張艷梅*,朱用洋,許增才,張曉華,吳一凡,陳玲,揭曉華
(廣東工業(yè)大學(xué)材料與能源學(xué)院,廣東 廣州 510006)
?
磷酸二氫鈉體系中316L不銹鋼表面微孔結(jié)構(gòu)的制備
張艷梅*,朱用洋,許增才,張曉華,吳一凡,陳玲,揭曉華
(廣東工業(yè)大學(xué)材料與能源學(xué)院,廣東 廣州 510006)
在0 °C下采用磷酸二氫鈉的水溶液對(duì)316L不銹鋼進(jìn)行陽極氧化,以制備高密度、有序的微孔結(jié)構(gòu)。研究了NaH2PO4濃度、氧化電壓、氧化時(shí)間、丙三醇添加量等工藝參數(shù)對(duì)氧化膜多孔結(jié)構(gòu)的影響。結(jié)果表明,氧化液中NaH2PO4濃度低于0.10 mol/L時(shí),氧化膜表面僅能形成極淺的凹坑。氧化電壓低于30 V時(shí),氧化膜的微孔結(jié)構(gòu)分布稀疏。NaH2PO4濃度或氧化電壓過高都會(huì)使基體溶解速率過快,氧化膜的多孔結(jié)構(gòu)消失。最佳NaH2PO4濃度和氧化電壓分別為0.30 mol/L和30 ~ 40 V。在該條件下對(duì)316L不銹鋼陽極氧化20 min,可獲得有序排列的蜂窩狀微孔結(jié)構(gòu),孔徑為180 ~ 260 nm,孔密度約為1.5 × 109個(gè)/cm2。氧化液中添加10%(體積分?jǐn)?shù))丙三醇后,所得微孔結(jié)構(gòu)的均勻性提高,但是孔變淺,因此不建議在氧化液中加丙三醇。
不銹鋼;陽極氧化;多孔結(jié)構(gòu);磷酸二氫鈉;丙三醇
First-author's address: Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou 510006,China
近年來,多孔結(jié)構(gòu)在磁學(xué)、電學(xué)、光學(xué)、傳感裝置、生物材料等領(lǐng)域獲得廣泛應(yīng)用。醫(yī)用316L不銹鋼常用來制作骨板、骨釘、血管支架等醫(yī)療器件[1-3]。在 316L不銹鋼表面構(gòu)建納米多孔結(jié)構(gòu),利用多孔結(jié)構(gòu)作為藥物載體(吸附藥物)來實(shí)現(xiàn)局部的、長(zhǎng)效的、可控的藥物釋放,具有藥物用量少而全身毒副作用小的優(yōu)點(diǎn)[4]。此外,表面多孔組織還能加速內(nèi)皮化[5-6]。因此,不銹鋼表面多孔結(jié)構(gòu)在醫(yī)用生物材料中具有廣泛的應(yīng)用前景。
表面多孔結(jié)構(gòu)的制備方法主要有噴砂[7]、激光雕刻[8]、化學(xué)腐蝕[9]和陽極氧化[10-14]。其中,陽極氧化法具有操作簡(jiǎn)單、成本低等特點(diǎn),主要用于鋁[10]、鈦[11]、鉭[12]、鎢[13]、鋯[14]等閥金屬表面多孔結(jié)構(gòu)的制備,但近年來已逐漸拓展到純鐵[15-17]和不銹鋼[18-21]基體的表面處理。Kure等[18]報(bào)道了采用氟化銨-乙二醇體系可在 304不銹鋼表面制得多孔結(jié)構(gòu),但孔結(jié)構(gòu)形貌未進(jìn)行詳細(xì)介紹。Lu[19]、Martin[20]、Zhan[22]等采用高氯酸-乙二醇體系,分別在 AISI 304、904L、304L不銹鋼表面獲得了多孔結(jié)構(gòu),但孔都較淺,深度只有 20 nm左右。目前采用陽極氧化法在不銹鋼表面制備多孔結(jié)構(gòu)的文獻(xiàn)相對(duì)較少,且均以乙二醇作為溶劑,制備的多孔結(jié)構(gòu)形貌尚不理想。為了進(jìn)一步優(yōu)化多孔結(jié)構(gòu)形貌,電解液配方、氧化工藝、多孔結(jié)構(gòu)的形成機(jī)理等研究尚待深入。
本文擬采用NaH2PO4水溶液在316L不銹鋼表面制備多孔結(jié)構(gòu),研究多孔結(jié)構(gòu)的形貌特點(diǎn)及工藝參數(shù)對(duì)孔結(jié)構(gòu)的影響,并進(jìn)行工藝優(yōu)化。
1. 1 預(yù)處理
