孟祥梅,孫蕾
?
海底沉積物聲學(xué)性質(zhì)測(cè)量技術(shù)評(píng)述
孟祥梅1,2,孫蕾1,2
(1. 海洋沉積與環(huán)境地質(zhì)國(guó)家海洋局重點(diǎn)實(shí)驗(yàn)室,國(guó)家海洋局第一海洋研究所,山東青島 266061; 2. 青島海洋科學(xué)與技術(shù)國(guó)家實(shí)驗(yàn)室海洋地質(zhì)過程與環(huán)境功能實(shí)驗(yàn)室,山東青島 266061)
由于資源勘探、軍事應(yīng)用、巖土特性聲學(xué)調(diào)查和聲波傳播理論研究等的需要,多年來人們一直在進(jìn)行海底沉積物聲學(xué)性質(zhì)的測(cè)量。對(duì)海底沉積物聲學(xué)性質(zhì)的取樣測(cè)量技術(shù)和原位測(cè)量技術(shù)進(jìn)行了敘述,分別總結(jié)了兩種測(cè)量技術(shù)存在的問題,認(rèn)為下一步有必要發(fā)展海底沉積物低頻聲學(xué)性質(zhì)的直接測(cè)量技術(shù),建議在原位測(cè)量海底沉積物聲學(xué)性質(zhì)參數(shù)的同時(shí)測(cè)量其他性質(zhì)參數(shù)以便于對(duì)比研究,并設(shè)法提高原位測(cè)量的工作效率。
海底沉積物;聲學(xué)性質(zhì);取樣測(cè)量;原位測(cè)量
海底沉積物聲學(xué)性質(zhì)參數(shù),例如聲波在沉積物中傳播的速度和衰減,是沉積物聲波傳播理論的基本輸入?yún)?shù)。自從20世紀(jì)50年代以來,為了以下目的,聲波在松散沉積物中傳播的速度和衰減就已被測(cè)量[1-9]:(1) 約束低頻地球物理學(xué)數(shù)據(jù)的反演,特別是與油氣勘探有關(guān)的數(shù)據(jù);(2) 為反潛戰(zhàn)提供地聲學(xué)模型;(3) 測(cè)定巖土特性與聲學(xué)特性之間的關(guān)系以支持聲學(xué)調(diào)查技術(shù);(4) 研究聲波傳播理論公式的正確性;(5) 預(yù)測(cè)沉積物的巖土性能;(6) 為高頻散射和穿透模型提供必要的輸入?yún)?shù)。
海底沉積物聲學(xué)性質(zhì)測(cè)量技術(shù)主要分三種,即取樣測(cè)量、反射/折射剖面遙測(cè)和原位測(cè)量。
取樣測(cè)量由于技術(shù)簡(jiǎn)單,樣品的外界因素如壓力和溫度可控,很長(zhǎng)時(shí)間內(nèi)一直是海底沉積物聲學(xué)性質(zhì)測(cè)量的主要方法。但由于在取樣、運(yùn)輸、保存和測(cè)試過程中,海底沉積物樣品會(huì)受到未知程度的擾動(dòng),內(nèi)部結(jié)構(gòu)勢(shì)必發(fā)生變化,從而影響聲學(xué)性質(zhì)的測(cè)量結(jié)果,而有限的典型樣品尺寸也會(huì)限制用于樣品測(cè)試的頻率。
大規(guī)模海底沉積物聲速調(diào)查在測(cè)量原理上主要有反射波法和折射波法兩種,它是利用人工地震波在地層中的傳播規(guī)律獲取地層信息的方法。測(cè)定不同水平距離上的直達(dá)波、反射波和首波的傳播時(shí)間,根據(jù)折射定律,計(jì)算底質(zhì)中各層的聲速和厚度。由直達(dá)波和反射波的傳播路徑及聲能之差可決定各層沉積物的衰減系數(shù)。反射/折射剖面遙測(cè)技術(shù)為測(cè)量大體積表層和次表層沉積物的原位聲學(xué)性質(zhì)提供了一個(gè)高效的方式。該技術(shù)的弊端是被聲穿透的沉積物體積存在一定程度的不確定性,而采用的數(shù)據(jù)處理技術(shù)需要確定的假設(shè),這可能限制它們對(duì)某些沉積物類型的使用。
原位測(cè)量是介于取樣測(cè)量和反射/折射剖面遙測(cè)之間的一種折衷的技術(shù),雖然其與遙測(cè)技術(shù)相比更具侵入性,但比取樣測(cè)量受擾動(dòng)小。與原位聲波傳播試驗(yàn)相關(guān)的試樣幾何形狀比實(shí)驗(yàn)室技術(shù)受限制少,而且與遙測(cè)技術(shù)相比能更好地描述海底沉積物的聲學(xué)性質(zhì)。
總的來說,反射/折射剖面遙測(cè)技術(shù)提供的是大體積地層的平均聲速和衰減系數(shù)的估計(jì),屬于獲取海底沉積物聲學(xué)性質(zhì)的間接方法,而取樣測(cè)量和原位測(cè)量屬于直接方法,本文僅對(duì)這兩種測(cè)量技術(shù)進(jìn)行評(píng)述。
1.1 聲速和聲衰減測(cè)量
