楊華,李成義,張宏嘉,胡晨,張立欣
?
低階固體燃料熱化學(xué)轉(zhuǎn)化過(guò)程中揮發(fā)分與半焦相互作用的基本原理
楊華1,李成義2,張宏嘉3,胡晨1,張立欣4*
(1. 北京高能時(shí)代環(huán)境技術(shù)股份有限公司,北京100095; 2. 中國(guó)天辰工程有限公司,天津300400; 3. 中糧營(yíng)養(yǎng)健康研究院,北京102209; 4. 陜西科技大學(xué),陜西西安710021)
揮發(fā)分-半焦相互作用是低階含碳固體燃料熱化學(xué)轉(zhuǎn)化過(guò)程中普遍存在的一種重要現(xiàn)象。揮發(fā)分-半焦相互作用可以影響低階燃料熱化學(xué)轉(zhuǎn)化過(guò)程的各個(gè)方面:促進(jìn)堿金屬/堿土金屬(AAEM)的揮發(fā)、抑制氣化、催化焦油分解、碳-碳結(jié)構(gòu)重排及穩(wěn)定化(抑制氣化)、促進(jìn)半焦上N的遷移等?;仡櫫说碗A燃料熱化學(xué)轉(zhuǎn)化過(guò)程中的揮發(fā)分-半焦相互作用的最新研究進(jìn)展,為更好的利用低階固體燃料提供理論指導(dǎo)。
揮發(fā)分-半焦相互作用;熱解;氣化
隨著經(jīng)濟(jì)和社會(huì)的高速發(fā)展,人們對(duì)能源的需求日益增長(zhǎng)。傳統(tǒng)高階燃料(煤、石油、天然氣)因不可再生性且儲(chǔ)量有限,已無(wú)法滿足人們對(duì)能源的日益需求。低階含碳固體燃料(生物質(zhì)、褐煤等)具有儲(chǔ)量巨大,又如生物質(zhì)能源,有可再生的特點(diǎn),已經(jīng)成為當(dāng)前能源領(lǐng)域研究的熱點(diǎn)之一。
低階含碳固體燃料雖然儲(chǔ)量巨大,但是由于低階燃料與高階燃料組成上的差異(比如:生物質(zhì)和褐煤具有高含水、氧/氫含量高、高/低灰分、低芳烴含量、高揮發(fā)分等相似特性),導(dǎo)致其加工利用過(guò)程也與高階燃料的利用不盡相同。低階含碳固體燃料因其具有的獨(dú)特的特性,其加工利用中不能完全沿用傳統(tǒng)的加工工藝(石油、煤化工等),需要充分考慮原料的獨(dú)有特性,以實(shí)現(xiàn)最大化利用低階燃料的有效價(jià)值。
雖然低階含碳固體燃料的利用方式多重多樣,尤其對(duì)生物質(zhì)而言,可以通過(guò)熱化學(xué)轉(zhuǎn)化、生物轉(zhuǎn)化、熱化學(xué)-生物轉(zhuǎn)化結(jié)合的方式。但是相比而言,低階含碳固體燃料的熱化學(xué)轉(zhuǎn)化過(guò)程具有高效率、規(guī)?;?、不需要特異性的原料等優(yōu)點(diǎn),而且可以與現(xiàn)代的石油化工和煤化工工業(yè)相結(jié)合。
低階含碳固體燃料的熱化學(xué)轉(zhuǎn)化方法有熱解、焚燒、氣化、液化等。氣化工藝與其它工藝相比較具有效率高,污染物排放低等優(yōu)點(diǎn)。氣化是利用H2O、CO2、O2等氧化性氣氛將含碳固體燃料轉(zhuǎn)化成CO和H2等氣體。但是由于低階燃料與高階燃料相比組成上有很大差異(低階燃料具有高揮發(fā)份、灰分、氧氫含量高等特點(diǎn)),其熱解、氣化過(guò)程與高階燃料相比具有很大的不同。低階燃料具有更高的反應(yīng)活性,熱力學(xué)上可以實(shí)現(xiàn)在更低的溫度下完成氣化。Hayashi[1]針對(duì)低階燃料的特對(duì)低階燃料的氣化問(wèn)題和效率進(jìn)行了熱力學(xué)計(jì)算,生物質(zhì)和褐煤的理論氣化溫度為400~650oC。但是氣化過(guò)程中涉及到一系列復(fù)雜的反應(yīng),包括:熱解、裂解、燃燒、重整、氣化、CO-H2O變換等反應(yīng)(見(jiàn)圖1)。揮發(fā)分的重整速率在動(dòng)力學(xué)上快于半焦的氣化,因此整個(gè)氣化反應(yīng)中的速率控制步驟決定于半焦的氣化反應(yīng)速率。這些反應(yīng)不是孤立的,特別是氣相和固相之間存在很強(qiáng)的相互作用(揮發(fā)分-半焦相互作用見(jiàn)圖2)。對(duì)于低階含碳固體燃料低溫氣化而言,焦油生成和半焦的不完全轉(zhuǎn)化是限制其應(yīng)用的瓶頸。
圖1 含碳固體燃料氣化過(guò)程中涉及的一系列反應(yīng)[2]
圖2 低階燃料熱化學(xué)轉(zhuǎn)化過(guò)程揮發(fā)分-半焦相互作用關(guān)系
