唐曉音,黃少鵬,楊樹春,姜光政,胡圣標(biāo)
1 西安交通大學(xué)人居環(huán)境與建筑工程學(xué)院,西安 710049 2 巖石圈演化國(guó)家重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)院地質(zhì)與地球物理研究所,北京 100029 3 中海油研究總院,北京 100027
?
南海珠江口盆地鉆井BHT溫度校正及現(xiàn)今地溫場(chǎng)特征
唐曉音1,2,黃少鵬1,楊樹春3,姜光政2,胡圣標(biāo)2
1 西安交通大學(xué)人居環(huán)境與建筑工程學(xué)院,西安710049 2 巖石圈演化國(guó)家重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)院地質(zhì)與地球物理研究所,北京100029 3 中海油研究總院,北京100027
溫度是盆地現(xiàn)今地溫場(chǎng)研究最重要的基礎(chǔ)參數(shù)之一,針對(duì)鉆井井底溫度(BHT)一般低于地層真實(shí)溫度的情況,本文對(duì)珠江口盆地16口鉆井的BHT數(shù)據(jù)進(jìn)行了校正,并根據(jù)校正后的溫度數(shù)據(jù)采用最小二乘法新增計(jì)算了16個(gè)地溫梯度及大地?zé)崃鲾?shù)據(jù).結(jié)合前人發(fā)表數(shù)據(jù),本文繪制了珠江口盆地最新地溫梯度等值線圖及大地?zé)崃鞯戎稻€圖.除此之外,系統(tǒng)收集整理了盆地鉆井大地?zé)崃鳌⑸鸁崧室约盁釋?dǎo)率等參數(shù),利用一維熱傳導(dǎo)方程計(jì)算了盆地1~5 km深度處的溫度,并繪制了盆地深部溫度等值線圖.在此基礎(chǔ)上,分析了盆地現(xiàn)今地溫場(chǎng)特征及其成因,以期為珠江口盆地地球動(dòng)力學(xué)背景研究及油氣資源評(píng)價(jià)與勘探提供地?zé)釋W(xué)參數(shù).
BHT校正;地溫梯度;大地?zé)崃?溫度;珠江口盆地
In this paper,two correct methods that is the Horner-plot method and the Waples method have been chosen for BHT correction.The new thermal gradient data have been calculated by the least square fitting based on the corrected BHT data,and the deep temperature have been acquired by the 1-D heat conduction equation.
Thermal gradient of the Pearl River Mouth Basin ranges from 24.7 ℃/km to 60.8 ℃/km,with the average value of 37.87±7.35 ℃/km,and the heat flow ranges from 24.2 to 121.0 mW·m-2,with the average value of 71.5±13.4 mW·m-2.The temperature at the depth of 1 km,2 km,3 km,4 km,5 km ranges during 22.2~70.4 ℃,43.6~117.4 ℃,64.4~164.0 ℃,84.4~209.9 ℃,and 103.7 ℃~254.9 ℃,respectively,and with the average value of 46.5±7.9 ℃,78.3±10.9 ℃,109.5±15.6 ℃,139.8±20.7 ℃,and 169.6±26.2 ℃,respectively.
After comparison between the corrected BHT with the DST data,we found that the corrected BHT data by the Horner Plot is still much lower than the DST data,while the data corrected by the Waples method is very close to the DST data;From the view of the geothermal gradient and heat flow,the Pearl River Mouth Basin belongs to the classical “hot basin”;The counter maps of the geothermal gradient,heat flow and deep temperature generally show the increase trend from the shelf area to the slop area,but display two abnormal areas with high value,that is the Shunde sub-sag and the Yangjiang sub-sag;The overall characteristics of the present geothermal field of the Pearl River Mouth Basin is under the control of geology background.The increase trend is in consistence with the decrease trend of the crust thickness of this basin,and the high value of the Shunde sub-sag is likely to be caused by igneous activities while the high value of the Yangjiang sub-sag might be the result of fault activities.
珠江口盆地處于歐亞、印度—澳大利亞和太平洋及菲律賓海板塊相互作用且靠近菲律賓板塊的特殊構(gòu)造位置,是在復(fù)雜基底上發(fā)育起來的被動(dòng)大陸邊緣盆地,其構(gòu)造格局具有“東西分塊、南北分帶”特征.自北而南由北部斷階帶、北部坳陷帶,中部隆起帶、南部坳陷帶及南部隆起帶組成“三隆兩坳”地形(龔再升等,1997)(圖1a).珠江口盆地是中國(guó)南海北部最大的中新生代沉積盆地,由于其良好的油氣資源前景而備受關(guān)注,2006珠江口盆地白云凹陷荔灣3-1深水扇氣田的重大發(fā)現(xiàn)拉開了我國(guó)深水油氣勘探的序幕.盆地的現(xiàn)今地溫場(chǎng)特征與盆地所處的大地構(gòu)造位置有關(guān),是構(gòu)造作用的綜合反映,地溫場(chǎng)通過提供能量、改變巖石力學(xué)性質(zhì)來制約和影響巖石圈的變形與演化,同時(shí)也是影響分布于烴源巖中的分散有機(jī)質(zhì)生成油氣關(guān)鍵因素(Tissot et al.,1987).對(duì)現(xiàn)今地溫場(chǎng)進(jìn)行研究,可以了解盆地內(nèi)烴源巖現(xiàn)今的受熱狀態(tài)和生烴狀況,對(duì)評(píng)估盆地(或凹陷)的油氣潛力具有重要意義.