在實(shí)驗(yàn)室中通常采用透射法測(cè)量沉積物的聲速,測(cè)量原理如圖1所示,發(fā)射換能器產(chǎn)生的聲波在海底取得的沉積物樣品中傳播,被另一端的接收換能器接收。在已知樣品長(zhǎng)度的情況下,根據(jù)聲波儀記錄的接收信號(hào)計(jì)算出聲波穿透時(shí)間,由式(1)即可得聲速:
其中:V為樣品聲速(m/s),為樣品長(zhǎng)度(mm),為聲波穿透時(shí)間(μs),1為系統(tǒng)延時(shí)(μs),0為聲時(shí)修正值(μs)。
圖1 聲速透射法測(cè)量原理圖
Fig.1 Schematic of transmission measurement of acoustic velocity
上述測(cè)量方法測(cè)量的是海底沉積物樣品垂直方向上的聲速。Richardson[10]發(fā)明的方法測(cè)量的是海底沉積物樣品徑向上的聲速和衰減系數(shù):根據(jù)分別在沉積物巖芯中和充滿蒸餾水的相同巖芯管中傳播的頻率為400 kHz聲波信號(hào)(5~10個(gè)周期的正弦波)的傳播時(shí)間差(D)來測(cè)量聲速(,m/s)和衰減系數(shù)(,dB/m)
(3)
其中:w是蒸餾水的聲速(m/s);是巖芯管的內(nèi)徑(m);w/s是沉積物蒸餾水中與樣品中透射聲波振幅的接收電壓的比值。另外,多傳感器跟蹤系統(tǒng)[11]及巖芯綜合測(cè)試系統(tǒng)[12-16]上帶的P波傳感器也可用來測(cè)量海底沉積物樣品徑向上的聲速,方法與Richardson的方法類似。
鄒大鵬等[17]提出了同軸差距衰減測(cè)量法(其原理圖如圖2所示),并推導(dǎo)得出了衰減系數(shù)α的表達(dá)式:
其中:1、2分別為樣品長(zhǎng)度為1、2時(shí)接收到的聲波信號(hào)的聲壓最大幅值。
圖2 同軸差距衰減測(cè)量法原理圖
Fig.2 Schematic of coaxial differential distance measurement of acoustic attenuation
1.2 剪切波速測(cè)量
在實(shí)驗(yàn)室中,沉積物剪切波速的測(cè)量采用多種技術(shù),包括共振柱、使用石英晶體傳感器的脈沖技術(shù)、壓電陶瓷剪切板或徑向膨脹傳感器、扭轉(zhuǎn)共振柱[18]、扭轉(zhuǎn)周期載荷及多種壓電陶瓷或彎曲元(見Bennell和Taylor-Smith[19]的回顧)。彎曲元可以被懸臂安裝,其中彎曲元的一端被夾緊,允許另一端振動(dòng)[20-21]或?qū)⑵渥杂傻厍度胍环N柔性材料中[22-23]。懸臂安裝對(duì)實(shí)驗(yàn)室測(cè)量來說最合適,且自由嵌入對(duì)原位應(yīng)用來說更好。
目前在實(shí)驗(yàn)室中通常使用彎曲元法對(duì)沉積物的剪切波速進(jìn)行測(cè)試(如圖3所示)。試驗(yàn)時(shí),彎曲元懸臂段被插入試樣中。當(dāng)一端的彎曲元通電而產(chǎn)生彎曲運(yùn)動(dòng)時(shí)周圍的土體也被迫水平向左右運(yùn)動(dòng)。這種運(yùn)動(dòng)以波的形式通過土體這一介質(zhì)傳播,到達(dá)另一端時(shí),對(duì)端的彎曲元由于周圍土體的運(yùn)動(dòng)而產(chǎn)生彎曲變形,由于壓電材料的特殊性質(zhì),動(dòng)能轉(zhuǎn)變?yōu)殡娔?,該電信?hào)被電荷放大器接收并放大。用示波器記錄激發(fā)和接收兩種信號(hào)。試樣中剪切波波速可用式(5)得出:
其中:V為剪切波速(m/s);為修正后的試樣高度(mm),即試樣的高度減去彎曲元插入試樣的高度,為剪切波傳播時(shí)間(ms),即激發(fā)和接收信號(hào)的時(shí)間差。
圖3 彎曲元法測(cè)試沉積物剪切波速示意圖
Fig.3 Schematic of shear wave speed measurement using bending element method
1.3 目前取樣測(cè)量技術(shù)存在的問題
從海底取得沉積物樣品進(jìn)行聲學(xué)性質(zhì)測(cè)量改變了海底沉積物的賦存環(huán)境,雖然可以通過實(shí)驗(yàn)手段恢復(fù)海底的壓力和溫度等,但是由于海底沉積物并非理想彈性體,其在取樣、運(yùn)輸、保存和測(cè)試過程中產(chǎn)生的形變并不能完全恢復(fù),這勢(shì)必影響聲學(xué)性質(zhì)的測(cè)量結(jié)果(見圖4和圖5)。另外,前述聲衰減測(cè)量方法換能器與沉積物之間耦合欠佳引起的能量損失、分割樣品造成的擾動(dòng)、邊界散射的干擾連同上述海底沉積物狀態(tài)的改變使得取樣測(cè)量得到的聲衰減系數(shù)遠(yuǎn)遠(yuǎn)大于原位測(cè)量的結(jié)果[24](見圖5)。同樣是取樣測(cè)量使用不同測(cè)量方法測(cè)得的剪切波速也不一樣(見表1)。從表1來看,使用超聲波換能器測(cè)得的剪切波速明顯偏大,而使用彎曲元和共振柱測(cè)得的剪切波速比較一致。
