趙雅雯, 王金洲, 王士超, 武紅亮, 黃紹敏, 盧昌艾
?
潮土區(qū)小麥、玉米殘?bào)w對(duì)土壤有機(jī)碳的貢獻(xiàn)——基于改進(jìn)的RothC模型
趙雅雯1, 王金洲1, 王士超1, 武紅亮1, 黃紹敏2, 盧昌艾1
(1中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/耕地培育技術(shù)國(guó)家工程實(shí)驗(yàn)室,北京 100081;2河南省土壤肥料工作站,鄭州 450002)
【目的】為進(jìn)一步了解秸稈還田對(duì)土壤有機(jī)碳(SOC)的提升效果,探究作物殘?bào)w(根系與秸稈)對(duì)潮土區(qū)SOC的貢獻(xiàn),為華北冬小麥-夏玉米區(qū)SOC提升提供理論依據(jù)?!痉椒ā炕诟庠囼?yàn)的有機(jī)物料碳?xì)埩袈蕯?shù)據(jù),獲得4種有機(jī)物料在RothC-26.3模型最優(yōu)時(shí)對(duì)應(yīng)的DPM/RPM參數(shù)值(易分解植物殘?bào)w和難分解植物殘?bào)w的比值)。利用修訂的DPM/RPM參數(shù),獲得了改進(jìn)的RothC-26.3模型,并用鄭州潮土區(qū)短期腐解試驗(yàn)(2012年11月至2013年11月)和長(zhǎng)期定位試驗(yàn)數(shù)據(jù)(1990—2008年)進(jìn)行驗(yàn)證,模擬出鄭州潮土區(qū)冬小麥-夏玉米輪作系統(tǒng)中小麥、玉米殘?bào)w在3種不同施肥處理下(不施肥CK,平衡施肥NPK和秸稈還田NPKS)對(duì)新形成SOC的貢獻(xiàn)?!窘Y(jié)果】在模型達(dá)到最優(yōu)時(shí),小麥根系(wheat root,WR)、小麥秸稈(wheat straw,WS)、玉米根系(corn root,CR)和玉米秸稈(corn straw,CS)的DPM/RPM值分別為0.89、3.04、4.35和3.25。模型結(jié)果顯示,CK處理小麥根系、玉米根系的碳投入占碳投入的比例均為50%,而來(lái)源于小麥根系、玉米根系的SOC(0—20 cm)占新形成的SOC比例分別為60%、40%;小麥根和玉米根固碳效率分別為15.5%、10.8%;NPK處理小麥根系、玉米根系的碳投入占碳投入的比例分別為60%、40%,而來(lái)源于小麥根系、玉米根系的SOC(0—20 cm)占新形成SOC的比例分別為71%、29%;小麥根和玉米根固碳效率分別為17.5%、11.4%;NPKS處理小麥根系、玉米根系、玉米秸稈的碳投入的比例分別為47%、21%、32%,而小麥根系、玉米根系、玉米秸稈對(duì)新形成的SOC(0—20 cm)貢獻(xiàn)分別為50%、22%、28%;小麥根系、玉米根系、玉米秸稈的固碳效率分別為16.9%、11.2%、11.4%。總之,冬小麥-夏玉米輪作系統(tǒng)中無(wú)論是不施肥、平衡施肥還是秸稈還田處理,小麥根系對(duì)新形成SOC的貢獻(xiàn)率(50%—71%)大于玉米根系和玉米秸稈對(duì)新形成SOC貢獻(xiàn)率(22%—40%)。源自小麥的SOC占新形成SOC的比例均分別大于源自小麥的碳投入占總碳投入的比例,而源自玉米的投入及其對(duì)新形成SOC的貢獻(xiàn)則反之。小麥根系的固碳效率(15.5%—17.5%)大于玉米根系和玉米秸稈的固碳效率(10.8%—11.4%)?!窘Y(jié)論】改進(jìn)后的RothC模型可用來(lái)探究潮土區(qū)冬小麥-夏玉米輪作系統(tǒng)中小麥、玉米殘?bào)w對(duì)新形成SOC的貢獻(xiàn)。鄭州潮土區(qū)冬小麥-夏玉米輪作系統(tǒng)中小麥根系對(duì)新形成SOC的貢獻(xiàn)率均大于玉米根系和玉米秸稈的貢獻(xiàn)率。根茬還田(尤其是小麥根茬還田)更有利于提升土壤有機(jī)碳含量。