刻畫現(xiàn)今地溫場(chǎng)的物理量主要包括地層溫度、地溫梯度和大地?zé)崃鞣植继卣鞯?,其中地溫梯度和大地?zé)崃餮芯炕诘貙訙囟鹊拇_定.常見的地溫?cái)?shù)據(jù)可分為鉆孔系統(tǒng)連續(xù)測(cè)溫、地層試油溫度(DST)、孔底溫度(BHT)、地層隨壓測(cè)試溫度(MDT)等.上述各類溫度數(shù)據(jù)中,系統(tǒng)連續(xù)測(cè)溫?cái)?shù)據(jù)、DST以及MDT數(shù)據(jù)比較可靠,它們構(gòu)成了盆地地溫場(chǎng)研究的主要數(shù)據(jù).BHT由于泥漿循環(huán)、靜井時(shí)間不夠等因素影響,一般低于地層真實(shí)溫度,需要校正后才能使用.關(guān)于BHT校正,前人一般使用的是Horner圖版校正法(Horner,1951),但隨著研究的深入,越來越多的學(xué)者發(fā)現(xiàn)Horner方法校正后的數(shù)據(jù)依然小于地層真實(shí)溫度(Beck et al.,1988;Dowdle et al.,1975;Hermanrud et al.,1990)(一般認(rèn)為DST最接近地層真實(shí)溫度).Waples(2001)等根據(jù)Malay盆地的BHT數(shù)據(jù)校正過程總結(jié)出了經(jīng)驗(yàn)公式,并在2004年(Waples et al.,2004)對(duì)其進(jìn)行了拓展.Malay盆地是一個(gè)年輕的熱盆,沉積物以碎屑沉積為主(Waples et al.,2004),其盆地屬性與珠江口盆地相似(唐曉音等,2014;饒春濤和李平魯,1991).
珠江口盆地現(xiàn)今地溫場(chǎng)的研究始于20世紀(jì)70年代.為了研究南海的起源、演化歷史、大地構(gòu)造屬性及其形成的地球動(dòng)力學(xué)背景,前人獲得了大量鉆井和海底探針地?zé)豳Y料(Anderson et al.,1978;Jessop et al.,1976;Nissen et al.,1995;Ru and Pigott,1986;Shyu et al.,1998;Taylor and Hayes,1983;Watanable et al.,1977;陳墨香等,1991;饒春濤和李平魯,1991;徐行等,2006),其中包括了一部份珠江口盆地的地?zé)釘?shù)據(jù),讓我們對(duì)珠江口盆地現(xiàn)今地溫場(chǎng)有了基本認(rèn)識(shí).米立軍等(2009)首次研究了南海北部深水區(qū)地?zé)崽卣骷捌涑梢?,并提出南海北部深水區(qū)地溫梯度為29.4±5.22℃/km,平均為39.1±0.74 ℃/km;大地?zé)崃髦禐?4.2~121 mW·m-2,平均為77.5±14.8 mW·m-2.唐曉音等(2014)新增了19個(gè)大地?zé)崃鲾?shù)據(jù),系統(tǒng)分析后認(rèn)為盆地平均熱流71.8±13.6 mW·m-2.由于海上盆地位置的特殊性,溫度數(shù)據(jù)的獲得主要依靠海上油氣勘探井,這就導(dǎo)致研究區(qū)地溫?cái)?shù)據(jù)稀少,分布不均勻.本文通過系統(tǒng)整理,選取了16口參數(shù)完整的鉆井BHT數(shù)據(jù),采用Waples 等(2001;2004)發(fā)表的方法對(duì)其進(jìn)行了校正.并根據(jù)校正后的數(shù)據(jù)新增獲得了研究區(qū)16個(gè)地溫梯度及大地?zé)崃鲾?shù)據(jù),豐富了研究區(qū)的地?zé)釋W(xué)參數(shù).除此之外,計(jì)算了盆地1~5 km深度的溫度,以期為研究區(qū)油氣資源評(píng)價(jià)與勘探提供地?zé)釋W(xué)依據(jù).
2.1校正方法
2.1.1Horner法
Horner Plot圖版校正通過鉆井時(shí)泥漿的循環(huán)時(shí)間和泥漿停止時(shí)間比值與溫度測(cè)量值在圖版上插值獲得地層真實(shí)溫度,校正方法的基本公式如下:
(1)
其中,Tc為校正后的溫度數(shù)據(jù),單位℃;Tm為測(cè)試的原始BHT數(shù)據(jù),單位℃;tc為停井時(shí)間與泥漿循環(huán)結(jié)束間的時(shí)間,單位h,tc一般很難獲得,但對(duì)校正結(jié)果影響不大,在沒有具體參數(shù)的情況下,通常取2 h(Waples et al.,2001);TSC為泥漿循環(huán)結(jié)束至溫度測(cè)試開始的時(shí)間,單位h;λ為巖石熱導(dǎo)率,單位W/(mK);H為熱供應(yīng)率.
