chēng)焊縫之間的對(duì)應(yīng)關(guān)系.
圖4 虎頭焊縫位置及分布
2.2焊接溫度場(chǎng)模擬結(jié)果
按照前面提到的焊接參數(shù)進(jìn)行計(jì)算焊接溫度場(chǎng),圖5為焊接過(guò)程中電弧行進(jìn)到‘焊縫5’時(shí)某一時(shí)刻(t=59.5 s)的瞬態(tài)溫度場(chǎng).顯示的最高溫度達(dá)1 500℃,表明材料熔化形成熔池,超過(guò)熔池溫度的單元寬度為9 mm,深度為4.5 mm,與實(shí)際結(jié)構(gòu)焊縫尺寸接近(焊縫寬度為10 mm,熔深為5 mm).建立的模型及參數(shù)符合實(shí)際焊接情況.
表2 對(duì)稱(chēng)焊縫序列
圖5 焊接溫度場(chǎng)(t=59.5 s)
2.3焊接順序方案設(shè)計(jì)
根據(jù)虎頭焊接結(jié)構(gòu)的特點(diǎn),焊縫多為T(mén)型角焊縫,故變形以角變形為主,以及由角變形沿焊縫長(zhǎng)度方向分布不均勻而造成的扭曲.結(jié)合生產(chǎn)環(huán)節(jié)的可操作性,為了減少焊接變形,擬定焊接順序的原則為:采取左右對(duì)稱(chēng)交替焊接順序,原因是左右距離較遠(yuǎn),焊接左邊時(shí)產(chǎn)生的高溫溫度場(chǎng)對(duì)右邊影響較小,這樣會(huì)減小受熱區(qū),因而變形相應(yīng)小.另外首先保證虎頭大體框架的剛度,即框架的焊縫先焊.虎頭正面/背面的焊縫首先依次焊接或左右交替焊接,然后進(jìn)行左、右側(cè)臂的焊接,加之整個(gè)結(jié)構(gòu)具有對(duì)稱(chēng)性,所以可以多種組合的32條焊縫簡(jiǎn)化擬定出四種焊接順序,焊接順序方案見(jiàn)表3.
表3 焊接順序方案
2.4虎頭焊接變形趨勢(shì)分析
圖6~圖8為虎頭焊接變形趨勢(shì)模擬圖,該結(jié)構(gòu)變形主要分析其四個(gè)部位的變形趨勢(shì),分別為:
1)變形1:左側(cè)臂變形.如圖6(a)所示,可以看出,左側(cè)臂整體繞O點(diǎn)下?lián)希煽疾禳c(diǎn)A變化到點(diǎn)A1的Z向位移(ΔZA)來(lái)判斷其焊接變形的大小.
2)變形2:右側(cè)臂變形.如圖6(b)所示,可以看出,整個(gè)右側(cè)臂結(jié)構(gòu)焊接變形表現(xiàn)為繞O點(diǎn)上翹.可考察點(diǎn)B變化到點(diǎn)B1的Z向位移(ΔZB)來(lái)判斷其焊接變形的大小.
圖6 左/右側(cè)臂焊接變形趨勢(shì)
3)變形3:正面框架扭轉(zhuǎn)變形.如圖7所示,可以看出,框架發(fā)生了繞轉(zhuǎn),可以用最外角點(diǎn)C變化到點(diǎn)C1的Z向位移(ΔZC)、Y向位移(ΔYC)作為表征各順序下的焊接變形量.
圖7 正面框架焊接變形趨勢(shì)
4)變形4:左右兩側(cè)臂收縮變形.如圖8所示為左右側(cè)臂變形趨勢(shì),左、右側(cè)臂上端角點(diǎn)D與E向內(nèi)收縮偏移,下端角點(diǎn)F與G也向內(nèi)收縮,表現(xiàn)出梯形狀態(tài).可以考察DE的位移ΔDE、FG的位移ΔFG.
圖8 左右兩側(cè)臂收縮變形趨勢(shì)
綜合對(duì)比四種焊接順序條件下上述四類(lèi)焊接變形的考察量,變形量最小的一組焊接順序即為虎頭的最優(yōu)焊接順序方案.
2.5數(shù)值模擬結(jié)果
圖9為虎頭整體外觀焊接變形模擬結(jié)果,可以看出,虎頭表現(xiàn)出了所述的四類(lèi)焊接變形.其中黑框線表示結(jié)構(gòu)焊接前位置,焊后各部位產(chǎn)生了如上述分析所示的相應(yīng)位移,彩色單元為變形后的結(jié)構(gòu).