Roth C模型;小麥殘?bào)w;玉米殘?bào)w;土壤有機(jī)碳;潮土
【研究意義】土壤有機(jī)碳庫(kù)是陸地生態(tài)系統(tǒng)中最大的有機(jī)碳庫(kù)[1],在土壤肥力、環(huán)境保護(hù)和農(nóng)業(yè)可持續(xù)發(fā)展方面發(fā)揮著極其重要的作用[2-3]。植物殘?bào)w進(jìn)入土壤后,經(jīng)過(guò)一系列的物理、化學(xué)和生物反應(yīng),最終轉(zhuǎn)化為土壤有機(jī)碳(SOC)。而不同種類的植物殘?bào)w,其轉(zhuǎn)化率存在較大的差異。了解冬小麥-夏玉米輪作制度下不同作物殘?bào)w對(duì)土壤有機(jī)碳的貢獻(xiàn),可以為農(nóng)田土壤固碳提供科學(xué)依據(jù)。【前人研究進(jìn)展】目前,RothC模型已廣泛應(yīng)用于陸地生態(tài)系統(tǒng)碳循環(huán)的相關(guān)研究,成功模擬了世界許多地區(qū)不同管理?xiàng)l件下的SOC變化[4-6],然而很大程度上高估了大量秸稈還田后的SOC變化[7-10]。與其他處理相比,秸稈還田處理最大區(qū)別在于秸稈物料性質(zhì)、還田方式及歸還量[10-11]。模型中農(nóng)作物殘?bào)w的DPM/RPM值(易分解植物殘?bào)w和難分解植物殘?bào)w的比率)統(tǒng)一預(yù)設(shè)為1.44,并未考慮作物類型, 使得秸稈還田后的SOC模型模擬值超過(guò)實(shí)測(cè)值[10-12]。韓其晟等[13]認(rèn)為,DPM/RPM值是一個(gè)變量參數(shù),必須通過(guò)試驗(yàn)分析才能得到合理的數(shù)值。有研究結(jié)果表明,當(dāng)Roth C模型中DPM/RPM值設(shè)為3.35,熱帶地區(qū)玉米葉片和黑麥草的分解動(dòng)態(tài)擬合結(jié)果最佳[14]。Wang等[10]通過(guò)調(diào)整模型參數(shù)DPM/RPM,擬合了華北地區(qū)秸稈還田下土壤有機(jī)碳的動(dòng)態(tài)變化規(guī)律?!颈狙芯壳腥朦c(diǎn)】目前,RothC模型尚不能區(qū)分小麥與玉米對(duì)SOC的貢獻(xiàn),也未將作物秸稈與根系對(duì)土壤有機(jī)碳的貢獻(xiàn)區(qū)分開。本研究通過(guò)調(diào)整小麥和玉米的根系與秸稈DPM/RPM值,獲得適宜華北小麥-玉米輪作區(qū)的RothC改進(jìn)模型,進(jìn)而評(píng)價(jià)不同作物殘?bào)w對(duì)SOC的貢獻(xiàn)?!緮M解決的關(guān)鍵問(wèn)題】利用修正后的RothC-26.3模型,探究鄭州潮土區(qū)小麥-玉米輪作系統(tǒng)中小麥和玉米殘?bào)w對(duì)新形成SOC的貢獻(xiàn),為華北小麥-玉米輪作區(qū)農(nóng)田SOC的可持續(xù)管理和土壤肥力培育提供參考。
1.1 有機(jī)物料腐解試驗(yàn)
本研究擬利用王文山等[15]1983—1987年間在北京地區(qū)開展的沙濾管腐解試驗(yàn),對(duì)RothC模型進(jìn)行參數(shù)化。表1展示了小麥和玉米兩種作物的根系和秸稈的主要化學(xué)組成(數(shù)據(jù)源自王文山等[15])。圖1列出了模型模擬時(shí)所需的氣象參數(shù)。其中,月平均溫度、降水等地面氣象數(shù)據(jù)由國(guó)家氣象局提供。各月的潛在蒸騰蒸發(fā)量(ET0)由FAO Penman-Monteith(FAO P-M)公式計(jì)算得到。
1.2 長(zhǎng)期施肥定位試驗(yàn)
