郭雯,賴聯(lián)賀,張曉梅,史勁松,許正宏*
1(江南大學(xué) 藥學(xué)院,制藥工程研究室,江蘇 無錫,2141222)2(江南大學(xué) 生物工程學(xué)院,工業(yè)生物技術(shù)教育部重點實驗室,江蘇 無錫,214122)
?
加強表達(dá)3-磷酸甘油醛脫氫酶對谷氨酸棒桿菌產(chǎn)L-絲氨酸的影響
郭雯1,2,賴聯(lián)賀1,張曉梅1,史勁松1,許正宏1,2*
1(江南大學(xué) 藥學(xué)院,制藥工程研究室,江蘇 無錫,2141222)2(江南大學(xué) 生物工程學(xué)院,工業(yè)生物技術(shù)教育部重點實驗室,江蘇 無錫,214122)
在谷氨酸棒桿菌(Corynebacteriumglutamicum)中,由3-磷酸甘油醛脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)催化的反應(yīng)是糖酵解途徑的限速步驟,該反應(yīng)還直接影響了L-絲氨酸的前體3-磷酸甘油酸的合成。研究首先比較了產(chǎn)L-絲氨酸的野生型菌株C.glutamicumSYPS-062與模式菌株C.glutamicumATCC14067的GAPDH酶活力,發(fā)現(xiàn)SYPS-062的GAPDH酶活力比ATCC14067高了55.8%。進(jìn)一步采用在C.glutamicum33a△SS基因組上增加gapA拷貝數(shù)的方法加強表達(dá)GAPDH,構(gòu)建了重組菌C.glutamicum33a△SS-2gapA。重組菌GAPDH轉(zhuǎn)錄水平和酶活力分別提高119%和53%,最大比生長速率提高10.6%,總糖耗速率提高4.4%,L-絲氨酸產(chǎn)量提高17.4%,糖酸轉(zhuǎn)化率提高12.2%,生產(chǎn)強度提高17.4%。結(jié)果表明,加強表達(dá)GAPDH能夠提高重組菌的生長和糖耗速率,并能夠提高L-絲氨酸的產(chǎn)量、糖酸轉(zhuǎn)化率和生產(chǎn)強度。
3-磷酸甘油醛脫氫酶;谷氨酸棒桿菌;L-絲氨酸
L-絲氨酸作為一種重要的氨基酸,參與很多重要代謝產(chǎn)物的合成,在醫(yī)藥、化妝品和食品添加劑領(lǐng)域具有廣泛的應(yīng)用前景[1-2]。生產(chǎn)方法主要有化學(xué)合成法、蛋白質(zhì)水解法、酶法轉(zhuǎn)化法和微生物發(fā)酵法。目前直接利用糖質(zhì)原料的微生物發(fā)酵法受到了廣泛的關(guān)注。谷氨酸棒桿菌(Corynebacteriumglutamicum)作為一種食品安全級的菌株,擁有成熟的遺傳背景,已經(jīng)廣泛應(yīng)用于生產(chǎn)多種氨基酸[3]。
谷氨酸棒桿菌中L-絲氨酸的合成及降解途徑如圖1所示。L-絲氨酸以糖酵解途徑中間產(chǎn)物3-磷酸甘油酸作為起始物質(zhì),通過3-磷酸甘油酸脫氫酶(PGDH)、磷酸絲氨酸轉(zhuǎn)氨酶(PSAT)和磷酸絲氨酸磷酸酶(PSP)3個酶催化生成L-絲氨酸。L-絲氨酸則被絲氨酸羥甲基轉(zhuǎn)移酶(SHMT)或L-絲氨酸脫氨酶(L-serDH)催化降解為甘氨酸或丙酮酸[4]。目前代謝工程改造谷氨酸棒桿菌產(chǎn)L-絲氨酸主要集中在其合成及降解途徑。STOLZ等加強表達(dá)了C.glutamicumATCC13032L-絲氨酸合成途徑中的關(guān)鍵酶,敲除或弱化了降解途徑中的酶,菌株產(chǎn)量為345 mmol/L[5]。
圖1 谷氨酸棒桿菌中L-絲氨酸的合成及降解途徑Fig.1 The biosynthesis and degradation pathway of L-serine in C. glutamicum
