陸 琤 周晨辰 張鵬飛 張 硌*
構(gòu)建原核表達質(zhì)粒pGEX-4T-2-GFP并鑒定其在大腸桿菌中的表達*
陸 琤①周晨辰①張鵬飛①張 硌①*
目的:構(gòu)建綠色熒光蛋白(GFP)的原核表達質(zhì)粒,用以研究小鼠巨噬細(xì)胞吞噬細(xì)菌的能力。方法:編碼GFP的聚合酶鏈反應(yīng)(PCR)產(chǎn)物經(jīng)EcoRⅠ和BamHⅠ雙酶切后,與雙酶切后的載體pGEX-4T-2相連,將pGEX-4T-2-GFP轉(zhuǎn)化E.coli DH5α提取質(zhì)粒,經(jīng)測序后轉(zhuǎn)化E.coli BL21中誘導(dǎo)GST-GFP融合蛋白表達,將表達融合蛋白的大腸桿菌滴入培養(yǎng)巨噬細(xì)胞的皿中,于熒光顯微鏡下觀察GFP的表達及大腸桿菌被吞噬情況。結(jié)果:獲得的重組質(zhì)粒測序正確。熒光顯微鏡下能清晰觀察到培養(yǎng)基中及被巨噬細(xì)胞吞噬后發(fā)綠色熒光的大腸桿菌。結(jié)論:成功構(gòu)建了pGEX-4T-2-GFP重組質(zhì)粒,為研究小鼠巨噬細(xì)胞吞噬細(xì)菌的能力創(chuàng)造條件。
綠色熒光蛋白;pGEX-4T-2載體;重組質(zhì)粒;表達;熒光顯微鏡
[First-author's address] Department of Medical Engineering, The Affiliated Hospital of Military Medical Sciences,Beijing 100071, China.
綠色熒光蛋白(green fluorescent protein,GFP)是一種在藍色波長范圍光線激發(fā)下,發(fā)出綠色熒光的蛋白[1]。GFP與傳統(tǒng)的熒光抗體相比,其靈敏度高、無生物毒性,在酸、堿及加熱等條件下穩(wěn)定,熒光反應(yīng)不需要任何外源反應(yīng)底物,且其表達無物種或細(xì)胞組織的專一性,還可以消除因抗體與非靶位點相結(jié)合帶來的背景熒光的干擾[2-3]。因此,GFP作為一種報告蛋白,在監(jiān)測目的基因的表達、研究細(xì)胞內(nèi)物質(zhì)代謝及追蹤細(xì)胞系的分化等方面有著極其廣泛的應(yīng)用[4-5]。
GFP的N-端或C-端可以和異質(zhì)蛋白連接組成融合蛋白,既能保留異質(zhì)蛋白的固有特性,又能保留GFP的發(fā)光能力,是良好的報告蛋白和熒光標(biāo)記分子。因此,GFP融合蛋白實際上可作為一種“熒光標(biāo)簽”用來研究蛋白質(zhì)在細(xì)胞中的定位、轉(zhuǎn)移及相互作用等?;谶@些特點,本研究構(gòu)建能在細(xì)菌中表達熒光蛋白的pGEX-4T-2-GFP質(zhì)粒來研究小鼠巨噬細(xì)胞吞噬細(xì)菌的能力[6-12]。
1.1材料及設(shè)備
(1)原核質(zhì)粒pGEX-4T-2為本實驗室保存;感受態(tài)細(xì)菌DH5α、BL21、質(zhì)粒提取試劑盒和DNA電泳凝膠回收試劑盒均購自天根科技生化(北京)有限公司;限制性核酸內(nèi)切酶BamHⅠ、EcoRⅠ、Q5 high-fidelity DNA polymerase、dNTPs以及DNA marker均購自美國NEB公司;DNA Ligation Kit購自大連TaKaRa公司;聚合酶鏈反應(yīng)(polymerase chain reaction,PCR)引物由北京天一輝遠(yuǎn)生物科技有限公司合成;異丙基硫代β-D半乳糖苷(isopropylthio-β-D-galactoside,IPTG)為美國Amresco公司產(chǎn)品;1640培養(yǎng)基、胎牛血清購自美國Thermo Fisher Scientific公司;其他試劑均為國產(chǎn)分析純。