試驗(yàn)點(diǎn)位于河南鄭州“國(guó)家潮土肥力與肥料效益長(zhǎng)期監(jiān)測(cè)試驗(yàn)站”(113°40′E,34°47′N),地處熱帶及暖溫帶的過(guò)渡地帶。1981—2010年間平均氣溫14.7℃,降水量641 mm,潛在蒸發(fā)量為1 050 mm。供試土壤為輕壤質(zhì)潮土,成土母質(zhì)為黃河沖積物和沉淀物。
圖1 北京地區(qū)1983—1987年間月平均氣溫、降水量和潛在蒸騰蒸發(fā)量
表1 不同有機(jī)物料的化學(xué)組成
該試驗(yàn)始于1990年。初始耕層(0—20 cm)土壤有機(jī)質(zhì)含量10.1 g·kg-1,全氮0.65 g·kg-1,全磷0.64 g·kg-1,全鉀16.9 g·kg-1。種植制度為小麥-玉米一年兩熟輪作。本研究選擇常見(jiàn)的3個(gè)施肥處理:(1)不施肥(CK),(2)氮磷鉀配施(NPK),(3)氮磷鉀化肥配施秸稈處理(NPKS)。年施肥量為:N 352.5 kg·hm-2,P2O5176.5 kg·hm-2,K2O 176.5 kg·hm-2。各施肥處理為等氮量,小麥季施氮量為165 kg·hm-2,玉米季施氮量為187.5 kg·hm-2。除NPKS處理為玉米秸稈全量還田(約6.0 t·hm-2·a-1)外,其余各處理作物秸稈均全部移除。詳細(xì)試驗(yàn)介紹請(qǐng)參見(jiàn)文獻(xiàn)[10]。
每年于玉米收獲后用土鉆采集0—20 cm土層土壤。土壤容重采用環(huán)刀法測(cè)定。土壤有機(jī)碳采用硫酸-重鉻酸鉀濕熱法測(cè)定。玉米和小麥的籽粒產(chǎn)量、秸稈產(chǎn)量采用收割法進(jìn)行測(cè)定。根系與秸稈的碳投入計(jì)算>參考文獻(xiàn)[4]。
1.3 RothC-26.3模型
RothC模型[16]以英國(guó)洛桑實(shí)驗(yàn)室長(zhǎng)期定位試驗(yàn)數(shù)據(jù)為基礎(chǔ),由Jenkinson于1977年建立而成。所需參數(shù)簡(jiǎn)單,涉及氣候參數(shù)(包括月平均氣溫、降水量和蒸發(fā)量)、土壤數(shù)據(jù)(包括黏粒含量和初始SOC含量)和植物(植被覆蓋、植物殘?bào)w碳輸入量和農(nóng)家肥施入量)等。在一定條件下,該模型可較好地模擬和預(yù)測(cè)氣候和管理措施等引起的SOC變化[4-6,17]。
該模型將有機(jī)碳庫(kù)劃分為5個(gè)部分,即易分解植物殘?bào)w(DPM)、難分解植物殘?bào)w(RPM)、微生物量(BIO)、腐殖化有機(jī)質(zhì)(HUM)和惰性有機(jī)質(zhì)(IOM)。DPM和RPM為新輸入的有機(jī)物質(zhì),BIO、HUM、IOM是土壤有機(jī)碳庫(kù)的3個(gè)組分。每個(gè)有機(jī)碳庫(kù)的分解都遵循一級(jí)動(dòng)力學(xué)方程,其分解速率受溫度、濕度和植被覆蓋等影響。
1.4 模型參數(shù)化與檢驗(yàn)、數(shù)據(jù)分析
基于實(shí)測(cè)數(shù)據(jù)的逆向模擬技術(shù)已被廣泛應(yīng)用到模型參數(shù)估計(jì)[10-12]。該技術(shù)有助于改進(jìn)模型和提高對(duì)有機(jī)碳周轉(zhuǎn)過(guò)程的認(rèn)識(shí)。本研究基于物料腐解試驗(yàn),利用逆向模擬技術(shù),獲得模型效果最優(yōu)(即模擬值與實(shí)測(cè)值之間均方根差最小)時(shí)各有機(jī)物料的DPM/RPM值,并構(gòu)建了DPM值與物料性質(zhì)之間的定量方程。在此基礎(chǔ)上,利用鄭州短期腐解試驗(yàn)和小麥-玉米輪作系統(tǒng)長(zhǎng)期定位試驗(yàn)的SOC實(shí)測(cè)數(shù)據(jù),對(duì)改進(jìn)后的RothC模型進(jìn)行驗(yàn)證。模型模擬效果通過(guò)均方根差()、相對(duì)誤差()和模擬效率()進(jìn)行檢驗(yàn)[6]。和越接近0,模擬效果越好。通常,<15%,-10%<<10%,模型模擬效果即達(dá)到較好的水平。