該方法需要對(duì)同一深度段的溫度進(jìn)行至少兩次以上的測(cè)試,但現(xiàn)代油氣勘探過程中,除了目的層段或者特殊要求,一般不會(huì)增加測(cè)井作業(yè).即使存在多次作業(yè),如果每次作業(yè)時(shí)間間隔太短,也會(huì)造成校正溫度較大誤差.另外,測(cè)井?dāng)?shù)據(jù)中很少記錄泥漿循環(huán)時(shí)間,這些因素都造成了Horner Plot校正井溫的局限性.針對(duì)以上情況,Waples等(2001,2004)通過統(tǒng)計(jì)分析馬來盆地測(cè)井井溫?cái)?shù)據(jù),利用DST測(cè)溫?cái)?shù)據(jù)作為參考標(biāo)準(zhǔn),提出了一種新的井底溫度校正方法,在本文中我們稱為Waples法.
2.1.2Waples 法
對(duì)于深度小于3000 m的BHT數(shù)據(jù),校正公式如下:
(2)
其中,TC為校正后的溫度數(shù)據(jù),單位℃;TS為地表(海底)溫度,單位℃;f為校正因子;Tm為測(cè)試BHT數(shù)據(jù),單位℃.
對(duì)于單個(gè)BHT溫度,校正因子f由下式給出:
fs=(-0.1462ln(TSC)+1.699)/(0.572·Z0.075),
(3)
其中,TSC是泥漿循環(huán)結(jié)束至溫度測(cè)試間的時(shí)間,單位h;Z是溫度數(shù)據(jù)所在深度,單位m.
對(duì)于已經(jīng)作過Horner校正的溫度數(shù)據(jù),校正因子f由下式給出:
fHP=-0.132 ln(TSC)=1.52.
(4)
Horner校正的前提是同一深度需要進(jìn)行多次溫度測(cè)試,那么同一深度就會(huì)存在多個(gè)TSC,方程(4)中的TSC是指同一深度處最大的TSC值.
對(duì)于深度大于3000 m的BHT數(shù)據(jù),有
TC=TS+f·(Tm-TS)-0.001391(Z-4498),
(5)
校正因子f=1.32866e-0.005289TSC.
2.2校正結(jié)果
圖2a展示了例井LF13-1-2的校正結(jié)果,校正基本參數(shù)與校正結(jié)果數(shù)值見表1.經(jīng)過Horner法校正后,2854 m深度處的溫度為129.2 ℃,2859 m深度處的溫度為122.9 ℃,2063 m深度處的溫度為94.2 ℃,1372 m深度處的溫度為的56.4 ℃.雖然他們較原始BHT數(shù)值有所增大,但仍然明顯小于DST數(shù)據(jù)(圖2b).而經(jīng)過本論文選取的方法校正后,BHT數(shù)據(jù)非常接近DST數(shù)據(jù),說明Waples方法適用于珠江口盆地BHT數(shù)據(jù)的校正.用最小二乘法擬合原始BHT溫度得到地溫梯度為37 ℃/km,
圖1 珠江口盆地構(gòu)造位置、構(gòu)造單元?jiǎng)澐?a)及中部地學(xué)斷面圖(b)( 圖b修改自姚伯初(1998)).圖(a)中,EP表示歐亞板塊,IAP表示印度—澳大利亞板塊,PP表示太平洋板塊,ID表示印度板塊,IC表示印支地塊,SCS表示南海.圖(b)中,CzS表示沉積層,UPC表示上地殼,LWC表示下地殼,M表示莫霍面.Fig.1 Location &subdivision of the Pearl River Mouth Basin (a),and the Central Transect of the Pearl River Mouth Basin (b)(Fig.1b is modified from Yao(1998))In Fig.1a,EP=Eurasian plate,PP= Pacific plate,ID=India,IC=Indochina,SCS=South China Sea;In Fig.1b,CzS=Cenozoic sedimentary,UPC=Up crust,LWC=Lower crust,M=Moho boundary.
圖2 BHT校正例井LF13-1-2(a)Horner 圖版校正,圖a中空心菱形表示各深度多次測(cè)量的BHT值;(b)BHT測(cè)試值與校正值間的對(duì)比,圖b中藍(lán)色的實(shí)心菱形代表測(cè)試BHT數(shù)據(jù),綠色實(shí)心菱形代表Horner 圖版(圖a)校正后的BHT數(shù)據(jù),紅色實(shí)心圓點(diǎn)代表Waples方法校正后的BHT數(shù)據(jù),紅色斜十字代表DST數(shù)據(jù).Fig.2 An example from LF13-1-2 well showing(a)Horner-Plot method for obtaining corrected temperatures at successive measured depths,and (b)comparison between the uncorrected temperatures (blue diamond),corrected temperatures by Horner-plot method ( green diamonds),corrected temperatures by Waples method (red dots)and DST(red crosses).In (a),two or more measured temperatures (BHTs)in each depth are used to obtain corrected temperatures by Horner-Plot method.The interceptions of the trend lines for each depth indicate corrected temperatures shown alongside an arrow.In (b),the value of 37 ℃/km shown at the lower-left corner and the value of 42.8 ℃/km shown at the upper-right corner present the geothermal gradients derived from the uncorrected temperatures and corrected temperatures by Waples method,separately.
而根據(jù)Waples校正后的溫度數(shù)據(jù)擬合得到的地溫梯度為42.8 ℃/km,明顯大于未校正數(shù)據(jù)(圖2b).運(yùn)用相同方法,本文一共校正了16口井的BHT數(shù)據(jù),其他15口井的校正結(jié)果如圖3.