表1 不同取樣測(cè)量方法測(cè)得的海底沉積物剪切波速比較
* 表示該數(shù)據(jù)為平均值
2.1 國(guó)內(nèi)外原位測(cè)量系統(tǒng)
針對(duì)海底沉積物聲學(xué)性質(zhì)參數(shù)的測(cè)量問題,國(guó)外研究者率先研制了各種原位測(cè)量系統(tǒng),工作時(shí)系統(tǒng)被下放到海底,換能器插入沉積物中直接對(duì)聲學(xué)性質(zhì)進(jìn)行測(cè)量,獲取相應(yīng)的聲學(xué)參數(shù)。聲速一般根據(jù)測(cè)量得到的聲波傳播時(shí)間和探針之間的距離來直接計(jì)算,或通過與聲波在海水中的傳播相對(duì)比而得到。聲衰減系數(shù)通常由不同距離探針間的聲波能量(波形振幅)損失與標(biāo)準(zhǔn)能量(如海水中的振幅)相對(duì)比得到。有的測(cè)量系統(tǒng)還安裝有剪切波換能器,與聲速和聲衰減的測(cè)量原理一致,通過接收到的信號(hào)的到達(dá)時(shí)間和振幅的變化,計(jì)算不同接收換能器之間沉積物的剪切波速度及其衰減。有的測(cè)量系統(tǒng)可以附在重力取樣器、活塞取樣器或?qū)iT設(shè)計(jì)的探針上,通過各個(gè)接收換能器接收到信號(hào)的到達(dá)時(shí)間和振幅差異,計(jì)算換能器之間的垂向剖面上沉積物的聲速和衰減系數(shù)。
最早用于海底沉積物聲學(xué)性質(zhì)原位測(cè)量的是安裝有兩個(gè)鈦酸鋇傳感器的探針[28],其由攜帶水中呼吸器的潛水員插入水下沉積物表層以下6 in (15.24 cm),通過測(cè)量?jī)蓚€(gè)傳感器之間聲能脈沖的傳播時(shí)間得到原位聲速,隨后又借助深潛器使儀器工作在1200 m水深海底[29]。Allman[30]制作了一種電纜控制水下載體,現(xiàn)場(chǎng)測(cè)量沉積物的聲速和聲衰減。Shirley和Anderson[31]制作了附加在普通取樣器上的聲速剖面儀,但取樣器插入海底的初速度約為5 m/s,表層樣品受擾動(dòng),換能器和沉積物相對(duì)運(yùn)動(dòng)較快,彼此耦合弱,降低了沉積物中的信號(hào)強(qiáng)度。
早期的工作通過一些原位設(shè)備的發(fā)展和使用得到了加強(qiáng),這些原位測(cè)量系統(tǒng)主要包括美國(guó)海軍研制的ISSAMS[32]、夏威夷大學(xué)研制的進(jìn)行沉積物垂直剖面聲學(xué)性質(zhì)測(cè)量的Acoustic Lance[33]、新罕布什爾大學(xué)研制的ISSAP[34-35]及華盛頓大學(xué)設(shè)計(jì)的SAMS[36]等。
國(guó)內(nèi)在海底沉積物聲學(xué)性質(zhì)原位測(cè)量技術(shù)方面要滯后于國(guó)外,近些年各單位也開始研制相應(yīng)的測(cè)量設(shè)備,如國(guó)家海洋局第二海洋研究所研制的實(shí)時(shí)監(jiān)控多頻海底聲學(xué)原位測(cè)試系統(tǒng)[37]、中國(guó)科學(xué)院海洋研究所研制的海底沉積物聲學(xué)性質(zhì)原位測(cè)量系統(tǒng)[38]、國(guó)家海洋局第一海洋研究所研制的基于液壓驅(qū)動(dòng)貫入的自容式海底沉積物聲學(xué)原位測(cè)量系統(tǒng)[39]和便攜式海底沉積物聲學(xué)原位測(cè)量系統(tǒng)[40]等。
表2列出了見諸文獻(xiàn)的海底沉積物聲學(xué)性質(zhì)原位測(cè)量系統(tǒng)的工作參數(shù)及應(yīng)用情況等。從表2來看,大部分原位測(cè)量系統(tǒng)測(cè)量的是海底水平方向沉積物的聲學(xué)參數(shù),最大測(cè)量深度為1.20 m;Acoustic Lance、SAMS和實(shí)時(shí)監(jiān)控多頻海底聲學(xué)原位測(cè)試系統(tǒng)測(cè)量的是海底垂直方向沉積物的聲學(xué)參數(shù),最大測(cè)量深度為8.00 m。表2中所列的12個(gè)原位測(cè)量系統(tǒng)均可測(cè)量海底沉積物的聲速及聲衰減系數(shù),ISSAMS及SAPPA還可測(cè)量海底沉積物的剪切波速度,而ISSAMS也可測(cè)量剪切波的衰減系數(shù)。