借助于模型模擬的手段,本研究區(qū)分了各有機(jī)物料碳投入對(duì)新形成SOC的貢獻(xiàn)。CK和NPK處理中,碳投入來(lái)源于小麥和玉米根系。NPKS處理中,碳投入來(lái)源除小麥和玉米根系,還包括玉米秸稈。同時(shí),利用碳庫(kù)組分的模擬結(jié)果,進(jìn)一步計(jì)算了1991—2008年間不同有機(jī)物料的平均固碳效率。例如,NPKS處理玉米秸稈的固碳效率即為試驗(yàn)期間新形成的源自玉米秸稈的SOC占累積玉米秸稈碳投入的比例。
2.1 RothC-26.3模型的改進(jìn)
逆向模擬結(jié)果表明,RothC較好地模擬了不同物料在各腐解階段的有機(jī)碳?xì)埩袈剩ū?,圖2)。模擬效果的檢驗(yàn)參數(shù)和分別在10%和±5%以內(nèi),且接近于1(圖2)。模擬結(jié)果同時(shí)表明,小麥根系、小麥秸稈、玉米根系、玉米秸稈的DPM/RPM值分別為0.89、3.04、4.35和3.25,與模型默認(rèn)值(1.44)差異較大(表2)。除以上四種有機(jī)物料外,還進(jìn)一步逆向模擬了谷子根系、谷子秸稈和田菁秸稈等物料的腐解殘留率(圖3),并獲得其DPM/RPM值分別為1.04、1.66和6.94(表2)。同時(shí)構(gòu)建了DPM與lignin﹕N的定量方程為:= 0.96-0.011(圖4)。
表2 RothC模型模擬效果最佳時(shí)不同有機(jī)物料的DPM/RPM值
a:小麥秸稈,b:玉米秸稈,c:小麥根系,d:玉米根系(—為模擬值,為實(shí)測(cè)值)
為進(jìn)一步說(shuō)明模型的可行性,本文利用鄭州有機(jī)物料的短期腐解試驗(yàn)(2012.11—2013.11)進(jìn)行檢驗(yàn)(圖5)。該腐解試驗(yàn)具體情況詳見(jiàn)文獻(xiàn)[18]。圖4-c給出了小麥秸稈、玉米秸稈腐解殘留率模擬值與實(shí)測(cè)值的相關(guān)性分析,小麥秸稈、玉米秸稈SOC的模擬值與實(shí)測(cè)值的決定系數(shù)為0.85和0.91(n=7),斜率為0.88和0.93,接近于1,模擬效果較好,表明修正后RothC模型適用于鄭州地區(qū)。
a:谷子秸稈,b:谷子根系,c:田菁秸稈(—為模擬值,為實(shí)測(cè)值)
WS:小麥秸稈;WR:小麥根系;CS:玉米秸稈;CR:玉米根系;MS:谷子秸稈;MR:谷子根系;SR:田菁秸稈。下同
2.2 鄭州潮土試驗(yàn)區(qū)小麥玉米殘?bào)w對(duì)土壤有機(jī)碳的貢獻(xiàn)
長(zhǎng)期不同施肥處理顯著影響了土壤總有機(jī)碳的含量,且總體表現(xiàn)為:NPKS>NPK>CK(圖6)。CK處理SOC呈緩慢下降趨勢(shì),由試驗(yàn)初始的18.8 t·hm-2下降到2008年的17.3 t·hm-2,原因在于外源有機(jī)物質(zhì)輸入量較少。NPK和NPKS處理均呈上升趨勢(shì),且NPKS處理的增幅較大,表明秸稈還田在一定程度上可以提升土壤SOC。經(jīng)變量參數(shù)DPM/RPM修正后,RothC模型能夠模擬不同施肥處理SOC的動(dòng)態(tài)(圖6)。進(jìn)一步統(tǒng)計(jì)結(jié)果顯示,各處理(4.86%—7.89%)和(-5.23%—2.20%)均控制在±10%以內(nèi),表明各處理模擬值與實(shí)測(cè)值基本吻合,模擬效果較好。碳庫(kù)組分的模型模擬結(jié)果表明,原有SOC(試驗(yàn)開始之前的SOC)隨時(shí)間的延長(zhǎng)而逐漸降低,而不同來(lái)源的新碳則隨時(shí)間的延長(zhǎng)而逐漸累積(圖7)。