揮發(fā)分-半焦的相互作用是低階燃料熱化學(xué)轉(zhuǎn)化中的一種普遍現(xiàn)象,其相互作用機(jī)理及關(guān)系復(fù)雜。揮發(fā)分-半焦的相互作用可以影響氣化的很多方面,比如:促進(jìn)堿金屬/堿土金屬的揮發(fā)(抑制氣化)、抑制氣化、催化焦油分解、碳-碳結(jié)構(gòu)重排及穩(wěn)定化(抑制氣化)、促進(jìn)半焦上N的遷移等。揮發(fā)分-半焦的相互作用對(duì)氣化既有有利的方面也有有害的方面。因此在設(shè)計(jì)低階燃料的熱化學(xué)轉(zhuǎn)化的反應(yīng)器的時(shí)候必須充分考慮揮發(fā)分-半焦的相互作用,強(qiáng)化揮發(fā)分-半焦相互作用的有利方面;弱化/消除揮發(fā)分半焦相互作用的不利方面(圖3)[3,4]。
圖3 揮發(fā)分-半焦相互作用的關(guān)系
下面就詳細(xì)討論下低階燃料熱化學(xué)轉(zhuǎn)化過(guò)程中揮發(fā)分-半焦的相互作用的原理和規(guī)律。
(一) 促進(jìn)堿金屬/堿土金屬的揮發(fā)
低階燃料具有一定的堿金屬/堿土金屬元素,例如鈉、鉀、鎂、鈣等,在低階燃料中的存在狀態(tài)有離子交換狀態(tài)和非離子交換狀態(tài)。在低階燃料的熱解過(guò)程中離子交換狀態(tài)的堿金屬/堿土金屬元素可以在更低的溫度下?lián)]發(fā)。研究表明NaCl并不是以分子狀態(tài)揮發(fā),Cl和Na的揮發(fā)分開(kāi)進(jìn)行的,不是同步的[5]。
而且一價(jià)元素(Na、K等)比二價(jià)元素(鎂、鈣等)更容易揮發(fā)[6]。Chun-zhu Li 和Hayashi的研究團(tuán)隊(duì)通過(guò)設(shè)計(jì)一系列巧妙的反應(yīng)器:絲網(wǎng)反應(yīng)器(揮發(fā)分-半焦相互作用可以忽略)、流化床/固定床反應(yīng)器(強(qiáng)化揮發(fā)分-半焦相互作用)等研究了揮發(fā)分-半焦相互作用的影響。結(jié)果表明,當(dāng)熱解的峰值溫度為900oC時(shí),在流化床/固定床中熱解時(shí)90%的Na會(huì)揮發(fā),而在絲網(wǎng)反應(yīng)器中熱解時(shí)僅有30%的Na會(huì)揮發(fā)。造成Na揮發(fā)如此大差異的原因不是因?yàn)镹a的存在狀態(tài)(離子交換或者NaCl)而是因?yàn)閾]發(fā)分-半焦相互作用。熱解中產(chǎn)生的氫自由基會(huì)促進(jìn)半焦上金屬元素的還原,因?yàn)榻饘贍顟B(tài)的飽和蒸汽壓比其氯化物、氫氧化物、碳酸鹽等飽和蒸汽壓高,更容易從半焦上解離揮發(fā)到氣相中[3, 5-10]。同樣的,被還原的金屬更容易和流化床中的介質(zhì)反應(yīng)(SiO2、Al2O3等),生成不具有催化活性的惰性物質(zhì),并且會(huì)形成低熔點(diǎn)混合物,降低熔點(diǎn),導(dǎo)致流化異常[11]。堿金屬/堿土金屬本身具有催化活性,其揮發(fā)和失活會(huì)降低半焦的氣化活性。
(二) 抑制氣化
Bayarsaikhan研究了在847?950 °C下采用水蒸氣在流化床中常壓氣化褐煤,碳的轉(zhuǎn)化率僅為62%~ 85%[12]。這是因?yàn)闊峤庵挟a(chǎn)生的揮發(fā)分會(huì)化學(xué)吸附在半焦上,解離生成氫自由基和焦炭。氫自由基比H2的吸附能力強(qiáng),其抑制作用更強(qiáng),甚至能終止氣化。
Kajitani考慮了揮發(fā)分-半焦相互作用,提出了流化床中褐煤的氣化動(dòng)力學(xué)修正模型。修正后的模型對(duì)褐煤的轉(zhuǎn)化率和半焦上Na的殘留量擬合結(jié)果吻合[13]。
(三) 催化焦油分解
雖然低階燃料的低溫氣化具有更高的效率,但是低溫氣化會(huì)產(chǎn)生大量焦油,焦油會(huì)對(duì)下游加工過(guò)程產(chǎn)生影響(比如:腐蝕、堵塞、使催化劑失活和因?yàn)榻褂偷牟煌耆D(zhuǎn)化導(dǎo)致的氣化效率的降低)。因此通過(guò)原位(反應(yīng)器內(nèi)部)或者異位(反應(yīng)器外部)將焦油脫除是很有必要的。很多學(xué)者研究各種類(lèi)型催化劑來(lái)催化焦油的分解,這些催化劑包括天然礦物(白云石、橄欖石等)和合成催化劑(分子篩、鎳、鉑、鉬、鈷等)等。但是在低階燃料的氣化過(guò)程中,催化劑很容易因結(jié)焦、磨損、結(jié)構(gòu)變化等原因而導(dǎo)致失活。如果能利用在氣化過(guò)程中產(chǎn)生的中間產(chǎn)物來(lái)強(qiáng)化焦油的分解具有重要的意義。