表2中各個(gè)原位測(cè)量系統(tǒng)測(cè)量聲速的工作頻率均在1 kHz以上,其中ISSAP、Attenuation Array、INSEA、海底沉積物聲學(xué)性質(zhì)原位測(cè)量系統(tǒng)、基于液壓驅(qū)動(dòng)貫入的自容式海底沉積物聲學(xué)原位測(cè)量系統(tǒng)和便攜式海底沉積物聲學(xué)原位測(cè)量系統(tǒng)的工作頻率均在20 kHz以上(超聲波),Acoustic Lance的工作頻率均在20 kHz以下。表2中除SPADE外,用于海底水平方向沉積物聲學(xué)性質(zhì)測(cè)量的原位測(cè)量系統(tǒng)測(cè)量聲速的傳感器收發(fā)距離最大為1.27 m,最小為0.10 m,用于海底垂直方向沉積物聲學(xué)性質(zhì)測(cè)量的SAMS收發(fā)距離介于1.18 m至2.97 m之間。從應(yīng)用情況來看,表2中的原位測(cè)量系統(tǒng)主要用于淺海環(huán)境中海底沉積物聲學(xué)性質(zhì)的測(cè)量。國(guó)外原位測(cè)量系統(tǒng)中除SAPPA、SPADE和INSEA外其余均已用于海底沉積物聲學(xué)性質(zhì)的野外調(diào)查。國(guó)內(nèi)原位測(cè)量系統(tǒng)中基于液壓驅(qū)動(dòng)貫入的自容式海底沉積物聲學(xué)原位測(cè)量系統(tǒng),由于其通過液壓驅(qū)動(dòng)貫入,減少了對(duì)沉積物的擾動(dòng),并可按照預(yù)設(shè)的工作參數(shù)在海底全自動(dòng)工作,已用于海底沉積物聲學(xué)性質(zhì)的野外調(diào)查。
表2 國(guó)內(nèi)外海底沉積物聲學(xué)性質(zhì)原位測(cè)量系統(tǒng)
*“-”表示未查到該項(xiàng)數(shù)據(jù)。需要注意的是,國(guó)內(nèi)外海底沉積物聲學(xué)性質(zhì)原位測(cè)量系統(tǒng)可能會(huì)因國(guó)防需要資料不公開,表2中僅包含作者搜集到的公開中英文文獻(xiàn)中提到的設(shè)備。
2.2 目前原位測(cè)量技術(shù)存在的問題
原位測(cè)量與取樣測(cè)量相比不改變海底沉積物的賦存環(huán)境,海水是換能器與沉積物之間的天然耦合劑,測(cè)量時(shí)對(duì)沉積物的擾動(dòng)也小,相比反射/折射剖面遙測(cè)更準(zhǔn)確,因此國(guó)內(nèi)外一直在競(jìng)相研制原位測(cè)量系統(tǒng)。但是,目前的原位測(cè)量系統(tǒng)大多僅能進(jìn)行海底沉積物聲學(xué)性質(zhì)的測(cè)量,不能同時(shí)進(jìn)行物理力學(xué)性質(zhì)的測(cè)量,與取樣測(cè)量相比,不便于海底沉積物聲學(xué)性質(zhì)與物理力學(xué)性質(zhì)的對(duì)比研究。另外,除中國(guó)科學(xué)院海洋研究所研制的原位測(cè)量系統(tǒng)實(shí)現(xiàn)了拖行式連續(xù)測(cè)量[56-57]外,其余原位測(cè)量系統(tǒng)一次僅能測(cè)量一個(gè)站位海底沉積物的聲學(xué)性質(zhì),不便于進(jìn)行大范圍海底沉積物聲學(xué)性質(zhì)調(diào)查。目前國(guó)內(nèi)的原位測(cè)量系統(tǒng)中除實(shí)時(shí)監(jiān)控多頻海底聲學(xué)原位測(cè)試系統(tǒng)有多個(gè)工作頻率外,其余原位測(cè)量系統(tǒng)的工作頻率只有一個(gè),不利于測(cè)量結(jié)果的應(yīng)用。
目前來看,無論是取樣測(cè)量技術(shù)還是原位測(cè)量技術(shù),受樣品尺寸或原位測(cè)量系統(tǒng)尺寸限制,測(cè)試頻率一般都較高。由于聲波在海底沉積物中傳播衰減的非線性,取樣測(cè)量或原位測(cè)量測(cè)得的聲衰減數(shù)據(jù)無法應(yīng)用于低頻的油氣勘探或地聲學(xué)模型,反射/折射剖面遙測(cè)技術(shù)的測(cè)試頻率雖然較低,但是屬于間接方法,有必要發(fā)展海底沉積物低頻聲學(xué)性質(zhì)的直接測(cè)量技術(shù)。另外,為了促進(jìn)海底沉積物聲學(xué)性質(zhì)原位測(cè)量數(shù)據(jù)在巖土特性聲學(xué)調(diào)查中的應(yīng)用,應(yīng)在測(cè)量聲學(xué)性質(zhì)參數(shù)的同時(shí)測(cè)量海底沉積物的其他性質(zhì)參數(shù)進(jìn)行對(duì)比研究,并進(jìn)一步發(fā)展類似于拖行式連續(xù)測(cè)量的原位測(cè)量系統(tǒng)以提高測(cè)量效率。