基體材料為40 mm × 20 mm × 0.2 mm的316L不銹鋼。先用800#至2000#碳化硅砂紙逐級(jí)打磨,再用去離子水沖洗干凈,并干燥。然后依次用丙酮和863金屬清洗液超聲清洗15 min除油。最后以不銹鋼為陽極,高純石墨為陰極,進(jìn)行電化學(xué)拋光,具體參數(shù)為:硫酸400 mL/L,磷酸600 mL/L,陽極電流密度50 A/dm2,溫度85 °C,極間距50 mm,時(shí)間3 ~ 4 min。
1. 2 陽極氧化
采用0.03 ~ 0.45 mol/L NaH2PO4水溶液體系,經(jīng)預(yù)處理的316L不銹鋼為陽極,高純石墨為陰極,工藝條件為:電壓15 ~ 60 V,溫度0 °C(采用上海勒頓DFY-5/10 °C型低溫恒溫水浴儀恒溫),時(shí)間5 ~ 60 min。
1. 3 陽極氧化膜的微觀結(jié)構(gòu)分析
采用日本日立公司的SU8010型場(chǎng)發(fā)射掃描電鏡(SEM)分析不銹鋼陽極氧化后的表面形貌。采用Image-pro plus 6.0軟件分析孔徑和孔密度。
2. 1 磷酸二氫鈉濃度對(duì)微孔結(jié)構(gòu)的影響
圖1為電壓30 V下采用不同濃度NaH2PO4溶液對(duì)316L不銹鋼陽極氧化處理20 min后的表面形貌。從圖1a可知,在0.03 mol/L NaH2PO4電解液中陽極氧化后,不銹鋼表面形成一些極淺的凹坑(見白色箭頭所指)。這是因?yàn)榇藭r(shí)NaH2PO4濃度較低,對(duì)孔底氧化膜的侵蝕較慢,底部基體的溶解較慢,孔深生長(zhǎng)緩慢。從圖1b可知,NaH2PO4濃度為0.10 mol/L時(shí),凹坑加深,但孔分布仍較分散且不均勻(圖1b中A、B區(qū))。從圖1c可知,NaH2PO4濃度為0.30 mol/L時(shí),由于NaH2PO4濃度較高,腐蝕較快,基體表面生成了高密度蜂窩狀排列的多孔結(jié)構(gòu)陣列,孔徑為180 ~ 260 nm,孔密度約為1.5 × 1010個(gè)/cm2。從圖1d可知,NaH2PO4濃度為0.45 mol/L時(shí),由于孔壁溶解加快,孔變淺,孔壁減薄,孔徑增大到220 ~ 450 nm,孔密度減小,甚至有連孔現(xiàn)象(圖1d中白線區(qū)域)。因此適宜的NaH2PO4濃度為0.30 mol/L。仔細(xì)觀察圖1c可發(fā)現(xiàn),316L不銹鋼上的多孔結(jié)構(gòu)與純鋁表面的六方形納米多孔結(jié)構(gòu)[10]不同,微孔呈不規(guī)則的圓形,并且孔徑大小不一??赡苁且?yàn)椴讳P鋼基體為合金,在陽極氧化過程中一些元素會(huì)優(yōu)先溶解,而這種優(yōu)先溶解與微觀結(jié)構(gòu)關(guān)系密切[23]。
圖1 316L不銹鋼在不同濃度NaH2PO4溶液中陽極氧化后的表面形貌Figure 1 Surface morphologies of 316L stainless steel anodized in aqueous solution containing different contents of NaH2PO4
2. 2 氧化電壓對(duì)微孔結(jié)構(gòu)的影響
圖2是在不同電壓下采用0.30 mol/L NaH2PO4溶液對(duì)316L不銹鋼陽極氧化20 min后的表面形貌。從圖2可知,電壓為15 V時(shí),不銹鋼表面的多孔結(jié)構(gòu)分布不均(如圖2a圈線處的孔小而淺)且較稀疏,呈圓形或橢圓形,孔徑為130 ~ 260 nm。電壓為30 V時(shí),不銹鋼表面生成了排列緊密的蜂窩狀多孔結(jié)構(gòu),孔徑為180 ~ 260 nm,孔邊緣清晰。電壓為40 V時(shí)的表面形貌與30 V時(shí)相近,但孔徑略大,在220 ~ 300 nm范圍內(nèi),孔略淺。當(dāng)電壓增至50 V時(shí),多孔結(jié)構(gòu)的溶解速率加快,圖2d中A區(qū)域的溶解較為嚴(yán)重,多孔結(jié)構(gòu)幾乎消失,只剩下極少的凹坑;B區(qū)域很明顯是溶解后剩下的極淺孔洞;C區(qū)域的長(zhǎng)條溝壑狀是溶解后孔洞相連形成的。當(dāng)電壓增大到60 V時(shí),多孔結(jié)構(gòu)完全溶解,表面變得光滑平整。從宏觀上看,當(dāng)氧化電壓<50 V時(shí),316L不銹鋼表面呈黃色,氧化電壓≥50 V時(shí)則呈白色??梢?,電壓對(duì)316L不銹鋼表面多孔結(jié)構(gòu)形貌的影響較大,電壓在30 ~ 40 V之間時(shí)能形成高密度有序的多孔結(jié)構(gòu)。