2.3珠江口盆地地溫梯度
對(duì)校正后的BHT溫度用最小二乘法進(jìn)行線性擬合,得到16口鉆孔的地溫梯度(圖3、表2).結(jié)合前人報(bào)道的地溫梯度數(shù)據(jù)(Yuan et al,2009;饒春濤和李平魯?shù)龋?991;唐曉音等,2014),繪制了珠江口盆地現(xiàn)今地溫梯度分布圖(圖4).結(jié)果表明,珠江口盆地現(xiàn)今地溫梯度值介于24.7~60.8 ℃/km,平均37.87±7.35 ℃/km.
2.4珠江口盆地大地?zé)崃?/p>
大地?zé)崃魇潜碚饔傻厍騼?nèi)部向地表傳輸并在單位面積上散發(fā)的熱量,它是地球內(nèi)部各種動(dòng)力學(xué)過程的能量平衡在地表最直接的反映,在數(shù)值上,大地?zé)崃髦档扔诘販靥荻扰c地層熱導(dǎo)率之積:
表1 LF13-1-2井校正基本參數(shù)與校正結(jié)果
注:上角a表示由公示(3)計(jì)算而來的校正因子f,上角b表示由公示(4)計(jì)算而來的校正因子f;TS由式(8)計(jì)算而來;TWC為Waples法校正后的溫度數(shù)據(jù);THC是Horner圖版法校正后的溫度數(shù)據(jù);KB是補(bǔ)心海拔.
表2 珠江口盆地新增大地?zé)崃鲾?shù)據(jù).深度*表示除去水深與補(bǔ)心高的真實(shí)地層深度
圖3 鉆孔校正前后BHT對(duì)比及校正后溫度擬合地溫梯度藍(lán)色實(shí)心菱形點(diǎn)代表原始BHT數(shù)據(jù),紅色實(shí)心圓點(diǎn)代表本文方法校正后的BHT數(shù)據(jù),紅色斜十字代表DST數(shù)據(jù).Fig.3 Temperature vs.depth plots for the studied boreholesThe black lines connecting corrected temperatures at each measured depth (red dots)and the solid lines show the best-fit line for geothermal gradient at each borehole with values shown at the lower left corner at each figures.The value of geothermal gradient in the upper right corner of each figure indicates the geothermal gradient used to calculate heat flows in this study (see Table 2).The blue diamonds represent the uncorrected BHT and the red crosses represent the DST.
圖4 珠江口盆地現(xiàn)今地溫梯度等值線圖Fig.4 Contour map of the geothermal gradient of the Pearl River Mouth Basin
圖5 珠江口盆地現(xiàn)今大地?zé)崃鞯戎稻€圖Fig.5 Contour map of the heat flow of the Pearl River Mouth Basin
(6)
本文新增計(jì)算LF13-1-2等16口鉆井的大地?zé)崃饔?jì)算結(jié)果如表2所示.經(jīng)統(tǒng)計(jì),位于研究區(qū)的大地?zé)崃鲾?shù)據(jù)共177個(gè)(圖5),大地?zé)崃髦到橛?4.2~121.0 mW·m-2之間,平均71.5±13.4 mW·m-2.根據(jù)盆地?zé)崃鲾?shù)據(jù),按克里格插值法繪制了珠口盆地大地?zé)崃鞯戎稻€圖(圖5).可以看出,該盆地大地?zé)崃髟谄矫嫔暇哂袃蓚€(gè)顯著的分布特征:從北到南(從陸架到陸坡方向)大地?zé)崃骶哂兄饾u增高的趨勢(shì);存在陽江凹陷和順德凹陷兩個(gè)高值異常區(qū).
鉆孔的深度一般有限,對(duì)于無法通過直接測(cè)量獲得鉆孔特定深度溫度的情況,可以根據(jù)淺部測(cè)溫資料用間接的方法向深部外推.在研究沉積盆地深部地溫時(shí),一般考慮巖石熱導(dǎo)率和生熱率不隨時(shí)間和位置變化,在穩(wěn)態(tài)熱流狀況下的深部溫度可用下式計(jì)算:
(7)
式中q0為海底熱流(mW·m-2);Z是深度 (km);A是計(jì)算深度段的平均生熱率(μW·m-3);K是計(jì)算深度段的平均熱導(dǎo)率W/m/K;TS為海底溫度(℃).
本論文海底溫度計(jì)算公式如下,該公式根據(jù)臺(tái)灣國(guó)際海洋研究中心海水溫度數(shù)據(jù)庫(kù)數(shù)據(jù)推算而來(Chi et al.,2008).
TS=0.2597×(ln Z)3-3.802×(ln Z)2
+10.67×(ln Z)+26.96,
(8)
式中Z為水深,單位為m;TS為海底溫度,單位為℃
根據(jù)式(7)—(8),本文分別計(jì)算了珠江口盆地177個(gè)鉆孔(鉆孔分布見圖6)1000、2000、3000、4000、5000 m深度處的地層溫度,并繪制了相應(yīng)的等值線圖.總體來看,各深度處的溫度分布具有如下特征.
1000 m深度處地溫特征:地溫介于22.2~70.4 ℃之間,平均為46.5±7.9 ℃,總體上呈北高南低之勢(shì),這種分布格局與恒溫帶溫度取值有關(guān),由于采用海底溫度為恒溫帶溫度,研究區(qū)北部淺水區(qū)海底溫度為15~23 ℃,而南部水深大于800 m時(shí),海底溫度小于4 ℃.兩者相差近20 ℃.從而導(dǎo)致1000 m深度處地層溫度具有北高南低分布特征(圖6a).