[1] Hamilton E L, Shumway George, Menard H W, et al. Acoustic and other physical properties of shallow-water sediments off San Diego[J]. The Journal of the Acoustical Society of America, 1956, 28(1): 1-15.
[2] 梁元博, 盧博. 海洋沉積物及其聲學(xué)物理性質(zhì)的研究[J]. 海洋地質(zhì)研究, 1981, 1(2): 28-37.
LIANG Yuanbo, LU Bo. Marine sediments and their acoustic-physical properties[J]. Marine Geological Research, 1981, 1(2): 28–37.
[3] LIANG Yuanbo, LU Bo. On the effect of physico-geotechnical characteristics upon sound velocities of sea floor sediments[J]. Acta Oceanologica Sinica, 1984, 3(3): 313-320.
[4] LU Bo, LI Ganxian, HUANG Shaojian. Acoustic-physical properties of calcareous seafloor soils and their significance in engineering geology[J]. China Ocean Engineering, 2000, 14(3): 361-370.
[5] 孟祥梅, 劉保華, 闞光明, 等. 南黃海海底沉積物聲學(xué)特性及其影響因素試驗(yàn)研究[J]. 海洋學(xué)報(bào), 2012, 34(6): 74-83.
MENG Xiangmei, LIU Baohua, KAN Guangming, et al. An experimental study on acoustic properties and their influencing factors of marine sediment in the southern Huanghai Sea[J]. Acta Oceanologica Sinica, 2012, 34(6): 74-83.
[6] LIU Baohua, HAN Tongcheng, KAN Guangming, et al. Correlations between the in situ acoustic properties and geotechnical parameters of sediments in the Yellow Sea, China[J]. Journal of Asian Earth Sciences, 2013, 77(21): 83-90.
[7] ZOU Dapeng, YAN Pin, ZHOU Jianping. Research on acoustic properties of seafloor sediment with temperature and pressure controlled[J]. Marine Georesources & Geotechnology, 2014, 32(2): 93-105.
[8] 李趕先, 龍建軍. 南海南部海域島礁區(qū)海底珊瑚砂聲速影響因素的初步研究[J]. 海洋學(xué)報(bào), 2014, 36(5): 152-160.
LI Ganxian, LONG Jianjun. A preliminary study of the sound velocity influence factors of submarine coral sand of islands sea area in southern South China Sea[J]. Acta Oceanologica Sinica, 2014, 36(5): 152-160.
[9] McCann C, Sothcott J, Best A I. A new laboratory technique for determining the compressional wave properties of marine sediments at sonic frequencies and in situ pressures[J]. Geophysical Prospecting, 2014, 62(1): 97-116.