圖9 虎頭整體外觀焊接變形
表4為虎頭的四種擬定的焊接順序方案的焊接變形數(shù)據(jù),變形量正負(fù)號(hào)表示焊接變形方向與模型坐標(biāo)系正方向相同或相反,其絕對(duì)值為變形量大小.通過(guò)對(duì)比分析,可以看出,焊接變形綜合效果上數(shù)值最小的是焊接順序方案1,按照該焊接順序,32道焊縫對(duì)稱(chēng)組焊,最終的焊接變形最小.其他的焊接方案左右側(cè)臂變形均過(guò)大,對(duì)后續(xù)虎頭結(jié)構(gòu)的裝配非常不利.
表4 4種焊接方案的變形對(duì)比
2.6虎頭結(jié)構(gòu)焊接變形實(shí)測(cè)結(jié)果
對(duì)焊接順序1的虎頭結(jié)構(gòu)進(jìn)行了四種類(lèi)型的焊接變形大小的實(shí)際測(cè)量,如圖10所示.產(chǎn)品圖紙裝配要求左右側(cè)臂收縮變形ΔDE不超過(guò)15 mm,左/右側(cè)臂上下變形ΔZA不超過(guò)10 mm,模擬結(jié)果數(shù)據(jù)均比圖紙裝配要求的要小,說(shuō)明模擬結(jié)果符合虎頭結(jié)構(gòu)的驗(yàn)收要求.
圖10 虎頭實(shí)物測(cè)量
焊接順序方案1的模擬值與實(shí)測(cè)值直方圖對(duì)比如圖11所示.
圖11 方案1模擬值與實(shí)測(cè)值比較
實(shí)際測(cè)量數(shù)據(jù)比模擬結(jié)果值要略小,但大體上相符.方案1中左側(cè)臂實(shí)際變形ΔZA為7.8 mm,右側(cè)臂變形ΔZB為9.4 mm,正面框架扭轉(zhuǎn)變形ΔZC為8.3 mm,正面框架扭轉(zhuǎn)變形ΔYC為3.9 mm,左右側(cè)臂收縮變形ΔDE為13.4 mm,左右側(cè)臂收縮變形ΔFG為11.8 mm.最大誤差在8%之內(nèi),對(duì)于數(shù)值模擬是可接受范圍.
1)建立了裝載機(jī)后車(chē)架虎頭的有限元模型,劃分了網(wǎng)格,并進(jìn)行了溫度場(chǎng)數(shù)值模擬計(jì)算,計(jì)算結(jié)果驗(yàn)證了模型建立的準(zhǔn)確性.
2)虎頭結(jié)構(gòu)模擬結(jié)果表現(xiàn)出復(fù)雜的焊接變形,明確了焊接變形的分析思路,主要有左、右側(cè)臂變形,正面框架扭轉(zhuǎn)變形,左右兩側(cè)臂收縮變形.
3)采用4種不同的焊接順序進(jìn)行焊接數(shù)值計(jì)算,結(jié)果表明,采用焊接順序1時(shí),各焊接變形量都最小,說(shuō)明該方案為四種焊接順序中最優(yōu)方案.焊后實(shí)測(cè)結(jié)果表明,模擬結(jié)果誤差在8%之內(nèi),證明模擬計(jì)算的正確性.
[1]田錫唐.焊接結(jié)構(gòu)[M].北京:機(jī)械工業(yè)出版社,1982. TIANXitang.Welded structure[M].Beijing:China Machine Press,1982.
[2]方洪淵.焊接結(jié)構(gòu)學(xué)[M].北京:機(jī)械工業(yè)出版社,2008. FANG Hongyuan.Welded structure[M].Beijing:China Machine Press,2008.
[3]楊建國(guó),萬(wàn)清華,戴志立,等.300MW鍋爐汽包焊接變形的控制[J].焊接,1996,(11):14-16. YANG Jianguo,WAN Qinghua,DAI Zhili,et al. Controlling for welding distortion of 300 MW steam drum[J].Welding&Joining,1996,(11):14-16.
[4]NOH S,KASADA R,KIMURA A,et al.Microstructure and mechanical ProPerties of friction stir Processed ODS ferritic steels[J].Journal of Nuclear Materials,2011,417:245-248.