由圖8可看出,源自小麥的SOC占新形成SOC的比例(50%—71%)均大于源自小麥的碳投入占總碳投入的比例(47%—61%);而源自玉米的碳投入及其對(duì)新形成SOC的貢獻(xiàn)則反之,表明小麥凋落物的固碳效率總體高于玉米凋落物。進(jìn)一步的計(jì)算表明,小麥根系的固碳效率為15.5%—17.5%,明顯高于玉米根系(10.8%—11.4%)和秸稈的固碳效率(11.4%)(表3)。
圖5 鄭州小麥秸稈(a)、玉米秸稈(b)腐解后碳?xì)埩袈实膶?shí)測(cè)值與模擬值比較
圖6 長(zhǎng)期不同施肥處理土壤有機(jī)碳的實(shí)測(cè)值與模擬值比較
圖7 RothC模型模擬不同施肥處理的土壤有機(jī)碳庫(kù)組成變化
圖8 不同施肥處理下小麥和玉米碳投入占總碳投入的比例及其對(duì)新形成SOC的貢獻(xiàn)
表3 不同施肥處理作物殘?bào)w的固碳效率
3.1 RothC模型DPM/RPM值的改進(jìn)
大量的腐解試驗(yàn)結(jié)果表明,有機(jī)物料的腐解速率與其類型或化學(xué)組分密切相關(guān)[19-21]。多數(shù)SOC模型已將物料性質(zhì)(例如:lignin和N素含量,或lignin﹕N比值)作為變量參數(shù)應(yīng)用于有機(jī)物料碳庫(kù)組分的劃分[22-23]。例如,基于室內(nèi)培養(yǎng)試驗(yàn)和田間填埋試驗(yàn)的結(jié)果,Agro-C模型[22]將初始N素(g·kg-1)及Lignin(g·kg-1)含量作為決定植物殘?bào)w分解速率的重要指標(biāo),其易分解組分的比例為:FLC= (150 + 1.50 N - 0.57 Lignin)/100。CENTURY模型[23]通過(guò)初始lignin﹕N比值計(jì)算物料的易分解比例(Fm),即Fm = 0.99 - 0.018 Lignin﹕N。然而,不同于其他模型,初始版本的RothC模型僅籠統(tǒng)地劃分了植物性有機(jī)物料(DPM﹕RPM = 0.59﹕0.41)和農(nóng)家肥(DPM﹕RPM﹕HUM = 0.49﹕0.49﹕0.02)的碳庫(kù)組分,未深入考慮植物類型或物料性質(zhì)對(duì)碳庫(kù)組分及其分解速率的影響。盡管RothC模型已經(jīng)過(guò)了廣泛的驗(yàn)證,尤其是以作物根茬和有機(jī)肥歸還為主農(nóng)田系統(tǒng)[4-5,10],但越來(lái)越多的研究發(fā)現(xiàn),在默認(rèn)參數(shù)的情況下RothC可能高估了秸稈還田處理的SOC[7-8,10]。本文基于不同有機(jī)物料的腐解試驗(yàn)和RothC模型逆向模擬技術(shù),構(gòu)建了動(dòng)態(tài)變量參數(shù)DPM與Lignin﹕N之間的定量關(guān)系,即FDPM= 0.96 - 0.011 Lignin﹕N(圖4),并利用短期腐解試驗(yàn)和長(zhǎng)期定位試驗(yàn)數(shù)據(jù)進(jìn)行了驗(yàn)證,獲得了較好的模擬效果(圖5)。然而,同一有機(jī)物料中易分解或活性碳庫(kù)比例在不同模型間存在明顯的差異,這主要取決于各模型對(duì)碳庫(kù)周轉(zhuǎn)速率的界定。例如,易分解或活性碳庫(kù)的周轉(zhuǎn)速率在RothC、CENTURY和Agro-C分別為10、14.6和9.5 a-1 [16, 22-23]。
3.2 潮土區(qū)作物根系與秸稈對(duì)新形成SOC的貢獻(xiàn)率