[10] Richardson M D. Spatial variability of surficial shallow water sediment geoacoustic properties[M]//Akal T, Berkson J M. Ocean Seismo-Acoustics. London: Plenum Press, 1986: 527-536.
[11] Shipboard Scientific Party. Explanatory Notes[C]//Curry W B, Shackleton N J, Richter C, et al. Proceedings of the Ocean Drilling Program, Initial Reports, 154. College Station (TX): ODP, 1995: 11-38.
[12] Weaver P P E, Schultheiss P J. Current methods for obtaining, logging and splitting marine sediment cores[J]. Marine Geophysical Research, 1990, 12(1-2): 85-100.
[13] Schultheiss P J, Weaver P P E. Multi-sensor core logging for science and industry[C]//Mastering the Oceans Through Technology: Proceedings of Oceans ’92, 2. Newport (RI): 1992: 608-613.
[14] Weber M E, Niessen F, Kuhn G, et al. Calibration and application of marine sedimentary physical properties using a multi-sensor core logger[J]. Marine Geology, 1997, 136(3-4):151-172.
[15] Gunn D E, Best A I. A new automated nondestructive system for high resolution multi sensor core logging of open sediment cores [J]. Geo-Marine Letters, 1998, 18(1):70-77.
[16] Best A I, Gunn D E. Calibration of marine sediment core loggers for quantitative acoustic impedance studies[J]. Marine Geology, 1999, 160(1-2): 137-146.
[17] 鄒大鵬, 盧博, 吳百海, 等. 基于同軸差距測(cè)量法的南海深水海底沉積物聲衰減特性研究[J]. 熱帶海洋學(xué)報(bào), 2009, 28(3): 35-39.
ZOU Dapeng, LU Bo, WU Baihai, et al. Acoustic attenuation characteristics of deep-water seafloor sediments from the South China Sea based on coaxial differential distance attenuation measurement method[J]. Journal of Tropical Oceanography, 2009, 28(3): 35-39.
[18] Davis A M, Bennell J D. Dynamic properties of marine sediments [M]//Akal T, Berkson J M. Ocean Seismo-Acoustics. New York: Plenum Press, 1986: 501-510.
[19] Bennell J D, Taylor-Smith D. A review of laboratory shear wave techniques and attenuation measurements with particular reference to the resonant column[M]//Hovem J M, Richardson M D, Stoll R D. Shear Waves in Marine Sediments. Dordrecht: Kluwer, 1991: 83-93.
[20] Shirley D J. An improved shear wave transducer[J]. Journal of the Acoustical Society of America, 1978, 63(5): 1643-1645.
[21] Shirley D J, Hampton L D. Shear wave measurements in laboratory sediments[J]. Journal of the Acoustical Society of America, 1978, 63(2): 607-613.
[22] Bennett R H, Li H, Richardson M D, et al. Geoacoustic and geological characterization of surficial marine sediments by in situ probe and remote sensing techniques[M]//Geyer R A. CRC Handbook of Geophysical Exploration at Sea. Second Edition, Hydrocarbons. Boca Raton (FL): CRC Press, 1991: 295-350.
[23] Barbagelata A, Richardson M, Miaschi B, et al. ISSAMS: An in situ sediment acoustic measurement system[M]//Hovem J M, Richardson M D, Stoll R D. Shear Waves in Marine Sediments. Dordrecht: Kluwer, 1991: 305-312.
[24] 孟祥梅. 我國(guó)近海海底沉積物聲學(xué)特性研究[R]. 青島: 國(guó)家海洋局第一海洋研究所, 2013.
MENG Xiangmei. Study on the acoustic properties of marine sediments of China Seas[R]. Qingdao: The First Institute of Oceanography, 2013.
[25] 盧博, 李趕先, 黃韶健, 等. 中國(guó)黃海、東海和南海北部海底淺層沉積物聲學(xué)物理性質(zhì)之比較[J]. 海洋技術(shù), 2005, 24(2): 28-33.
LU Bo, LI Ganxian, HUANG Shaojian, et al. The comparing of seabed sediment acoustic-physical properties in the Yellow Sea, the East China Sea and northern the South China Sea[J]. Ocean Technology, 2005, 24(2): 28-33.
[26] 潘國(guó)富. 南海北部海底淺部沉積物聲學(xué)特性研究[D]. 上海: 同濟(jì)大學(xué), 2003.
PAN Guofu. Research on the acoustic characteristics of seabed sediments in the northern South China Sea[D]. Shanghai: Tongji University, 2003.
[27] 盧博, 梁元博. 浙江北侖港海陸相沉積物物理力學(xué)與聲學(xué)參數(shù)的對(duì)比研究[J]. 海洋通報(bào), 1991, 10(5): 37-44.