圖2 316L不銹鋼在不同電壓下陽極氧化后的表面形貌Figure 2 Surface morphologies of 316L stainless steel anodized at different voltages
2. 3 氧化時(shí)間對(duì)微孔結(jié)構(gòu)的影響
其他參數(shù)同2.2,在電壓30 V下,陽極氧化不同時(shí)間后不銹鋼表面多孔結(jié)構(gòu)的形貌如圖3所示。從圖3可知,氧化5 min時(shí),氧化層表面在微觀上不平整。氧化10 min時(shí),不銹鋼表面呈現(xiàn)出向微孔過渡的形貌,但孔結(jié)構(gòu)還不清晰,深度小,邊緣形狀不規(guī)則。氧化15 min時(shí),不銹鋼表面有較淺的多孔結(jié)構(gòu)形成,但孔邊緣形狀不規(guī)則。氧化20 min時(shí),不銹鋼表面多孔結(jié)構(gòu)排列規(guī)整,形狀較為規(guī)則,孔邊緣清晰,深度較大。當(dāng)氧化時(shí)間延長(zhǎng)至60 min后,多孔結(jié)構(gòu)變化不大。所以,氧化20 min時(shí),基體表面已形成了穩(wěn)定的多孔形貌,延長(zhǎng)時(shí)間對(duì)多孔形貌的影響不大。
(d) 20 min (e) 60 min圖3 316L不銹鋼陽極氧化不同時(shí)間后的表面形貌Figure 3 Surface morphologies of 316L stainless steel anodized for different time
2. 4 添加丙三醇對(duì)微孔結(jié)構(gòu)的影響
將丙三醇添加到陽極氧化電解液中可以提高電解液黏度,降低電導(dǎo)率,減少氧化物在電解液中的溶解,有利于閥金屬表面形成有序的多孔結(jié)構(gòu)[26-27]和促進(jìn)不銹鋼在INCO電解液中形成多孔結(jié)構(gòu)[28]。因此在電解液中添加不同含量的丙三醇,在上文確定的較優(yōu)條件(NaH2PO4濃度0.30 mol/L,電壓30 V,溫度0 °C,時(shí)間20 min)下對(duì)316L不銹鋼進(jìn)行陽極氧化,以研究丙三醇對(duì)316L不銹鋼表面納米多孔結(jié)構(gòu)形成的影響,結(jié)果見圖4。
圖4 316L不銹鋼在不同含量丙三醇溶液中陽極氧化后的表面形貌Figure 4 Surface morphologies of 316L stainless steel anodized in aqueous solution with different contents of glycerol
從圖4可知,與未添加丙三醇時(shí)相比,添加10%(體積分?jǐn)?shù),下同)丙三醇后,孔密度變化不大,孔結(jié)構(gòu)均勻性改善,但孔變淺、變厚,孔徑減小。丙三醇用量為30%時(shí),孔的形狀接近規(guī)則的圓形,孔徑減小至100 nm左右,孔密度增大至3.3 × 109個(gè)/cm2。添加50%丙三醇后,表面平整,無納米多孔結(jié)構(gòu)存在。
綜上可知,雖然添加適量丙三醇可改善多孔結(jié)構(gòu)的均勻性,但也使孔變淺,這不利于實(shí)際應(yīng)用,因此不建議在陽極氧化液中添加丙三醇。
(1) 電解液中添加適量丙三醇有助于改善不銹鋼陽極氧化膜多孔結(jié)構(gòu)的均勻性,但添加過多不利于表面多孔結(jié)構(gòu)的形成。
(2) 316L不銹鋼表面制備多孔結(jié)構(gòu)的最優(yōu)工藝為:NaH2PO4濃度0.30 mol/L,電壓30 V,溫度0 °C,時(shí)間20 min。該條件下,可在316L不銹鋼上得到有序的蜂窩狀多孔結(jié)構(gòu),孔較深,孔徑為180 ~ 260 nm,孔密度為109~ 1010個(gè)/cm2。
[1] CARDENAS L, MACLEOD J, LIPTON-DUFFIN J, et al. Reduced graphene oxide growth on 316L stainless steel for medical applications [J]. Nanoscale, 2014,6 (15): 8664-8670.