本實驗室前期對產(chǎn)L-絲氨酸的野生型菌株C.glutamicumSYPS-062進(jìn)行了隨機誘變,得到了L-絲氨酸高產(chǎn)菌株C.glutamicumSYPS-062-33a。進(jìn)而以其為出發(fā)菌株,對L-絲氨酸合成及降解途徑進(jìn)行了改造,解除了L-絲氨酸對PGDH的反饋抑制,敲除了L-serDH,構(gòu)建的重組菌C.glutamicum33a△SSL-絲氨酸產(chǎn)量為21.27 g/L[6]。目前針對糖酵解途徑的L-絲氨酸代謝工程改造策略則鮮有報道[7]。
3-磷酸甘油醛脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)是糖酵解途徑中的關(guān)鍵酶,參與了L-絲氨酸前體3-磷酸甘油酸的合成。YAMAMOTO等通過加強表達(dá)GAPDH,提高了GAPDH酶活力,減少了胞內(nèi)糖酵解途徑中3-磷酸甘油醛上游的中間代謝產(chǎn)物積累量,提高了谷氨酸棒桿菌在缺氧條件下的L-丙氨酸產(chǎn)量和糖耗速率[8]。GAPDH酶活力大小也可能會對谷氨酸棒桿菌產(chǎn)L-絲氨酸產(chǎn)生影響。
本文首先通過比較產(chǎn)L-絲氨酸的野生型菌株C.glutamicumSYPS-062與模式菌株C.glutamicumATCC14067的GAPDH酶活力,推測較高的GAPDH酶活力有利于L-絲氨酸的積累。進(jìn)一步采用在C.glutamicum33a△SS基因組上增加gapA拷貝數(shù)的方法加強表達(dá)GAPDH,構(gòu)建了重組菌C.glutamicum33a△SS-2gapA。最后通過比較出發(fā)菌和重組菌的發(fā)酵性能,評估了加強表達(dá)GAPDH對谷氨酸棒桿菌生長和產(chǎn)L-絲氨酸的影響。
1.1材料
1.1.1菌種及引物
C.glutamicumSYPS-062為本實驗室前期篩選并保藏的直接利用糖質(zhì)原料產(chǎn)L-絲氨酸的野生型菌株;C.glutamicum33a△SS為本實驗室前期構(gòu)建并保藏的產(chǎn)L-絲氨酸的重組菌;模式菌株C.glutamicumATCC14067、大腸桿菌JM109及穿梭質(zhì)粒pk18mobsacB均為本實驗室保藏;本文所用的引物見表1。
表1 本文所用的引物
注:酶切位點用下劃線標(biāo)注。
1.1.2試劑
質(zhì)粒小量提取試劑盒、膠回收試劑盒、柱式Trizol總RNA抽提試劑盒、抗生素、PCR引物等購自上海生工生物工程有限公司;PCR相關(guān)酶,限制性內(nèi)切酶SalI、BamHI、NotI等購自TaKaRa公司;酶活測定試劑購自sigma公司;一步法cDNA合成試劑盒、Power qPCR PreMix(SYBR Green)購自上海捷瑞生物工程有限公司;其他試劑為國產(chǎn)分析純。
1.1.3培養(yǎng)基
(1) LB培養(yǎng)基(g/L):蛋白胨10;酵母粉 5;NaCl 10(固體培養(yǎng)基,瓊脂粉 20);滅菌條件:121 ℃,20 min。
(2)種子培養(yǎng)基(g/L):腦心浸液37;葡萄糖 20;(NH4)2SO410;MgSO4·7H2O 0.5;K2HPO40.2;NaH2PO40.3;滅菌條件:115 ℃, 7 min。
(3)發(fā)酵培養(yǎng)基(g/L):蔗糖 100;(NH4)2SO430;CaCO360;KH2PO43;MgSO4·7H2O 0.5;FeSO4·7H2O 0.02;MnSO4·H2O 0.02;原兒茶酸0.03;生物素 5×10-5;鹽酸硫胺素 4.5×10-4;滅菌條件:115 ℃,7 min。
(4)谷氨酸棒桿菌感受態(tài)培養(yǎng)基(g/L):蛋白胨 10;酵母粉 5;NaCl 10;吐溫80 1;甘氨酸 25;滅菌條件:121 ℃,20 min。
(6)谷氨酸棒桿菌電轉(zhuǎn)化培養(yǎng)基(g/L):蛋白胨 5;酵母粉 2.5;NaCl 5;腦心浸液 18.5;山梨醇 91;瓊脂粉 20;滅菌條件:121 ℃,20 min。