(2)所用實驗儀器為:梯度基因擴增(PCR)儀(美國伯樂,BIO-RAD,C1000 Touch),GL-1800干式恒溫器(海門其林貝爾儀器制造有限公司),DYY-6D電泳儀(北京市六一儀器廠),WD-9413B凝膠成像分析儀(北京市六一儀器廠),ZWY-240恒溫培養(yǎng)振蕩器(上海智城分析儀器制造有限公司),HPX-9082MBE電熱恒溫培養(yǎng)箱(上海博迅實業(yè)有限公司醫(yī)療設(shè)備廠),sartorius 1-14離心機(德國希格瑪),EX 450-490 DM 505 BA520熒光倒置顯微鏡(日本尼康,Nikon Eclipse Ts 100),BSC系列CLASSⅡTYPE A2生物安全柜(北京東聯(lián)哈爾儀器制造有限公司)。
1.2實驗方法
1.2.1GFP基因片段的獲取
本實驗室以GFP-X質(zhì)粒為模板進行PCR擴增。引物序列如下:正向引物-CGCGGATCC ATGAGTAAAGGAGAAGAACTTTTCA,含BamHI酶切位點;反向引物-GGAATTCCCG TTATTTGTATAGTTCATCCATGCC,含EcoRI酶切位點。PCR反應(yīng)條件為98 ℃、10 s,70 ℃、30 s,72 ℃、60 s,共34個循環(huán),最后72 ℃延伸5 min。
1.2.2GFP原核質(zhì)粒的構(gòu)建
分別使用BamHI和EcoRI雙酶切pGEX-4T-2 和PCR產(chǎn)物,1%瓊脂糖凝膠電泳顯示酶切結(jié)果正確后,凝膠回收載體片段和目的片段。將pGEX-4T-2 與GFP用DNA Ligation Kit 16 ℃連接30 min,得到連接產(chǎn)物。將連接產(chǎn)物全部轉(zhuǎn)化至100 μl感受態(tài)細(xì)菌DH5α,涂布在含氨芐青霉素的LB瓊脂平板中,將平板倒置于37 ℃恒溫箱培養(yǎng)過夜。選取3個陽性菌落,擴增后用質(zhì)粒提取試劑盒提取質(zhì)粒DNA(提取條件:室溫,離心力13400 g,具體步驟參照天根-高純度質(zhì)粒小提試劑盒說明書),將重組質(zhì)粒送公司進行測序分析,經(jīng)測序后將構(gòu)建成功的質(zhì)粒命名為pGEX-4T-2-GFP。
1.2.3融合蛋白GST-GFP的表達
將測序正確的重組質(zhì)粒pGEX-4T-2-GFP轉(zhuǎn)化BL21,涂布于含氨芐霉素的LB瓊脂平板,將平板倒置于37 ℃恒溫箱培養(yǎng)過夜。挑取轉(zhuǎn)化后的單克隆接種于3 ml含氨芐霉素LB培養(yǎng)基中,37 ℃震蕩培養(yǎng)過夜后,將菌液按1∶100接種到5 ml氨芐LB培養(yǎng)基,37 ℃培養(yǎng)至OD600為0.5~1.0,往菌液加入終濃度為0.5 mmol/L的IPTG,30 ℃、250 r/min誘導(dǎo)表達約5 h,收集細(xì)菌。
1.2.4小鼠腹腔巨噬細(xì)胞吞噬成像
脫臼處死1只小鼠,取其腹腔巨噬細(xì)胞于含胎牛血清的1640培養(yǎng)基中,在室溫37 ℃、5%的CO2及飽和濕度條件下培養(yǎng),1 d后換液,貼壁為腹腔巨噬細(xì)胞。取10 μl表達融合蛋白GST-GFP的BL21大腸桿菌滴入培養(yǎng)巨噬細(xì)胞的皿中,37 ℃培養(yǎng)1 h后熒光顯微鏡下觀察吞噬情況。
2.1擴增目的基因GFP
以pEGFP-N3質(zhì)粒作為模板,用PCR方法擴增目的片段。共設(shè)為3組,即陰性對照組1、陰性對照組2和實驗組。其中,陰性對照阻1,加入dNTP、引物及酶,不加模板;陰性對照阻2,加入dNTP、引物及模板,不加酶;實驗組,加入dNTP、引物、模板及酶,反應(yīng)結(jié)束后置于1%瓊脂糖凝膠中電泳。因GFP的基因大小為717 bp,因此,在3組中位于500~1000 bp之間的條帶即為GFP,如圖1所示。
圖1 目的基因PCR產(chǎn)物DNA電泳分析圖
2.2巨噬細(xì)胞吞噬成像
轉(zhuǎn)化了pGEX-4T-2-GFP的大腸桿菌體在自然光下即為黃綠色,將其置于顯微鏡下觀察,整個菌體呈亮綠色,將小鼠腹腔巨噬細(xì)胞和該大腸桿菌于37 ℃孵育1 h后觀察顯示,發(fā)綠色熒光的大腸桿菌部分被巨噬細(xì)胞吞噬,如圖2所示。
圖2 顯微鏡下巨噬細(xì)胞吞噬大腸桿菌圖(×40)