[2] ELTER P, SICKEL F, EWALD A. Nanoscaled periodic surface structures of medical stainless steel and their effect on osteoblast cells [J]. Acta Biomaterialia,2009, 5 (5): 1468-1473.
[3] LATIFI A, IMANI M, KHORASANI M T, et al. Electrochemical and chemical methods for improving surface characteristics of 316L stainless steel for biomedical applications [J]. Surface and Coatings Technology, 2013, 221: 1-12.
[4] GULTEPE E, NAGESHA D, CASSE B D F, et al. Sustained drug release from non-eroding nanoporous templates [J]. Small, 2010, 6 (2): 213-216.
[5] MAROIS Y, SIGOT-LUIZARD M-F, GUIDOIN R. Endothelial cell behavior on vascular prosthetic grafts: effect of polymer chemistry, surface structure, and surface treatment [J]. ASAIO Journal, 1999, 45: 272-280.
[6] GOLDEN M A, HANSON S R, KIRKMAN T R, et al. Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity [J]. Journal of Vascular Surgery, 1990, 11 (6): 838-845.
[7] 崔曉明, 陳良建, 鄭遙. 不同方法制備鈦種植體對(duì)成骨細(xì)胞黏附影響的體外研究[J]. 山西醫(yī)科大學(xué)學(xué)報(bào), 2013, 44 (1): 75-79.
[8] 顧興中, 倪中華. 微孔結(jié)構(gòu)血管支架的激光切割工藝[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2007, 35 (增刊1): 143-146.
[9] 董何彥, 馬宗民, 程增兵. 新型無聚合物微盲孔載藥支架的研究[J]. 遼寧師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2012, 35 (1): 93-97.
[10] VARGHESE O K, GONG D W, PAULOSE M, et al. Highly ordered nanoporous alumina films: effect of pore size and uniformity on sensing performance [J]. Journal of Materials Research, 2002, 17 (5): 1162-1171.
[11] MACAK J M, TSUCHIYA H, TAVEIRA L, et al. Smooth anodic TiO2nanotubes [J]. Angewandte Chemie International Edition, 2005, 44 (45): 7463-7465.
[12] WEI W, MACAK J M, SCHMUKI P. High aspect ratio ordered nanoporous Ta2O5films by anodization of Ta [J]. Electrochemistry Communications, 2008,10 (3): 428-432.
[13] TSUCHIYA H, MACAK J M, SIEBER I, et al. Self-organized porous WO3formed in NaF electrolytes [J]. Electrochemistry Communications, 2005, 7 (3): 295-298.
[14] LEE W J, SMYRL W H. Zirconium oxide nanotubes synthesized via direct electrochemical anodization [J]. Electrochemical and Solid-State Letters, 2005, 8 (3): B7-B9.
[15] HABAZAKI H, KONNO Y, AOKI Y, et al. Galvanostatic growth of nanoporous anodic films on iron in ammonium fluoride-ethylene glycol electrolytes with different water contents [J]. The Journal of Physical Chemistry C, 2010, 114 (44): 18853-18859.
[16] HABAZAKI H, OIKAWA Y, FUSHIMI K, et al. Importance of water content in formation of porous anodic niobium oxide films in hot phosphate-glycerol electrolyte [J]. Electrochimica Acta, 2009, 54 (3): 946-951.
[17] LATEMPA T J, FENG X J, PAULOSE M, et al. Temperature-dependent growth of self-assembled hematite (α-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties [J]. The Journal of Physical Chemistry C, 2009, 113 (36): 16293-16298.