本研究中,小麥根系對(duì)新形成SOC的貢獻(xiàn)率(50%—71%)大于玉米根系和秸稈的貢獻(xiàn)率(22%—40%),這與相關(guān)研究結(jié)果類似。Wang等[24]通過(guò)測(cè)定鄭州、楊凌和烏魯木齊3個(gè)長(zhǎng)期試驗(yàn)站冬小麥-夏玉米輪作體系土壤13C的變化,分析得出玉米殘?bào)w(根系與秸稈)對(duì)SOC貢獻(xiàn)率往往不超過(guò)40%,遠(yuǎn)低于小麥殘?bào)w對(duì)SOC的貢獻(xiàn)(>60%)。Qiao等[25]通過(guò)長(zhǎng)達(dá)22年的定位試驗(yàn)發(fā)現(xiàn),小麥連作區(qū)SOC總量與玉米連作區(qū)無(wú)顯著差異,但前者源于小麥根系的SOC占總SOC的比例遠(yuǎn)大于后者源于玉米根系的SOC比例??鄢纪度肓坎町惖挠绊?,小麥殘?bào)w的固碳效率達(dá)到15.5%—17.5%,是同一處理玉米殘?bào)w固碳效率(10.8%—11.4%)的1.44—1.54倍。其原因可能是小麥殘?bào)w的C﹕N和lignin﹕N均較玉米高(表1),會(huì)降低微生物的分解活動(dòng)。
4.1 通過(guò)修訂DPM/RPM參數(shù),獲得改進(jìn)的Roth C模型,經(jīng)鄭州短期腐解試驗(yàn)和長(zhǎng)期試驗(yàn)數(shù)據(jù)的驗(yàn)證,說(shuō)明其可用來(lái)探究小麥和玉米殘?bào)w對(duì)SOC的貢獻(xiàn)。
4.2 在華北平原冬小麥-夏玉米輪作系統(tǒng)中,無(wú)論不施肥、平衡施肥還是秸稈還田處理,小麥根系對(duì)新形成SOC的貢獻(xiàn)率(50%—71%)均大于玉米根系和秸稈的貢獻(xiàn)率(22%—40%)。
4.3 華北平原小麥-玉米輪作體系,小麥根系的固碳效率是玉米的1.5倍。增加小麥凋落物的歸還較玉米秸稈還田更有利于提升SOC含量。
[1] Stockmann U, Adams M A, Crawford J W, Fielda D J, Henakaarchchi N, Jenkins M, Minasnya B.The knowns, known unknowns and unknowns of sequestration of soil organic carbon., 2013, 164(4): 80-99.
[2] Lal R. Soil carbon sequestration impacts on global climate change and food security., 2004, 304(5677): 1623-1627.
[3] Pan G, Xu X, Smith P, Pan W, Lal R. An increase in topsoil soc stock of china's croplands between 1985 and 2006 revealed by soil monitoring., 2010, 136(1/2): 133-138.
[4] Jiang G Y, Xu M G, He X H, Zhang W J, Huang S M, Yang X Y, Liu H, Peng C, Shirato Y, Toshichika L, Wang J Z, Murphy D V. Soil organic carbon sequestration in upland soils of northern china under variable fertilizer management and climate change scenarios., 2014, 28(3), 319-333.
[5] Peltre C, Christensen B T, Dragon S, Icard C, K?tterer T, Houot S. RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments., 2012, 52(2014): 49-60.