本研究中采用pGEX-4T-2原核表達質(zhì)粒,此類載體含有高效的原核表達啟動子,能夠在感受態(tài)細(xì)菌體內(nèi)高效表達重組蛋白。而選擇與之連接的GFP是良好的報告蛋白和熒光標(biāo)記分子[13-15]。本研究結(jié)果顯示,與目前廣泛采用的報告基因如β-半乳糖苷酶基因、螢火蟲熒光素酶基因等相比,GFP有其優(yōu)越之處:①GFP基因表達的檢測非常方便,不像其他報告基因的檢測需要加入底物;②表達GFP的細(xì)菌在誘導(dǎo)劑IPTG的長時間作用下生長良好,表明GFP對細(xì)菌無毒性,且不干擾細(xì)菌的生長和功能;③檢測表達時不用將細(xì)菌事先處理,細(xì)菌經(jīng)誘導(dǎo)表達GFP后,熒光顯微鏡下即可看到明亮的綠色熒光,因而可在活細(xì)菌的情況下檢測基因的表達[16-18]。
本研究通過測序,并于熒光顯微鏡下觀察GFP的表達,成功構(gòu)建了pGEX-4T-2-GFP表達質(zhì)粒,為直觀研究巨噬細(xì)胞吞噬細(xì)菌的能力提供了工具。
[1]Prasher DC,Eckenrode VK,Ward WW,et al.Primary structure of the Aequorea victoria green-fluorescent protein[J].Gene,1992,111(2):229-233.
[2]Chalfie M,Tu Y,Euskirchen G,et al.Green fluorescent protein as a marker for gene expression[J].Science,1994,263(5148):802-805.
[3]Fratamico PM,Deng MY,Strobaugh TP,et al. Construction and characterization of Escherichia coli O157:H7 strains expressing firefly luciferase and green fluorescent protein and their use in survival studies[J].J Food Protect,1997,60(10):1167-1173.
[4]Soboleski MR,Oaks J,Halford WP,et al.Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells[J].FASEB J,2005,19(3):440-442.
[5]Hanson GT,McAnaney TB,Park ES,et al.Green fluorescent protein variants as ratiometric dual emission pH sensors.1.Structural characterization and preliminary application[J].Biochemistry,2002,41(52):15477-15488.
[6]Yuk IH,Wildt S,Jolicoeur M,et al.A GFP-based screen for growth-arrested,recombinant protein-producing cells[J].Biotechnol Bioeng, 2002,79(1):74-82.
[7]Che J M,Liu B,Lan JL.Transformation and expression of GFP gene into escherich coli K88[J].Biotechnol Bull,2010(9):198-204.
[8]Heim R,Prasher DC,Tsien RY.Wavelength mutations and posttranslational autoxidation of green fluorescent protein[J].Proc Natl Acad Sci USA,1994,91(26):12501-12504.