2000 m深度處地溫特征:地溫介于43.6~117.4 ℃之間,平均為78.3±10.9 ℃,與1000深度處地溫分布格局不同,2000 m處地溫基本上不存在北高南低的分布特征,除陽江凹陷北部和順德—開平凹陷兩個(gè)顯著高值異常之外,以70~90 ℃為主(圖6b).
3000 m深度處地溫特征:地溫介于64.4~164.0 ℃之間,平均為109.5±15.6 ℃,由北向南,溫度呈現(xiàn)出增高趨勢(shì) (圖6c).
4000 m深度處地溫特征:地溫介于84.4~209.9 ℃之間,平均為139.8±20.7 ℃,分布格局與3000 m處地溫分布相似(圖6d).
圖6 珠江口盆地1000 m (a)、2000 m (b)、3000 m (c)、4000 m (d)、5000 m (e)深度處的地溫分布圖Fig.6 Temperature at the depth of 1000 m (a),2000 m (b),3000 m (c),4000 m (d),5000 m (e)of the Pearl River Mouth Basin
5000 m深度處地溫特征:最高254.9 ℃,最低103.7 ℃,平均值169.6±26.2 ℃,分布格局與3000 m處地溫分布相似(圖6e).
據(jù)最新統(tǒng)計(jì),珠江口盆地地溫梯度平均為37.87±7.35 ℃/km,與中國(guó)東部華北(33~35 ℃/km)和松遼盆地(38 ℃/km)(王均等,1990)等“熱盆”的地溫梯度相當(dāng),高于蘇北盆地(29.6 ℃/km)的地溫梯度(袁玉松等,2005),遠(yuǎn)高于中國(guó)中西部地區(qū)的鄂爾多斯(24.4 ℃/km)(Yuan et al.,2007)、四川(20.9 ℃/km)(袁玉松等,2006)、塔里木(20 ℃/km)(王良書等,2003)和準(zhǔn)噶爾(21.2~22.6 ℃/km)(王社教等,2000;邱楠生等,2001)等克拉通盆地的地溫梯度.與中國(guó)近海其他盆地相比,其地溫梯度比東海(32.7 ℃/km)(Yang et al.,2004)和南黃海南部(28.6 ℃/km)(楊樹春等,2003)都高.
珠江口盆地大地?zé)崃髦灯骄鶠?1.5±13.4 mW·m-2,遠(yuǎn)高于中國(guó)大陸地區(qū)大地?zé)崃髌骄?63.0±24.2 mW·m-2)(胡圣標(biāo)等,2001),也高于中國(guó)近海其他盆地:東海盆地臺(tái)北坳陷的熱流值為59.5~81.3 mW·m-2,平均為70.4 mW·m-2,西湖坳陷的熱流值為55.3~84.3 mW·m-2,平均為71.7 mW·m-2(Yang et al.,2004);南黃海盆地南部地區(qū)熱流值為60.1~76.8 mW·m-2,平均為67.7 mW·m-2(楊樹春等,2003).
盆地現(xiàn)今地溫場(chǎng)是構(gòu)造活動(dòng)的綜合反映,珠江口盆地新生代區(qū)域構(gòu)造演化主要受華南板塊與印支板塊碰撞、太平洋及菲律賓海板塊俯沖擠壓和南海擴(kuò)張等三大主控因素制約和影響,主要經(jīng)歷了晚白堊世—早漸新世多幕斷陷裂谷階段、晚漸新世—早中新世裂后斷坳轉(zhuǎn)換及區(qū)域熱沉降階段和晚中新世以來新構(gòu)造運(yùn)動(dòng)及熱沉降坳陷階段等三大構(gòu)造演化階段(Ru et al.,1986;李平魯,1993;張功成,2010).珠江口盆地多幕斷陷裂谷作用始于晚白堊世,其發(fā)育演化歷程先后經(jīng)歷了3幕斷陷裂谷演化階段(裂陷發(fā)育期),即晚白堊世初始斷陷裂谷階段、始新世斷陷裂谷鼎盛階段和早漸新世晚期斷陷裂谷階段.在此期間發(fā)生了神弧運(yùn)動(dòng)、珠瓊運(yùn)動(dòng)一幕及珠瓊運(yùn)動(dòng)二幕3次構(gòu)造運(yùn)動(dòng)(李平魯,1993).晚漸新世—早中新世,受印度板塊與歐亞板塊碰撞的影響,深部地幔流向SE 和SSE 方向蠕散(Tapponnier et al.,1986).由于地幔物質(zhì)的過剩堆積導(dǎo)致上地幔發(fā)生強(qiáng)烈隆升、巖石圈進(jìn)一步被拉伸減薄,盆地進(jìn)入了裂后斷坳轉(zhuǎn)換及熱沉降階段.晚漸新世該區(qū)發(fā)生了大規(guī)模的海底擴(kuò)張(張裂)即南海運(yùn)動(dòng),形成了南海北部地區(qū)區(qū)域性破裂不整合面.晚中新世以來,菲律賓板塊向NNW方向俯沖推擠,臺(tái)灣地體與東海陸架的碰撞拼貼,東沙運(yùn)動(dòng)即新構(gòu)造運(yùn)動(dòng)開始(Sibuet et al.,2002),盆地伴隨著塊斷升降、隆起剝蝕、擠壓褶皺和斷裂及巖漿等活動(dòng).