Boroson研究了400~800 °C下新鮮木材半焦對(duì)木材熱解焦油產(chǎn)物分布的影響及非均相催化動(dòng)力學(xué)機(jī)理[14,15]。Gilbert和Sun研究了熱半焦對(duì)熱解揮發(fā)分上的催化重整影響,并且推薦在催化重整的過(guò)程中使用氧化性氣氛來(lái)強(qiáng)化焦油的脫除[16,17]。Striūgas比較了快速熱解輪胎制備的活性炭對(duì)高溫部分氧化和蒸汽重整對(duì)焦油脫除的影響[18]。Klinghoffer研究了生物質(zhì)半焦的物理性質(zhì)和化學(xué)性質(zhì)對(duì)催化碳?xì)浠衔锪呀獾挠绊?,結(jié)果表明生物質(zhì)半焦的比表面積的孔的大小都會(huì)影響生物質(zhì)半焦的催化活性[19]。Hosokai研究了700~900 °C下半焦對(duì)熱解焦油模型化合物分解的影響,提出了半焦催化焦油分解的機(jī)理:焦油/揮發(fā)分首先在半焦的表面結(jié)焦,隨后水蒸氣會(huì)氣化半焦并且生成大量微孔(催化活性位點(diǎn)),并且當(dāng)半焦的氣化速度大于結(jié)焦速度時(shí)有助于保持半焦的催化活性[20,21]。Syeyasu和Hua Yang將同步氣化和半焦催化焦油分解拓展到鉀-生物質(zhì)和鉀-褐煤上,在低于750 °C時(shí)可以達(dá)到穩(wěn)態(tài)操作,重焦油的濃度低于20 mg·m-3-干氣[22,23]。
(四) 碳-碳結(jié)構(gòu)重排及穩(wěn)定化(抑制氣化)
半焦與揮發(fā)分接觸會(huì)改變半焦的結(jié)構(gòu),影響其水蒸氣/氧氣反應(yīng)活性。揮發(fā)分吸附在半焦上裂解產(chǎn)生的氫自由基會(huì)導(dǎo)致半焦上多環(huán)芳烴的重排,會(huì)將低環(huán)芳烴轉(zhuǎn)化成多環(huán)芳烴。最近研究人員利用拉曼光譜研究了揮發(fā)分-半焦相互作用對(duì)半焦結(jié)構(gòu)的影響,半焦結(jié)構(gòu)的變化會(huì)導(dǎo)致其反應(yīng)活性降低[4, 24-29]。
(五) 促進(jìn)半焦上N的遷移
在低階燃料的熱化學(xué)轉(zhuǎn)化過(guò)程中氮元素遷移有兩個(gè)途徑,一個(gè)是通過(guò)揮發(fā)分釋放(HCN, NH3, HNCO, N2, N2O, NO, CH3CN 和焦油);另一個(gè)是在半焦中保留[30,31]。揮發(fā)分-半焦相互作用也會(huì)對(duì)揮發(fā)分和半焦中的氮的遷移分配產(chǎn)生很大影響。很多研究表明活性炭對(duì)還原NO具有催化作用,尤其是當(dāng)活性炭上負(fù)載有K, Ca, Fe, Cu, Cr, Co, 和 Ni的時(shí)候催化N的轉(zhuǎn)化,反應(yīng)遵循氧化-還原機(jī)理[32,33]。McKenzie詳細(xì)研究了O2氣氛下?lián)]發(fā)分-半焦相互作用對(duì)煤中氮元素遷移的影響,氫自由基有助于半焦中的氮元素轉(zhuǎn)化為NH3and HCN[34-37]。
由于低階含碳固體燃料與高階燃料組成上具有很大差異性,揮發(fā)分-半焦相互作用對(duì)低階燃料的熱化學(xué)轉(zhuǎn)化過(guò)程影響巨大,可以影響到熱解、氣化等化學(xué)反應(yīng)過(guò)程中的各個(gè)方面:促進(jìn)堿金屬/堿土金屬的揮發(fā)(抑制氣化)、抑制氣化、催化焦油分解、碳-碳結(jié)構(gòu)重排及穩(wěn)定化(抑制氣化)、促進(jìn)半焦上N的遷移等。揮發(fā)分-半焦的相互作用對(duì)低階燃料的熱化學(xué)轉(zhuǎn)化過(guò)程既有有利的方面也有有害的方面。低階燃料的熱化學(xué)轉(zhuǎn)化工藝必須充分考慮揮發(fā)分-半焦的相互作用,強(qiáng)化揮發(fā)分-半焦相互作用的有利方面;弱化/消除揮發(fā)分半焦相互作用的不利方面。
[1] Hayashi J I, Hosokai S, Sonoyama N. Gasification of low-rank solid fuels with thermochemical energy recuperation for hydrogen production and power generation[J]. Process Safety and Environmental Protection, 2006, 84(6): 409-419.