(7)10%蔗糖篩選培養(yǎng)基(g/L):腦心浸液37;蔗糖 100;(NH4)2SO410;MgSO4·7H2O 0.5;K2HPO40.2;NaH2PO40.3;瓊脂粉 20;滅菌條件:115 ℃,7 min。
1.2實驗方法
1.2.1重組質(zhì)粒pk18mobsacB-2gapA的構(gòu)建
在基因組上增加基因拷貝數(shù)的重組質(zhì)粒構(gòu)建方法參考文獻(xiàn)[9]。質(zhì)粒構(gòu)建流程圖如圖2所示。
圖2 重組質(zhì)粒pk18mobsacB-2gapA構(gòu)建流程圖Fig.2 The flow chart of the construction of the recombinant plasmid pk18mobsacB-2gapA
以C.glutamicum33a△SS基因組為模板,采用引物P1/P2和P3/P4分別擴增含有不同酶切位點的片段gapA1和gapA2,片段總長度為1 709 bp,片段不僅包括gapA基因編碼區(qū)(1005 bp)還包括gapA基因與其上下游基因之間的間隔序列(上游間隔序列488 bp,下游間隔序列216 bp),使得擴增的片段涵蓋該基因的啟動子區(qū)和終止子區(qū)。將膠回收后的gapA1片段以BamHI和NotI雙酶切,gapA2片段以NotI和SalI雙酶切,并同時雙酶切質(zhì)粒pk18mobsacB。膠回收酶切后的片段和質(zhì)粒,T4DNA連接酶過夜連接。將連接產(chǎn)物化轉(zhuǎn)E.coliJM109,提取質(zhì)粒,采用根據(jù)pK18mobsacB多克隆位點上下游序列設(shè)計的通用引物P5/P6進(jìn)行PCR驗證,采用限制性內(nèi)切酶BamHI和SalI進(jìn)行酶切驗證。
1.2.2重組菌33a△SS-2gapA的構(gòu)建
將成功構(gòu)建的重組質(zhì)粒pk18mobsacB-2gapA電轉(zhuǎn)化33a△SS感受態(tài)細(xì)胞[10],在含50 μg/mL Kan的平板中進(jìn)行第1次同源重組[11]。挑取重組子在含Kan的種子培養(yǎng)基中過夜培養(yǎng),稀釋涂布于10%蔗糖篩選培養(yǎng)基平板進(jìn)行第2次同源重組。待長出單菌落后,挑取二次重組子,采用根據(jù)gapA上下游基因的編碼區(qū)設(shè)計的引物P7/P8進(jìn)行菌落PCR驗證。
1.2.3GAPDH酶活力的測定
取培養(yǎng)至對數(shù)生長期的種子或發(fā)酵液10 mL離心,用100 mmol/L Tris-HCl洗滌菌體3次。用1 mL的Tris-HCl重懸菌體,在冰浴條件下超聲破碎45 min (破3 s,停7 s)。離心去除細(xì)胞碎片得到上清液即為粗酶液,再采用Bradford蛋白定量試劑盒[12]進(jìn)行蛋白濃度定量。
酶活力測定方法參考文獻(xiàn)[8]。GAPDH酶活在25 mmol/L磷酸鹽緩沖液(pH 7.5)中進(jìn)行測定,體系中包括0.2 mmol/L EDTA,5 mmol/L NAD+,5 mmol/L 3-磷酸甘油醛。
1單位酶活力定義:在37 ℃、pH 7.5的反應(yīng)條件下,每分鐘生成1 μmol NADH所需的酶量,(NADH μmol/min)。其中NADH摩爾吸光系數(shù)采用6.22×103M-1·cm-1[8]。
比活力=酶液稀釋倍數(shù)×ΔA340×Vt/(e×Vs×d×C)
式中:ΔA340為吸光度值變化率,min-1;Vt為反應(yīng)體系總體積,mL;e為摩爾吸光系數(shù),M-1·cm-1;Vs為粗酶液體積,mL;d為比色杯光徑,cm;C為蛋白的質(zhì)量濃度,mg/mL。
1.2.4GAPDH相對轉(zhuǎn)錄水平的測定