多幕拉張、裂陷使得珠江口盆地地殼厚度向洋盆方向遞減,見圖1b.因此,盆地地溫梯度、大地?zé)崃饕约吧畈繙囟确植?2000 m以深)總體上從陸架到陸坡區(qū)增大,但局部存在兩個(gè)高值異常區(qū),分別為順德和陽江地區(qū).順德地區(qū)的大地?zé)崃鞲咧诞惓N挥谑夹率馈獫u新世的基性巖侵入、噴發(fā)區(qū),陽江地區(qū)的高值異常則位于珠三坳陷的北部邊界斷裂之上(饒春濤和李平魯,1991),該巖漿侵入體的時(shí)代雖然較老,其本身的熱效應(yīng)對(duì)現(xiàn)今地溫場(chǎng)的影響也許不會(huì)太顯著,但可能正因?yàn)樗拇嬖?,?dǎo)致深部熱流體易于向淺部輸送,從而在地表形成大地?zé)崃鞲咧诞惓?同樣,斷裂活動(dòng)帶也起著深部熱流體易于向淺部輸送的溝通作用以及強(qiáng)烈的水熱或其他熱液作用,從而導(dǎo)致淺部地表地溫梯度和大地?zé)崃鞒霈F(xiàn)高值異常.
本文通過校正珠江口盆地的BHT數(shù)據(jù),在新增地溫梯度與大地?zé)崃鲾?shù)據(jù)的基礎(chǔ)上計(jì)算了盆地1~5 km深度處的溫度,并繪制了盆地最新地溫梯度、大地?zé)崃骷吧畈繙囟鹊戎稻€圖.經(jīng)過一系列分析得出了以下結(jié)論:
(1)研究區(qū)鉆井井底溫度(BHT)不能直接用于盆地地溫場(chǎng)的研究,需要選用合理方法進(jìn)行校正后才能使用.Waples方法適用于珠江口盆地BHT數(shù)據(jù)的校正.
(2)珠江口盆地地溫梯度值平均37.87±7.35 ℃/km,大地?zé)崃髦灯骄?1.5±13.4 mW·m-2,屬于典型的“熱盆”;盆地1000、2000、3000、4000、5000 m深度處的平均溫度分別為46.5±7.9、78.3±10.9、109.5±15.6、139.8±20.7、169.6±26.2 ℃.
(3)珠江口盆地地溫梯度、大地?zé)崃饕约吧疃葴囟?2000 m以深)整體分布上具有類似特征,即由北部盆地(坳陷)帶向中南部盆地(坳陷)帶增高.這種特征受區(qū)域構(gòu)造背景控制,增高趨勢(shì)與北部地殼由陸架向陸坡區(qū)減薄的趨勢(shì)相對(duì)應(yīng);局部熱流高值異??赡苡蓭r漿、斷裂等活動(dòng)造成.
致謝地溫資料收集得到了中海油研究總院以及中海石油(中國(guó))有限公司深圳分公司的大力協(xié)助,兩位審稿專家對(duì)稿件提出了寶貴的修改意見,在此表示衷心感謝!
References
Anderson R N,Langseth M G,Hayes D E,et al.1978.Heat flow,thermal conductivity,geothermal gradient.//Hayes D E eds.Geophysical Atlas of the East and Southeast Asian Seas.Geological Society of America,Boulder,CO.
Beck A E,Balling N.1988.Determination of Virgin Rock Temperatures.//Handbook of Terrestrial Heat-Flow Density Determination,R.Haenel,L.Rybach,and L.Stegena,Editors.Springer Netherlands,59-85.Chen M X,Xia S G,Yang S Z.1991.Local geothermal anomalies and their formation mechanisms on Leizhou peninsula,South China.Scientia Geologica Sinica.(in Chinese),26 (4):369-383.
Chi W C,Reed D L.2008.Evolution of shallow,crustal thermal structure from subduction to collision:An example from Taiwan.Geological Society of America Bulletin,120(5-6):679-690.
Dowdle W L,Cobb W M.1975.Static formation temperature from well logs—an empirical method.Journal of Petroleum Technology,27(11):1326-1330.Gong Z S,Li S T,Xie T J,et al.1997.Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea (in Chinese).Beijing:Science Press.
Hermanrud C,Cao S,Lerche I.1990.Estimates of virgin rock temperature derived from BHT measurements:bias and error.Geophysics,55(7):924-931.
Horner D R.1951.Pressure build-up in wells.//Procedings of the Thidrd World Petroleum Congress,The Hague,Section Ⅱ,503-521.
Hu S B,He L J,Wang J Y.2001.Compilation of heat flow data in the China continental area (3rd edition).Chinese Journal of Geophysics.(in Chinese),44(5):611-626.
Jessop A M,Hobart M A,Sclater J G.The world heat-flow data collection-1975.Geothermal Series Number 5.Canada:Earth Physics Branch,1976,5:125.
Li P L.1993.Cenozoic tectonic movement in the Pearl River Mouth Basin.China Offshore Oil and Gas (Geology).(in Chinese),7(6):11-17.
Mi L J,Yuan Y S,Zhang G C,et al.2009.Characteristics and genesis of geothermal field in deep-water area of the northern South China Sea.Acta Petrol EI Sinica.(in Chinese),30(1):27-32.