LU Bo, LIANG Yuanbo. Study on correlation of physical-mechanical and acoustical parameters for marine and terrestrial sediments of Beilun Harbour, Zhejiang[J]. Marine Science Bulletin, 1991, 10(5): 37-44.
[28] Hamilton E L. Low sound velocities in high-porosity sediments [J]. The Journal of the Acoustical Society of America, 1956, 28(1):16-19.
[29] Hamilton E L. Sediment sound velocity measurements made in situ from Bathyscaph Trieste[J]. Journal of Geophysical Research, 1963, 68(21): 5991-5998.
[30] Allman R L. Equipment for in Situ Measurement of Sediment Sound Velocity and Attenuation [R]. Defense Technical Information Center, 1974.
[31] Shirley D J, Anderson A L. Compressional-wave profilometer for deep-water measurements[R]. Texas University at Austin Applied Research Labs, 1974.
[32] Griffin S R, Grosz F B, Richardson M D. ISSAMS: A remote in situ sediment acoustic measurement system [J]. Sea Technology, 1996, 37(4):19-22.
[33] Fu S S, Wilkens R H, Frazer L N. Acoustic lance: New in situ seafloor velocity profiles[J]. Journal of the Acoustical Society of America, 1996, 99(1): 234-242.
[34] Mayer L A, Kraft B J, Simpkin P, et al. In-situ determination of variability of seafloor geoacoustic properties: An example from the ONR Geoclutter area[M]//Pace N G, Jensen F B. Impact of littoral environmental variability on acoustic predictions and sonar performance. the Netherlands: Kluwer Academic Press, 2002: 115-122.
[35] Kraft B J, Mayer L A, Simpkin P, et al. Calculation of in situ acoustic wave properties in marine sediments[M]//Pace N G, Jensen F B. Impact of littoral environmental variability on acoustic predictions and sonar performance. the Netherlands: Kluwer Academic Press, 2002: 123-130.
[36] Yang J, Tang D J, Williams K L. Direct measurement of sediment sound speed in Shallow Water '06[J]. Journal of the Acoustical Society of America, 2008, 124(3):116-121.
[37] 李紅星. 杭州灣沉積物原位聲學(xué)特性分析及淺表低速層研究[D].長(zhǎng)春: 吉林大學(xué), 2008.
LI Hongxing. In situ acoustic properties analyse of the sediment in Hangzhou Bay and surface low velocity layer study[D]. Changchun: Jilin University, 2008.
[38] 谷明峰. 海底底質(zhì)聲學(xué)性質(zhì)及原位測(cè)量技術(shù)研究[D]. 青島: 中國(guó)科學(xué)院海洋研究所, 2008.
GU Mingfeng. Research of acoustic properties and in situ measurement method of seafloor sediments[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2008.
[39] 闞光明, 劉保華, 韓國(guó)忠, 等. 原位測(cè)量技術(shù)在黃海沉積聲學(xué)調(diào)查中的應(yīng)用[J]. 海洋學(xué)報(bào), 2010, 32(3): 88-94.
KAN Guangming, LIU Baohua, HAN Guozhong, et al. Application of in situ measurement technology to the survey of seafloor sediment acoustic properties in the Huanghai Sea[J]. Acta Oceanologica Sinica, 2010, 32(3): 88-94.
[40] ZOU Dapeng, KAN Guangming. Application study on in-situ acoustic measurement system of seafloor sediments[J]. Sensor Letters, 2011, 9(4): 1507-1510.
[41] Richardson M D, Briggs K B. In situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments: Implications for high-frequency acoustic propagation and scattering [J]. Geo-Marine Letters, 1996, 16(3):196-203.
[42] Richardson M D, Lavoie D L, Briggs K B. Geoacoustic and physical properties of carbonate sediments of the Lower Florida Keys[J]. Geo-Marine Letters, 1997, 17(4):316-324.
[43] Buckingham M J, Richardson M D. On tone-burst measurements of sound speed and attenuation in sandy marine sediments[J]. IEEE Journal of Oceanic Engineering, 2002, 27(3): 429-453.
[44] Zimmer M A, Bibee L D, Richardson M D. Acoustic sound speed and attenuation measurements in seafloor sands at frequencies from 1 to 400 kHz[C]//International Conference “Underwater Acoustics Measurements: Technologies and Results”. Heraklion, Greece, 2005.
[45] 陶春輝, Baffi S, Wilkens R H, 等. Biot反演在夏威夷鈣質(zhì)沉積物原位測(cè)量聲速和衰減中的應(yīng)用[J]. 海洋學(xué)報(bào), 2005, 27(3): 80-84.