總RNA提取按柱式Trizol總RNA抽提試劑盒說明書進(jìn)行。將重組菌和出發(fā)菌的RNA定量成相同濃度后進(jìn)行逆轉(zhuǎn)錄。以重組菌和出發(fā)菌的cDNA為模板進(jìn)行RT-qPCR。16S rRNART-qPCR采用引物P9/P10,gapART-qPCR采用引物P11/P12。以16S rRNA的Ct值作為內(nèi)參計算GAPDH的轉(zhuǎn)錄水平。RT-qPCR反應(yīng)體系如下:2×Power qPCR PreMix 10 μL,ROX Reference Dye(50×) 0.4 μL,cDNA模板2 μL,引物(Forward +Reverse) 4 μL,ddH2O 3.6 μL,總體積20 μL。反應(yīng)程序如下:95 ℃ 30 s;95 ℃ 5 s,60 ℃ 30 s,72 ℃ 45 s,循環(huán)40次。每個樣品重復(fù)3次。RT-qPCR結(jié)果采用2-△△Ct方法[13]對基因的Ct值進(jìn)行定量分析。
1.2.5發(fā)酵參數(shù)的測定
生物量的測定:紫外分光光度計測定OD562值;DCW (g/L) = 0.192 5×OD562。
糖和氨基酸濃度的測定:采用高效液相色譜法(HPLC)測定[14]。
2.1產(chǎn)L-絲氨酸的野生型菌株與模式菌株GAPDH酶活力的比較
取對數(shù)生長期的ATCC14067與SYPS-062種子液,測定GAPDH酶活力,測定結(jié)果如圖3 (A)所示,SYPS-062的GAPDH酶活力為(0.804±0.006) U/mg,比ATCC14067[(0.516±0.005) U/mg]高了55.8%。取同一批種子液,比較SYPS-062與ATCC14067的GAPDH轉(zhuǎn)錄水平,結(jié)果如圖3 (B)所示,SYPS-062的GAPDH轉(zhuǎn)錄水平為ATCC14067的91.9%,在轉(zhuǎn)錄水平上未見明顯差異。
圖3 ATCC14067與SYPS-062中GAPDH酶活力和轉(zhuǎn)錄水平比較Fig.3 The specific enzyme activity and relative transcriptional level comparisons of GAPDH between ATCC14067 and SYPS-062
進(jìn)一步比較C.glutamicumSYPS-062(GenBank accession: JXBH00000000)與C.glutamicumATCC14067(GenBank accession: AGQQ00000000)GAPDH的核糖體結(jié)合位點(RBS)[15]和編碼區(qū)序列,發(fā)現(xiàn)兩者GAPDH的RBS序列一致;在GAPDH編碼區(qū)存在1個氨基酸序列的差異,第249位氨基酸在ATCCC14067中為蘇氨酸,而在SYPS-062中為異亮氨酸。于是推測ATCC14067與SYPS-062的GAPDH酶活力差異可能是由它們GAPDH編碼區(qū)的氨基酸序列差異所致。鑒于ATCC14067無法積累L-絲氨酸,而SYPS-062能產(chǎn)L-絲氨酸,推測較高的GAPDH酶活力有利于L-絲氨酸積累,擬在菌株C.glutamicum33a△SS上進(jìn)一步加強表達(dá)GAPDH,以期提高L-絲氨酸的產(chǎn)量。
2.2重組菌與出發(fā)菌GAPDH相對轉(zhuǎn)錄水平的測定
采用1.2.1與1.2.2中的方法,成功構(gòu)建了重組質(zhì)粒pk18mobsacB-2gapA與重組菌C.glutamicum33a△SS-2gapA。取對數(shù)生長期的重組菌和出發(fā)菌發(fā)酵液,測定GAPDH相對轉(zhuǎn)錄水平,測定結(jié)果如圖4所示。從圖4可以看出重組菌GAPDH轉(zhuǎn)錄水平為出發(fā)菌的2.19倍。在基因組上增加gapA拷貝數(shù)后重組菌GAPDH的轉(zhuǎn)錄水平得到了提高。