Nissen S S,Hayes D E,Bochu Y,et al.1995.Gravity,heat flow,and seismic constraints on the processes of crustal extension:Northern margin of the South China Sea.Journal of Geophysical Research,100(B11):22447-22483.
Qiu N S,Wang X L,Yang H B,et al.2001.The characteristics of temperature distribution in the Junggar basin.Scientia Geologica Sinica.(in Chinese),36 (3):350-358.
Rao C T,Li P L.1991.Study of heat flow in Pearl River Mouth Basin.China Offshore Oil and Gas (Geology).(in Chinese),1991,5 (6):7-18.
Ru K,Pigott J D.1986.Episodic rifting ad subsidence in the South China Sea.AAPG Bulletin,70(9):1136-1155.
Shyu C T,Hsu S K,Le Pichon X,et al.2002.East Asia plate tectonics since 15 Ma:constraints from the Taiwan region.Tectonophysics,344(1-2):103-134.
Shyu C T,Hsu S K,Liu C S.1998.Heat flows off southwest Taiwan:Measurements over mud diapirs and estimated from bottom simulating reflectors.Terrestrial Atmospheric and Oceanic Sciences,9(4):795-812.
Tang X Y,Hu S B,Zhang G C,et al.2014.Characteristic of surface heat flow in the Pearl River Mouth Basin and its relationship with thermal lithosphere thickness.Chinese J.Geophys.(in Chinese),57 (06):1857-1867.
Tapponnier P,Peltzer G,Armijo R.1986.On the mechanics of the collision between India and Asia.//M.P.Coward and A.C.Ries,Editors.Collision Tectonics.Published for the Geological Society by Blackwell Scientific:Lond,115-157.
Taylor B,Hayes D E.1983.Origin and history of the South China basin.27th AGU.Washington,DC.Tissot B P,Pelet R,Ungerer P.1987.Thermal History of Sedimentary Basins,Maturation Indexes,and Kinetics of Oil and Gas Generation.AAPG Bulletin,71(12):1445-1466.Wang J,Huang S Y,Huang G S,et al.1990.Basic Characteristics of the Earth′s Temperature Distribution in Chian.Beijing:Seismic Press.
Wang L S,Li C,Liu S W,et al.2003.Geotemperature gradient distribution of Kuqa foreland basin,north of Tarim,China.Chinese Journal of Geophysics.(in Chinese),46 (3):403-407.
Wang S J,Hu S B,Wang J Y.2000.The characteristics of heat flow and geothermal fields in Junggar basin.Chinese Journal of Geophysics.(in Chinese),43 (6):771-779
Waples D W,Pacheco J,Vera A.2004.A method for correcting log-derived temperatures in deep wells,calibrated in the Gulf of Mexico.Petroleum Geoscience,10(3):239-245.
Waples D W,Ramly M.2001.A statistical method for correcting log-derived temperatures.Petroleum Geoscience,7(3):231-240.
Watanable T,Langseth M G,Anderson R N.Heat flow in back-arc basins of the western Pacific.In:Talwani M,Pitman W C,eds.Island Arcs,Deep Sea Trenches and Back-Arc Basins.Washington,D C:AGU,1977.137-167.Xu X,Shi X B,Luo X H,et al.2006.Heat flow measurements in the Xiasha Trough of the South China Sea.Marine and Geology &Quaternary Geology.(in Chinese),2006,26(4):51-58.
Yang S C,Hu S B,Cai D S,et al.2003.Geothermal characteristics and tectonothermal evolution of the southern area of South Yellow Sea.Chinese Science Bulletin.(in Chinese),2003,48 (14):1564-1569.
Yang S C,Hu S B,Cai D S,et al.2004.Present-day heat flow,thermal history and tectonic subsidence of the East China Sea Basin.Marine and Petroleum Geology,21(9):1095-1105.
Yao B C.1998.Crust structure of the northern margin of the South China Sea and its tectonic significance.Marine Geology and Quaternary Geology.(in Chinese),18 (2):1-16.
Yuan Y S,Guo T L,Hu S B,et al.2005.Tectonothermal evolution and hydrocarbon generation history in southern Jiangsu,Lower Yangtze area—a case study of Well Shengke 1.Progress in Natural Science.(in Chinese),15(06):753-758.
Yuan Y S,Ma Y S,Hu S B,et al.2006.Present geothermal characteristics in South China.Chinese Journal of Geophysics.(in Chinese),2006,49 (4):1118-1126.Yuan Y,Hu S,Wang H,et al.2007.Meso-Cenozoic tectonothermal evolution of Ordos basin,central China:Insights from newly acquired vitrinite reflectance data and a revision of existing paleothermal indicator data.Journal of Geodynamics,44(1-2):33-46.
Yuan Y,Zhu W L,Mi L J,et al.2009.“Uniform geothermal gradient” and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea.Marine and Petroleum Geology,26(7):1152-1162.
Zhang G C.2010.Tectonic evolution of deepwater area of northern continental margin in South China Sea.Acta Petrol EI Sinica.(in Chinese),31(4):528-533+541.
附中文參考文獻(xiàn)
陳墨香,夏斯高,楊淑貞.1991.雷州半島局部地?zé)岙惓<靶纬蓹C(jī)制.地質(zhì)科學(xué),26(4):369-383.
龔再升,李思田,謝泰俊等.南海北部大陸邊緣盆地分析與油氣聚集.北京:科學(xué)出版社,1997.