[6] Smith P, Smith J U, Powlson D S, Mcgill W B, Arah J R M, Chertov O G, Coleman K, Franko U, Frolking S, Jenkinson D C, Jensen L S, Kelly R H, Klein- Gunnewiek H, Komarov A S, Li C, Molina J A E, Mueller T, Parton W J, Thornley J H M, Whitmore A P. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments., 1997, 81(1/2): 153-225.
[7] Heitkamp F, Wendland M, Offenberger K, Gerold G. Implications of input estimation, residue quality and carbon saturation on the predictive power of the rothamsted carbon model., 2012, 170: 168-175.
[8] Ludwig B, Helfrich M, Flessa H. Modelling the long-term stabilization of carbon from maize in a silty soil., 2005, 278(1): 315-325.
[9] Shirato Y, Paisancharoen K, Sangtong P, Nakviro C, Yokozawa M, Matsumoto N. Testing the rothamsted carbon model against data from long-term experiments on upland soils in thailand., 2005, 56(2): 179-188.
[10] Wang J, Lu C, Xu M, Huang S, Zhang W. Soil organic carbon sequestration under different fertilizer regimes in North and Northeast China: Rothc simulation., 2013, 29(2): 182-190.
[11] Liu D L, Chan K Y, Conyers M K. Simulation of soil organic carbon under different tillage and stubble management practices using the rothamsted carbon model., 2009, 104(1): 65-73.
[12] Jiang G Y, Shirato Y, Xu M G, Yagasaki Y, Huang Q H, Li Z Z. Testing the modified rothamsted carbon model for paddy soils against the results from long-term experiments in southern China., 2013, 59(59): 16-26.
[13] 韓其晟, 任宏剛, 劉建軍. 秦嶺主要森林凋落物中易分解和難分解植物殘?bào)w含量及比值研究. 西北林學(xué)院學(xué)報(bào), 2012, 27(5): 6-10.
Han Q S, Ren H G, Liu J J. Contents and ratios of the decomposable and resistant plant material in the litters of the main trees in Qinling Mountains., 2012, 27(5): 6-10. ( in Chinese)
[14] Ayanaba A, Jenkinson D S. Decomposition of carbon-14 labeled ryegrass and maize under tropical conditions., 1990, 41(5): 112-115.
[15] 王文山, 王維敏, 張鏡清, 蔡典雄, 張美珠. 農(nóng)作物殘?bào)w在北京農(nóng)田土壤中的分解. 土壤通報(bào), 1989, 20(3): 113-115.
Wang W S, Wang W M, Zhang J Q, Cai D X, Zhang M Z. Decomposition of crop residue in farmland soil of Beijing,, 1989, 20(3): 113-115. ( in Chinese)
[16] COLEMAN K, JENKINSON D S.. Harpenden: Lawes Agricultural Trust, 1999.
[17] Ludwig B, Hu K, Niu L, Liu X. Modelling the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted carbon model-initialization and calculation of c inputs., 2007, 10(332): 193-206.
[18] 劉朝陽(yáng). 我國(guó)典型區(qū)域有機(jī)物料的腐解特征[D]. 貴陽(yáng): 貴州大學(xué), 2012.
Liu C Y. The decomposition characteristics of organic materials in typical regional of china [D]. Guiyang: Guizhou University, 2012. (in Chinese)
[19] Silver W, Miya R. Global patterns in root decomposition: Comparisons of climate and litter quality effects., 2001, 129(3): 407-419.
[20] Zhang D, Hui D, Luo Y, Zhou G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors., 2008, 1(2): 85-93.
[21] 王金洲, 盧昌艾, 張文菊, 馮固, 王秀君, 徐明崗. 中國(guó)農(nóng)田土壤中有機(jī)物料腐解特征的整合分析. 土壤學(xué)報(bào), 2016, 53(1): 16-27.
Wang J Z, Lu C A, Zhang W J, Feng G, Wang X J, Xu M G. Decomposition of organic materials in cropland soils across China: A meta-analysis., 2016, 53(1): 16-27. (in Chinese)
[22] Huang Y, Yu Y, Zhang W, Sun W, Liu S, Jiang J.Agro-c: A biogeophysical model for simulating the carbon budget of agroecosystems., 2009, 149(1): 106-129.
[23] Parton W J, Schimel D S, Cole C V, Ojima D S. Analysis of factors controlling soil organic matter levels in great plains grasslands., 1987, 51(5): 1173-1179.