圖4 33a△SS和33a△SS-2gapAGAPDH相對轉(zhuǎn)錄水平的測定Fig.4 Therelative transcriptional level of GAPDH in 33a△SS and 33a△SS-2gapA
2.3重組菌與出發(fā)菌GAPDH酶活力的測定
取對數(shù)生長期的重組菌和出發(fā)菌發(fā)酵液,測定GAPDH酶活力,測定結(jié)果如圖5所示。重組菌GAPDH酶活力為(1.052±0.025) U/mg,為出發(fā)菌[(0.688±0.005) U/mg]的1.53倍。在基因組上增加gapA拷貝數(shù)后重組菌GAPDH的酶活力提高。
圖5 33a△SS和33a△SS-2gapA GAPDH酶活力測定Fig.5 The specific activity of GAPDH in 33a△SS and 33a△SS-2gapA
2.4重組菌發(fā)酵性能評價
在以100 g/L蔗糖為底物的發(fā)酵培養(yǎng)基中比較重組菌和對照菌的發(fā)酵性能。菌體的生長曲線如圖6 (A)所示,從圖6 (A)可以看出,重組菌的生長速率在24 h~60 h期間明顯快于出發(fā)菌,發(fā)酵至84 h重組菌OD達(dá)到最大值51.40,其最大比生長速率為0.209 h-1,比出發(fā)菌(0.189 h-1)提高了10.6%,可見加強表達(dá)GAPDH能夠提高重組菌的生長速率。菌體的糖耗曲線如圖6 (B)所示,可以看出,在菌體的對數(shù)生長期(24 h~48 h)重組菌的糖耗速率明顯快于出發(fā)菌,發(fā)酵至84h重組菌糖消耗完畢,其總糖耗速率為1.18 g/(L·h),比出發(fā)菌(1.13 g/(L·h))提高了4.4%,可見加強表達(dá)GAPDH能夠提高重組菌的糖耗速率。菌體的產(chǎn)酸曲線如圖6 (C)所示,從圖6 (C)可以看出,發(fā)酵至84h重組菌的L-絲氨酸產(chǎn)量達(dá)到最大值23.73 g/L,比出發(fā)菌(20.21 g/L)提高了17.4%;重組菌糖酸轉(zhuǎn)化率達(dá)0.239 g/g 蔗糖,比出發(fā)菌(0.213 g/g 蔗糖)提高了12.2%;重組菌生產(chǎn)強度達(dá)0.283 g/(L·h),比出發(fā)菌[0.241 g/(L·h)]提高了17.4%;可見加強表達(dá)GAPDH能夠提高重組菌的產(chǎn)量、糖酸轉(zhuǎn)化率和生產(chǎn)強度。重組菌和出發(fā)菌84 h時的發(fā)酵參數(shù)如表2所示。綜上所述,加強表達(dá)GAPDH的代謝工程策略能夠獲取更高效合成L-絲氨酸的重組菌株。
(A) 生長曲線; (B) 糖消耗曲線; (C) L-絲氨酸生產(chǎn)曲線圖6 出發(fā)菌33a△SS和重組菌33a△SS-2gapA發(fā)酵性能比較Fig.6 The fermentation performancecomparison of 33a△SS and 33a△SS-2gapA
發(fā)酵參數(shù)菌株33a△SS33a△SS-2gapADCW/(g·L-1)9.60±0.169.89±0.27蔗糖/(g·L-1)5.13±0.990.81±0.38L-絲氨酸/(g·L-1)20.21±0.7123.73±0.35μmax/(h-1)0.189±0.0000.209±0.000總糖耗速率/[g·(L·h)-1]1.13±0.011.18±0.00糖酸轉(zhuǎn)化率/(g·g-1)0.213±0.0080.239±0.004生產(chǎn)強度/[g·(L·h)-1]0.241±0.0080.283±0.004