胡圣標(biāo),何麗娟,汪集旸.2001.中國(guó)大陸地區(qū)大地?zé)崃鲾?shù)據(jù)匯編(第三版).地球物理學(xué)報(bào),44(05):611-626.
李平魯.1993.珠江口盆地新生代構(gòu)造運(yùn)動(dòng).中國(guó)海上油氣(地質(zhì)),7(6):11-17.
米立軍,袁玉松,張功成等.2009.南海北部深水區(qū)地?zé)崽卣骷捌涑梢?石油學(xué)報(bào),30(1):27-32.
邱楠生,王緒龍,楊海波等.2001.準(zhǔn)噶爾盆地地溫分布特征.地質(zhì)科學(xué),36(3):350-358.
饒春濤,李平魯.1991.珠江口盆地?zé)崃餮芯?中國(guó)海上油氣 (地質(zhì)),5(6):7-18.
唐曉音,胡圣標(biāo),張功成等.2014.珠江口盆地大地?zé)崃魈卣骷捌渑c熱巖石圈厚度的關(guān)系.地球物理學(xué)報(bào),57(06):1857-1867.
王鈞,黃尚瑤,黃歌山等.1990.中國(guó)地溫分布的基本特征.北京:地震出版社.
王良書,李成,劉紹文等.2003.塔里木盆地北緣庫(kù)車前陸盆地地溫梯度分布特征.地球物理學(xué)報(bào),46(3):403-407.
王社教,胡圣標(biāo),汪集旸.2000.準(zhǔn)噶爾盆地?zé)崃骷暗販貓?chǎng)特征.地球物理學(xué)報(bào),43(6):771-779.
徐行,施小斌,羅賢虎等.2006.南海西沙海槽地區(qū)的海底熱流測(cè)量.海洋地質(zhì)與第四紀(jì)地質(zhì),26(4):51-58.
楊樹春,胡圣標(biāo),蔡?hào)|升等.2003.南黃海南部盆地地溫場(chǎng)特征及熱-構(gòu)造演化.科學(xué)通報(bào),48(14):1564-1569.
姚伯初.1998.南海北部陸緣的地殼結(jié)構(gòu)及構(gòu)造意義.海洋地質(zhì)與第四紀(jì)地質(zhì),18(2):1-16.
袁玉松,郭彤樓,胡圣標(biāo)等.2005.下?lián)P子蘇南地區(qū)構(gòu)造-熱演化及烴源巖成烴史研究——以圣科1井為例.自然科學(xué)進(jìn)展,15(06):753-758.
袁玉松,馬永生,胡圣標(biāo)等.2006.中國(guó)南方現(xiàn)今地?zé)崽卣?地球物理學(xué)報(bào),49(4):1118-1126.
張功成.2010.南海北部陸坡深水區(qū)構(gòu)造演化及其特征.石油學(xué)報(bào),31(4):528-533+541.
(本文編輯胡素芳)
Correcting on logging-derived temperatures of the Pearl River Mouth Basin and characteristics of its present temperature field
TANG Xiao-Yin1,2,HUANG Shao-Peng1,YANG Shu-Chun3,JIANG Guang-Zheng2,HU Sheng-Biao2
1 School of Human Settlements and Civil Engineering,Xi′an Jiaotong University,Xi′an 710049,China 2 State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing 100029,China 3 CNOOC Research Center,Beijing 100027,China
Temperature data is one of the most important parameters in the present geothermal field research of basin,which includes the analysis of deep temperature,thermal gradient,heat flow.Temperature data commonly derived from continuous logging,drill stem test temperature (DST),bottom hole temperature (BHT)and so on.BHT,which is always lower than the real strata temperature,should be corrected before utilization in the present geothermal field research.In this paper,we are aiming to correct the BHT data of the Pearl River Mouth Basin and calculate new geothermal gradient data as well as new heat flow data.In combination with the previous data and parameters,we will estimate the temperature at the depth at 1 km,2 km,3 km,4 km and 5 km,depict the counter map of geothermal gradient,heat flow and temperature,and further analyze the characteristics and genesis of the present geothermal field,hoping to provide the basic geothermal parameters for geodynamic research and hydrocarbon resources estimation and exploration of the Pearl River Mouth Basin.
BHT correction;Geothermal gradient;Heat flow;Temperature;Pearl River Mouth Basin
唐曉音,黃少鵬,楊樹春等.2016.南海珠江口盆地鉆井BHT溫度校正及現(xiàn)今地溫場(chǎng)特征.地球物理學(xué)報(bào),59(8):2911-2921,
10.6038/cjg20160816.
Tang X Y,Huang S P,Yang S C,et al.2016.Correcting on logging-derived temperatures of the Pearl River Mouth Basin and characteristics of its present temperature field.Chinese J.Geophys.(in Chinese),59(8):2911-2921,doi:10.6038/cjg20160816.
國(guó)家科技重大專項(xiàng)“海洋深水區(qū)油氣勘探關(guān)鍵技術(shù)(二期)”子課題(2011ZX05025-006-05)資助.
唐曉音,女,1987年3月生,博士,構(gòu)造地質(zhì)學(xué)專業(yè),主要從事盆地地溫場(chǎng)、構(gòu)造熱演化、熱史恢復(fù)和烴源巖熱演化研究.E-mail:xytang2015@sina.com
10.6038/cjg20160816
P314
2015-08-18,2016-01-18收修定稿