[5]薛忠明,曲文卿,柴鵬,等.焊接變形預(yù)測(cè)技術(shù)研究進(jìn)展[J].焊接學(xué)報(bào),2003,24(3):87-90. XUE Zhongming,QU Wenqing,CHAI Peng,et al. Review on Prediction of welding distortion[J].Transactions of The China Welding Institution,2003,24(3):87-90.
[6]張志英,江志斌,虞成全.造船(中鋼板)焊接變形的自動(dòng)火焰矯正工藝系統(tǒng)[J].機(jī)械工程學(xué)報(bào),2006,42(1):196-201. ZHANG Zhiying,JIANG Zhibin,YU Chengquan.Automated method of flame rectification Process of welding distortion for mediate steel Plate and system in shiPbuilding[J].Chinese Journal of Mechanical Engi-neering,2006,42(1):196-201.
[7]SATTARI-FAR I,JAVADI Y.Influence of welding sequence on welding distortions in PiPes[J].International Journal of Pressure Vessels and PiPing,2008,85:265-274.
[8]徐濟(jì)進(jìn),陳立功,汪建華,等.基于固有應(yīng)變法筒體對(duì)接多道焊焊接變形的預(yù)測(cè)[J].焊接學(xué)報(bào),2007,28(1):77-80. XU Jijin,CHEN Ligong,WANG Jianhua,et al. Prediction of distortion based on inherent strain method in multiPass girth-butt welded PiPes[J].Transactions of The China Welding Institution,2007,28(1):77-80.
[9]周廣濤,劉雪松,閆德俊,等.頂板焊接順序優(yōu)化減小焊接變形的預(yù)測(cè)[J].焊接學(xué)報(bào),2009,30(9):109-112. ZHOU Guangtao,LIU Xuesong,YAN Dejun,et al.Prediction for welding deformation reducing by welding sequence oPtimization of uPPer Plate[J].Transactions of the China Welding Institution,2009,30(9):109-112.
[10]李軍,張文鋒.機(jī)械擠壓矯正焊接變形的模擬與試驗(yàn)研究[J].材料科學(xué)與工藝,2013,21(1):134-137. LI Jun,ZHANG Wenfeng.Rectifying buckling distortion by extruding thin-Plate weldments in Parallel direction to weld[J].Materials Science and Technology,2013,21(1):134-137.
[11]張學(xué)秋,楊建國(guó),劉雪松,等.焊接順序?qū)φw葉盤(pán)圓度影響的有限元分析[J].焊接學(xué)報(bào),2010,31(3):57-60. ZHANG Xueqiu,YANG Jianguo,LIU Xuesong,et al. Finite element anlysis of welding sequence imPact on blisk roundness[J].Transactions of The China Welding Institution,2010,31(3):57-60.
[12]黃海瀚,周廣濤.裝載機(jī)后車(chē)架焊接順序優(yōu)化的數(shù)值仿真[J].計(jì)算機(jī)輔助工程,2014,23(3):30-34. HUANG Hanhan,ZHOU Guangtao.Numerical simulation on welding sequence oPtimization of loader rear frame[J].ComPuter Aided Engineering,2014,23(3):30-34.
[13]王蘋(píng),王強(qiáng),劉雪松,等.基于FEM的高速列車(chē)地板結(jié)構(gòu)焊接順序優(yōu)化[J].焊接學(xué)報(bào),2012,33(8):45-48,115. WANG Ping,WANG Qiang,LIU Xuesong,et al. Welding sequence oPtimization for high-sPeed rail floor based on FEM[J].Transactions of The China Welding Institution,2012,33(8):45-48,115.
[14]SOUTO GRELA J,BLANCO VIANA E B,MARTINEZ D,et al.Numerical simulation in welding Process:oPtimizing structures with sequence and inertial study[J]. Matériaux&Techniques,2012,100(4):317-326.
[15]任鵬,張偉,郭子濤,等.Numerical simulation for deformation of multi-layer steel Plates under underwater imPulsive loading[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào)(英文版),2012,19(3):68-72. REN Peng,ZHANG Wei,GUO Zitao,et al.Numerical simulation for deformation of multi-layer steel Plates under underwater imPulsive loading[J].Journal of Harbin Institute of Technology,2012,19(3):68-72.
[16]李江飛,齊海波,任德亮,等.薄壁多焊縫復(fù)雜構(gòu)件焊接過(guò)程的數(shù)值模擬[J].焊接學(xué)報(bào),2015,36(1):87-90. LI Jiangfei,QI Haibo,REN Deliang,et al.Numerical simulation of welding Process on thin-walled multiwelds comPlex comPonent[J].Transactions of The China Welding Institution,2015,36(1):87-90.