本文首先比較了產(chǎn)L-絲氨酸的野生型菌株C.glutamicumSYPS-062與模式菌株C.glutamicumATCC14067的GAPDH酶活力,發(fā)現(xiàn)SYPS-062的GAPDH酶活力比ATCC14067高了55.8%。兩者的GAPDH編碼區(qū)存在一個氨基酸序列差異,推測酶活差異是由該氨基酸序列差異所致,進(jìn)一步證明還有待后續(xù)實驗對該酶進(jìn)行酶學(xué)性質(zhì)研究。鑒于ATCC14067無法積累L-絲氨酸,而SYPS-062能產(chǎn)L-絲氨酸,推測較高的GAPDH酶活力有利于L-絲氨酸積累。進(jìn)而以C.glutamicum33a△SS為出發(fā)菌株,在其基因組上增加了1個gapA的拷貝數(shù),構(gòu)建了加強表達(dá)GAPDH的重組菌C.glutamicum33a△SS-2gapA,并考察了該酶的加強表達(dá)對谷氨酸棒桿菌產(chǎn)L-絲氨酸的影響。鑒于質(zhì)粒加強表達(dá)的不穩(wěn)定性及需要在發(fā)酵過程中添加抗生素等缺點,采用在基因組上增加gapA拷貝數(shù)的方法加強表達(dá)GAPDH。比較重組菌和出發(fā)菌中GAPDH的轉(zhuǎn)錄水平和酶活力,重組菌GAPDH轉(zhuǎn)錄水平和酶活力分別提高119%和53%。發(fā)酵實驗結(jié)果表明,重組菌最大比生長速率提高10.6%,糖耗速率提高4.4%,L-絲氨酸產(chǎn)量提高17.4%,糖酸轉(zhuǎn)化率提高12.2%,生產(chǎn)強度提高17.4%??梢娂訌姳磉_(dá)GAPDH能夠提高重組菌的生長和糖耗速率,并能夠提高L-絲氨酸的產(chǎn)量、糖酸轉(zhuǎn)化率和生產(chǎn)強度。本文首次報道了加強表達(dá)GAPDH的代謝工程策略能夠獲取更高效合成L-絲氨酸的重組菌株。
[1]GU Peng-fei, YANG Fan, SU Tian-yuan, et al. Construction of anL-serine producingEscherichiacolivia metabolic engineering [J]. Journal of Industrial Microbiology & Biotechnology,2014, 41(9):1 443-1 450.
[2]ZHANG Xiao-mei, XU Guo-qiang, LI Hui, et al. Effect of cofactor folate on the growth ofCorynebacteriumglutamicumSYPS-062 andL-serine accumulation [J]. Applied Biochemistry and Biotechnology,2014, 173(7):1 607-1 617.
[3]VERTES A A, INUI M, YUKAWA H. Postgenomic approaches to using corynebacteria as biocatalysts [J]. Annual Review of Microbiology,2012, 66:521-550.
[4]PETERS-WENDISCH P, NETZER R, EGGELING L, et al. 3-Phosphoglycerate dehydrogenase fromCorynebacteriumglutamicum: the C-terminal domain is not essential for activity but is required for inhibition byL-serine [J]. Applied Microbiology and Biotechnology, 2002, 60(4):437-441.
[5]STOLZ M, PETERS-WENDISCH P, ETTERICH H, et al. Reduced folate supply as a key to enhancedL-serine production byCorynebacteriumglutamicum[J]. Applied Environmental Microbiology,2007, 73(3):750-755.