[9]Cubitt AB,Heim R,Adams SR,et al.Understanding,improving and using green fluorescent protein[J].Trends Biochem Sci,1995,20(11):448-455.
[10]Lnouye S,Tsuji FI.Expression of the gene and fluorescence characteristics of the recombinant protein[J].FEBS lett,1994,341(2-3):277-280.
[11]Sheen J,Hwang S,Niwa Y,et al.Greenfluorescent protein as a new vital marker in plant cells[J].Plant J,1995,8(5):777-784.
[12]Kain SR,Adams M,Kond epudi A,et al.Green fluorescent protein as a reporter of gene expression and protein localization[J].Bio techniques,1995,19(4):650-655.
[13]Rosario R,Brini M,Pizzo P,et al.Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells[J].Curr Biol,1995,5(6):635-642.
[14]Green CB,Zhao XM,Hoyer LL.Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated Candidiasis[J].Infect Immun,2005,73(3):1852-1855.
[15]Van Roessel P,Brand AH.Brand imaging into the future:Visualizing gene expression and protein interactions with fluorescent proteins[J]. Nat Cell Biol,2002,4(1):E15-E20.
[16]Niedenthal RK,Riles L.Johnston M,et al.Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast[J].Yeast,1996,12(8):773-786.
[17]Schneider N,Schwartz JM,K?hler J,et al. Golvesin-GFP fusions as distinct markers for Golgi and post-Golgi vesicles in Dictyostelium cells[J].Biol Cell,2000,92(7):495-511.
[18]Zhang XM,Yin YB,Chen BD,et al.Transformation of Streptococcus pneumoniae in vivo by green fluorescence protein[J].J Fourth Mil Med Univ,2005,26(20):1847-1850.
Construction of pGEX-4T-2-GFP prokaryotic expressing plasmid and its protein expression/
LU Cheng, ZHOU Chen-chen, ZHANG Peng-fei, et al//
China Medical Equipment,2016,13(8):120-122.
Objective: To construct prokaryotic expressing plasmid of GFP gene. Methods: The PCR product of GFP coding sequence, which was digested with EcoR I and BamH I restriction enzymes, was taped into the plasmid pGEX-4T-2. Then pGEX-4T-2-GFP was transformed into E.coli DH5α and plasmid DNA was extracted. The recombinant plasmid was sequenced and then the expression of GST-GFP fusion protein was induced in BL21. After that, the E.coli which expressed GST-GFP fusion protein was transferred into the dish of cultivating macrophages. Fluorescence microscope was utilized to observe the GFP expression and e.coli swallowed. Results: The recombinant plasmid was sequenced correctly. E. coli expressing GFP both in medium and swallowed by macrophages can be observed clearly with the fluorescence microscope. Conclusion: The recombinant prokaryotic expressing plasmid pGEX-4T-2-GFP was successfully constructed, which facilitated the research for phagocytic capacity of macrophage.
Green fluorescent protein; pGEX-4T-2 vector; Recombinant plasmid; Expression; Fluorescence microscope
1672-8270(2016)08-0120-03 [中圖分類號]R197.324
A
陸琤,女,(1987- ),碩士,助理工程師。軍事醫(yī)學(xué)科學(xué)院附屬醫(yī)院醫(yī)學(xué)工程科,從事細(xì)胞信號轉(zhuǎn)導(dǎo)研究工作。
10.3969/J.ISSN.1672-8270.2016.08.038
國家自然科學(xué)基金(31400739)“PH結(jié)構(gòu)域蛋白PLEKHQ1協(xié)調(diào)巨噬細(xì)胞遷移與激活的機制研究”;軍事醫(yī)學(xué)創(chuàng)新基金(2015CXJJ29)“PLEKHQ1調(diào)控細(xì)菌性膿毒敗血癥的功能和機制研究”
①軍事醫(yī)學(xué)科學(xué)院附屬醫(yī)院醫(yī)學(xué)工程科 北京 100071
marbleluo@126.com
2016-03-03