[18] KURE K, KONNO Y, TSUJI E, et al. Formation of self-organized nanoporous anodic films on Type 304 stainless steel [J]. Electrochemistry Communications,2012, 21: 1-4.
[19] LU W, ZOU D, HAN Y, et al. Self-organised nanoporous anodic films on superaustenitic stainless steel [J]. Materials Research Innovations, 2014, 18 (sup4): 747-750.
[20] MARTIN F, FRARI D D, COUSTY J, et al. Self-organisation of nanoscaled pores in anodic oxide overlayer on stainless steels [J]. Electrochimica Acta, 2009, 54 (11): 3086-3091.
[21] 張艷梅, 黃家強(qiáng), 許增才, 等. 430不銹鋼表面微納多孔結(jié)構(gòu)陽極氧化膜的制備及疏水性研究[J]. 電鍍與涂飾, 2015, 34 (12): 662-667.
[22] ZHAN W T, NI H W, CHEN R S, et al. Formation of nanopore arrays on stainless steel surface by anodization for visible-light photocatalytic degradation of organic pollutants [J]. Journal of Materials Research, 2012, 27 (18): 2417-2424.
[23] TSUCHIYA H, MACAK J M, GHICOV A, et al. Nanotube oxide coating on Ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization [J]. Electrochimica Acta, 2006, 52 (1): 94-101.
[24] ZHANG B W, NI H W, CHEN R S, et al. A two-step anodic method to fabricate self-organised nanopore arrays on stainless steel [J]. Applied Surface Science,2015, 351: 1161-1168.
[25] FATTAH-ALHOSSEINI A, SAATCHI A, GOLOZAR M A, et al. The transpassive dissolution mechanism of 316L stainless steel [J]. Electrochimica Acta, 2009,54 (13): 3645-3650.
[26] LEE B G, CHOI J W, LEE S E, et al. Formation behavior of anodic TiO2nanotubes in fluoride containing electrolytes [J]. Transactions of Nonferrous Metals Society of China, 2009, 19 (4): 842-845.
[27] MURATORE F, BARON-WIECHE? A, GHOLINIA A, et al. Comparison of nanotube formation on zirconium in fluoride/glycerol electrolytes at different anodizing potentials [J]. Electrochimica Acta, 2011, 58: 389-398.
[28] BERVIAN A, LUDWIG G A, KUNST S R, et al. The influence of the glycerin concentration on the porous structure of ferritic stainless steel obtained by anodization [J]. DYNA, 2015, 82 (190): 46-52.
[ 編輯:周新莉 ]
Preparation of microporous structure on 316L stainless steel in aqueous sodium dihydrogen phosphate solution
ZHANG Yan-mei*, ZHU Yong-yang, XU Zeng-cai, ZHANG Xiao-hua, WU Yi-fan, CHEN Ling, JIE Xiao-hua
316L stainless steel was anodized in sodium dihydrogen phosphate aqueous solution at 0 °C to form an orderly and highly-dense microporous structure on its surface. The effects of process parameters including NaH2PO4concentration,oxidation voltage and time, and dosage of glycerol on the microporous structure of oxidation film were studied. It was found that only an oxidation film with extremely shallow pits is formed in anodizing solution with a NaH2PO4concentration below 0.10 mol/L. The micropores are sparsely distributed on the oxidation film obtained at anodizing voltages below 30 V. Too high NaH2PO4concentration and anodizing voltage result in too fast dissolution of substrate and the disappearance of microporous structure of oxidation film. The optimal NaH2PO4concentration and anodizing voltage is 0.30 mol/L and 30-40 V, respectively. An orderly and highly-dense honeycomb-like microporous structure with a pore diameter of 180-260 nm and a density of 1.5 × 109pores/cm2can be obtained by anodizing under the given conditions for 20 min. The uniformity of microporous structure is improved by adding 10vol% glycerol to anodizing solution, but the pores become shallow. It is not recommended to add glycerol to anodizing solution.
stainless steel; anodization; porous structure; sodium dihydrogen phosphate; glycerol
TQ153.6
A
1004 - 227X (2016) 16 - 0853 - 05
2016-05-17
2016-06-28
廣東省科技計(jì)劃項(xiàng)目(2015A010105027);揭陽市產(chǎn)學(xué)研結(jié)合項(xiàng)目(201416)。
張艷梅(1972-),女,山西高平人,博士,副教授,主要從事材料表面改性、新材料制備及材料性能方面的研究工作。
作者聯(lián)系方式:(E-mail) zhyanmei2006@126.com。