TAO Chunhui, BAFFI S, WILKENS R H, et al. Biot inversion for in situ velocity and attenuation data: A case study in Hawaii, USA[J]. Acta Oceanologica Sinica, 2005, 27(3): 80-84.
[46] Fu S S, Wilkens R H, Frazer L N. In situ velocity profiles in gassy sediments: Kiel Bay[J]. Geo-Marine Letters, 1996, 16(3): 249-253.
[47] Frazer L N, Fu S S, Wilkens R H. Seabed sediment attenuation profiles from a movable sub-bottom acoustic vertical array[J]. Journal of the Acoustical Society of America, 1999, 106(1): 120-130.
[48] Gorgas T J, Wilkens R H, Fu S S, et al. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments: Eel River shelf, California[J]. Marine Geology, 2002, 182(1-2): 103-119.
[49] Best A I, Roberts J A, Somers M L. A New Instrument for Making In-situ Acoustic and Geotechnical Measurements in Seafloor Sediments[J]. Underwater Technology, 1998, 23(3):123-131.
[50] Kraft B J, Ressler J, Mayer L A, et al. In-situ measurement of sediment acoustic properties[C]//International Conference “Underwater Acoustic Measurements: Technologies & Results”. Heraklion, Greece, 2005.
[51] Robb G B N. The in situ compressional wave properties of marine sediments[D]. Southampton: University of Southampton, 2004.
[52] Thorsos E I, Williams K L, Chotiros N P, et al. An overview of SAX99: Acoustic Measurements[J]. IEEE Journal of Oceanic Engineering, 2001, 26(1): 4-24.
[53] Carroll P J. Final Report: Underwater (UW) Unexploded Ordnance (UXO) Multi-Sensor Data Base (MSDB) Collection [R]. SERDP Project MM-1507, 2009.
[54] Demoulin X, Guillon L, Bourdon R, et al. A new portable velocimeter for sound speed measure[C]//11th European Conference on Underwater Acoustics. Edinburgh, Scotland, 2012.
[55] 王景強(qiáng), 郭常升, 李會(huì)銀. 聲學(xué)原位測(cè)量系統(tǒng)在膠州灣的測(cè)量試驗(yàn)研究[J]. 中國(guó)海洋大學(xué)學(xué)報(bào), 2013, 43(3): 75-80.
WANG Jingqiang, GUO Changsheng, LI Huiyin. The experimental study of in situ acoustic measurement system in Jiaozhou Bay[J]. Periodical of Ocean University of China, 2013, 43(3): 75-80.
[56] 王景強(qiáng). 海底底質(zhì)聲學(xué)原位測(cè)量技術(shù)和聲學(xué)特性研究[D]. 青島: 中國(guó)科學(xué)院海洋研究所, 2015.
WANG Jingqiang. Study of the in-situ acoustic measurement technique and geoacoustic properties of marine sediments[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2015.
[57] 侯正瑜, 郭常升, 王景強(qiáng), 等. 一種新型海底沉積物聲學(xué)原位測(cè)量系統(tǒng)的研制及應(yīng)用[J]. 地球物理學(xué)報(bào), 2015, 58(6): 1976-1984.
HOU Zhengyu, GUO Changsheng, WANG Jingqiang, et al. Development and application of a new type in-situ acoustic measurement system of seafloor sediments[J]. Chinese Journal of Geophysics, 2015, 58(6): 1976-1984.
Measurement techniques of acoustic properties of marine sediments: a review
MENG Xiang-mei1,2, SUN Lei1,2
(1. Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, SOA, Qingdao 266061, Shandong,China;2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, Shandong, China)
Due to the needs of resources exploration, military application, acoustic survey of geotechnical characteristics, research on acoustic wave propagation theory etc, the measurements of acoustic properties of marine sediments have been conducted for years. The sampling measurement technique and in-situ measurement technique of acoustic properties of marine sediments are reviewed herein, and the problems of the two measurement techniques above are summarized respectively. It is considered that developing the direct measurement techniques for acoustic properties of marine sediments at low frequencies is necessary next. To facilitate the contrastive study of acoustic properties and other properties of marine sediments, it is suggested that the measurements of other properties as well as acoustic properties of marine sediments in situ should be conducted. The in-situ measurement’s efficiency should also be improved.
marine sediments; acoustic properties; sampling measurement; in-situ measurement
P714+.8
A
1000-3630(2016)-04-0281-08
10.16300/j.cnki.1000-3630.2016.04.001
2015-12-02;
2016-02-05
海洋公益性行業(yè)科研專項(xiàng)(201405032); 國(guó)家自然科學(xué)基金資助項(xiàng)目(41406073, 41527809)
孟祥梅(1981-), 女, 山東濟(jì)南人, 博士, 研究方向?yàn)楹5壮练e物聲學(xué)。
孟祥梅, E-mail: mxmeng@fio.org.cn