[24] Wang J, Wang X, Xu M, Feng G, Zhang W, Yang X, Huang S.Contributions of wheat and maize residues to soil organic carbon under long-term rotation in North China., 2015, 5: 1-12.
[25] Qiao Y, Miao S, Li N, Xu Y, Han X, Zhang B. Crop species affect soil organic carbon turnover in soil profile and among aggregate sizes in a mollisol as estimated from natural13C abundance., 2015, 392(1/2): 163-174.
(責(zé)任編輯 楊鑫浩)
Contributions of Wheat and Corn Residues to Soil Organic Carbon Under Fluvo-Aquic Soil Area—Based on the Modified RothC Model
ZHAO Ya-wen1, WANG Jin-zhou1, WANG Shi-chao1, WU Hong-liang1, HUANG Shao-min2, LU Chang-ai1
(1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081;2Henan Soil and Fertilizer Station, Zhengzhou 450002)
【Objective】 In order to explore the effect of straw retention on SOC(soil organic carbon)content, the contributions of wheat and corn residues (root and straw) to SOC under fluvo-aquic soil area were studied, which have a great significance to take technical measures to promote SOC content of winter wheat-summer corn rotation system.【Method】The optimized DPM/RPM values (the ratio of decomposable plant material to resistant plant material) of different residues in Roth C-26.3 model was adjusted on the basis of the remaining rates of different organic materials after their decomposition. The modified model was validated with the data obtained from the short-time decomposition experiment (2012.11-2013.11) and the long-term trial conducted in Zhengzhou (1990-2008). Based on the optimized DPM/RPM parameters of Roth C-26.3 model, the contributions of wheat and corn residues to SOC in winter wheat-summer corn rotation system in northern China under three different fertilizer treatments (no fertilizer CK, chemical fertilizer NPK, chemical fertilizer combined with straw NPKS) were simulated. 【Result】DPM/RPM values of wheat root (WR), wheat straw(WS), corn root (CR), corn straw (CS) were 0.89, 3.04, 4.35 and 3.25, respectively, when the model was in optimal condition. It showed that in CK treatment, the carbon input derived from wheat root and corn root were 50%, respectively, while the contributions of wheat root and corn root to newly-formed soil organic (0-20 cm) were 60% and 40%, the retention coefficients of wheat root and corn root were 15.5% and 10.8%, respectively; in NPK treatment the carbon input derived from wheat root and corn root were 60% and 40%, respectively, while the contributions of wheat root and corn root to newly-formed soil organic (0-20 cm) were 71% and 29%, the retention coefficients of wheat root and corn root were 17.5% and 11.4%, respectively; in NPKS treatment the carbon input derived from wheat root and corn root were 47%, 21% and 32%, respectively, while the contributions of wheat root and corn root to newly-formed soil organic (0-20 cm) were 50%, 22% and 28%, the retention coefficients of wheat root and corn root were 16.9%, 11.2% and 11.4%, respectively. In a word, the contribution of wheat residue (50% -71%) to newly-formed SOC was greater than corn residue (22%-40%) in winter wheat-summer corn rotation system in north China whether no fertilization, balanced fertilization or straw returned. The ratio of SOC derived from wheat to newly-formed SOC was greater than the proportion of the carbon input from wheat to total carbon input, instead of the carbon input of corn and its contribution to newly-formed SOC. The carbon efficiency of wheat root (15.5% -17.5%) was more than the carbon efficiency of corn root and corn straw (10.8% -11.4%).【Conclusion】The modified RothC model can be used to explore the contributions of wheat and corn residues to newly-formed SOC in fluvo-aquic soil area. The contribution of wheat root to SOC was greater than corn root in winter wheat-summer corn rotation system in the north China and the retention coefficient of corn root was greater than the corn straw in NPKS treatment, so the application of root residues (especially wheat roots) could promote the soil organic carbon stock.
RothC model; wheat residue; corn residue; soil organic carbon; fluvo-aquic
2016-05-06;接受日期:2016-09-05
國(guó)家973計(jì)劃課題(2013CB127404)、國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201203030)
聯(lián)系方式:趙雅雯,E-mail:zhaoyawen0122@163.com。通信作者盧昌艾,E-mail:luchangai@caas.cn