[6]XU Guo-qiang, ZHU Qin-jian, LUO Yu-chang, ZHANG Xiao-mei, et al. Enhanced production ofL-serine by deletingsdaAcombined with modifying and overexpressingserAin a mutant ofCorynebacteriumglutamicumSYPS-062 from sucrose [J]. Biochemical Engineering Journal,2015, 103:60-67.
[7]LAI Shu-juan, ZHANG Yun, LIU Shu-wen, et al. Metabolic engineering and flux analysis ofCorynebacteriumglutamicumforL-serine production [J]. Sci China Life Sci,2012, 55(4):283-290.
[8]YAMAMOTO S, GUNJI W, SUZUKI H, et al. Overexpression of genes encoding glycolytic enzymes inCorynebacteriumglutamicumenhances glucose metabolism and alanine production under oxygen deprivation conditions [J]. Applied Environmental Microbiology, 2012, 78(12):4 447-4 457.
[9]BECHER J, ZELDER O, HAFNER S, et al. From zero to herodesign-based systems metabolic engineering ofCorynebacteriumglutamicumforL-lysine production [J]. Metabolic Engineering,2011, 13(2):159-168.
[10]VAN DER REST ME, LANGE C, et al.A heat shock following electroporation induces highly efficient transformation ofCorynebacteriumglutamicumwith xenogeneic plasmid DNA [J]. Applied Microbiology Biotechnology, 1999, 52(4):541-545.
[11]SCHAFER A, TAUCH A, JAGER W, et al. Small mobilizable multi-purpose cloning vectors derived from theEscherichiacoliplasmids pK18 and pK19: selection of defined deletions in the chromosome ofCorynebacteriumglutamicum[J]. Gene, 1994, 145(1):69-73.
[12]BRADFORD MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72:248-254.
[13]LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method [J]. Methods, 2001, 25(4):402-408.
[14]ZHU Qin-jian, ZHANG Xiao-mei, LUO Yu-chang, et al.L-Serine overproduction with minimization of by-product synthesis by engineeredCorynebacteriumglutamicum[J]. Applied Microbiology Biotechnology,2015, 99(4):1 665-1 673.
[15]KOICHI T, HARUHIKO T, MASAYUKI I, et al. Involvement of the LuxR-Type transcriptional regulatorramA in regulation of expression of thegapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase ofCorynebacteriumglutamicum[J]. Journal of Bacteriology, 2009, 191(3): 968-977.
Effects of glyceraldehyde-3-phosphate dehydrogenase overexpression onL-serine production inCorynebacteriumglutamicum
GUO Wen1,2, LAI Lian-he1, ZHANG Xiao-mei1, SHI Jin-song1, XU Zheng-hong1,2*
1(Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi 214122, China)2 (The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China)
InCorynebacteriumglutamicum, the reaction catalyzed by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the rate-limiting step in the glycolysis pathway, also, it influences the biosynthesis of theL-serine precursor 3-phosphoglycerare directly. In this study, firstly, the GAPDH activity of the wild-typeL-serine-producing strainC.glutamicumSYPS-062 and the model strainC.glutamicumATCC14067 were compared. The GAPDH activity in SYPS-062 was 55.8% higher than that in ATCC14067. Then, GAPDH was overexpressed by insertion of an additional gapA copy into genome ofC.glutamicum33a△SS to construct the recombinant strainC.glutamicum33a△SS-2gapA. The transcriptional level and the enzyme activity of GAPDH in the recombinant strain were increased by 119% and 53% respectively. The fermentation experiment showed that the maximum specific growth rate was increased by 10.6%, the sugar consumption rate was increased by 4.4%, theL-serine production was increased by 17.4%, the yield was increased by 12.2%, and the productivity was increased by 17.4% in the recombinant strain. These results demonstrated that overexpression of GAPDH could increase the growth and sugar consumption rate, and improve the production, yield and productivity ofL-serine in the recombinant strain.
glyceraldehyde-3-phosphate dehydrogenase;Corynebacteriumglutamicum;L-serine
10.13995/j.cnki.11-1802/ts.201609003
碩士研究生(許正宏教授為通訊作者,E-mail:zhenghxu@jiangnan.edu.cn)。
2016-03-08,改回日期:2016-03-18