[17]張偉瑋,韓聰,苑世劍.高強(qiáng)鋼22MnB5扭力梁熱成形熱力耦合數(shù)值模擬[J].材料科學(xué)與工藝,2014,22(3):16-22. ZHANG Weiwei,HAN Cong,YUAN Shijian.Hot forming Processing simulation of torsion beam of high strength steel 22MnB5[J].Materials Science and Technology,2014,22(3):16-22.
[18]ISLAM M,BUIJK A,RAIS-ROHANI M,et al.Simulation-based numerical oPtimization of arc welding Process for reduced distortion in welded structures[J]. Finite Elements in Analysis and Design,2014,84:54-56.
[19]崔曉芳,林健,兆文忠.高速動(dòng)力車(chē)構(gòu)架側(cè)梁焊接結(jié)構(gòu)優(yōu)化研究[J].材料科學(xué)與工藝,2004,12(6):606-609,614. CUI Xiaofang,LIN Jian,ZAO Wenzhong.OPtimization of welded structure in bogie frame of high-sPeed locomotive[J].Materials Science and Technology,2004,12(6):606-609,614.
[20]GOLDAK J,CHAKRARTI A,BIBBY M.A new finite element model for welding heat sources[J].Metallurgical Materials Transactions B,1984,15(2):299-305.
[21]吳華英,郭成,王永信,等.轎車(chē)后圍板成形過(guò)程數(shù)值模擬及參數(shù)優(yōu)化[J].材料科學(xué)與工藝,2013,21(2):83-89. WU Huaying,GUO Cheng,WANG Yongxin,et al.Numerical simulation and Parameter oPtimization in forming Process of an automobile squab Panel[J].Materials Science and Technology,2013,21(2):83-89.
[22]GANNON L,LIU Y,PEGG N,et al.Effect of welding sequence on residual stress and distortion in flatbar stiffened Plates[J].Marine Structures,2010,23:385-404
[23]王興路,賀利樂(lè).焊接順序?qū)C(jī)械結(jié)構(gòu)疲勞壽命影響研究[J].熱加工工藝,2013,42(11):180-182+185. WANG Xinglu,HE Lile.Study on effect of welding sequence on fatigue life of mechanical structure[J].Hot Working Technology,2013,42(11):180-182,185.
[24]李曉東,李春廣,朱志民,等.鋁合金薄板MIG焊焊接變形仿真預(yù)測(cè)的工程應(yīng)用[J].焊接學(xué)報(bào),2014,35(2):104-108. LI Xiaodong,LI Chunguang,ZHU Zhimin,et al.Engineering aPPlications of MIG welding deformation simulation of aluminum alloy sheet[J].Transactions of the China Welding Institution,2014,35(2):104-108.
[25]DONG Wenchao,LU ShanPing,LU Hao,et al.Numerical simulation and control of welding distortion for double floor structure of high sPeed train[J].Acta Mechanica Sinica,2014,30(6):849-859.
(編輯張積賓)
Numerical simulation analysis for welding sequence optimization of hinge structure of loader
ZHOU Guangtao,ZHANG Hua,CHEN Zhiwei,CUO Yulong
(College of Mechanical Engineering and Automation,Huaqiao University,Xiamen 361021,China)
Loader tiger exists a Prominent question of welding deformation.To reduce this welding deformation and get the oPtimal scheme of tiger shaPed structure welding sequence,the numerical simulation of welding deformation of tiger-shaPed structure for rear frame of loader was conducted using thermo elastic-Plastic method.The finite element model was established to analyze four kinds of deformation trend of tiger shaPed structure and quantitatively calculate the distortion of different welding sequence,the oPtimal welding sequence of the whole structure was obtained.The results show that the maximum deflection distortion of side arm was 8 mm,the torsional deformation of frame was 4 mm,the in-Plane shrinkage of side arm was 12 mm. The simulated values and measured values are comPared under the oPtimal welding sequence,and the results show that they are in good agreement.
hinge structure;welding sequence;welding deformation;numerical simulatio
TG404
A
1005-0299(2016)03-0062-06
10.11951/j.issn.1005-0299.20160311
2015-01-26.
福建省科技平臺(tái)建設(shè)項(xiàng)目(2013H2003);廈門(mén)市科技計(jì)劃項(xiàng)目(3502Z20133023).
周廣濤(1973—),男,博士,副教授.
周廣濤,E-mail:zhouguangtan@hqu.edu.cn.