[2] Hiller H, Reimert R, Marschner F, et al. Gas production[J]. Ullmann's encyclopedia of industrial chemistry, 2006.
[3] Li C Z. Importance of volatile–char interactions during the pyrolysis and gasification of low-rank fuels–A review[J]. Fuel, 2013, 112: 609-623.
[4] Li C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12): 1664-1683.
[5] Quyn D M, Wu H, Li C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002, 81(2): 143-149.
[6] Quyn D M, Wu H, Bhattacharya S, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Vic. brown coal. Part II. Effects of chemical form and valence[J]. Fuel, 2002, 81(2): 151-158.
[7] Laine N R, Vastola F J, Walker Jr P L. The importance of active surface area in the carbon-oxygen reaction1, 2[J]. The Journal of Physical Chemistry, 1963, 67(10): 2030-2034.
[8] Wu H, Quyn D M, Li C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature[J]. Fuel, 2002, 81(8): 1033-1039.
[9] Quyn D M, Hayashi J, Li C Z. Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO2[J]. Fuel processing technology, 2005, 86(12): 1241-1251.
[10] Li X, Wu H, Hayashi J, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VI. Further investigation into the effects of volatile-char interactions[J]. Fuel, 2004, 83(10): 1273-1279.
[11] Kajita M, Kimura T, Norinaga K, et al. Catalytic and noncatalytic mechanisms in steam gasification of char from the pyrolysis of biomass[J]. Energy & Fuels, 2009, 24(1): 108-116.
[12] Bayarsaikhan B, Sonoyama N, Hosokai S, et al. Inhibition of steam gasification of char by volatiles in a fluidized bed under continuous feeding of a brown coal[J]. Fuel, 2006, 85(3): 340-349.
[13] Kajitani S, Tay H L, Zhang S, et al. Mechanisms and kinetic modelling of steam gasification of brown coal in the presence of volatile–char interactions[J]. Fuel, 2013, 103: 7-13.
[14] Boroson M. L., Howard J. B., Longwell J. P., Peters W. A. Heterogeneous cracking of wood pyrolysis tars over fresh wood char surfaces[J]. Energy & Fuels, 1989, 3 (6), 735-740.
[15] Boroson M L, Howard J B, Longwell J P, et al. Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars[J]. AIChE Journal, 1989, 35(1): 120-128.
[16] Gilbert P, Ryu C, Sharifi V, et al. Tar reduction in pyrolysis vapours from biomass over a hot char bed[J]. Bioresource technology, 2009, 100(23): 6045-6051.
[17]Sun Q, Yu S, Wang F, et al. Decomposition and gasification of pyrolysis volatiles from pine wood through a bed of hot char[J]. Fuel, 2011, 90(3): 1041-1048.
[18] Striūgas N, Zakarauskas K, Stravinskas G, et al. Comparison of steam reforming and partial oxidation of biomass pyrolysis tars over activated carbon derived from waste tire[J]. Catalysis today, 2012, 196(1): 67-74.
[19] Klinghoffer N B, Castaldi M J, Nzihou A. Catalyst properties and catalytic performance of char from biomass gasification[J]. Industrial & Engineering Chemistry Research, 2012, 51(40): 13113-13122.
[20] Hosokai S, Kumabe K, Ohshita M, et al. Mechanism of decomposition of aromatics over charcoal and necessary condition for maintaining its activity[J]. Fuel, 2008, 87(13): 2914-2922.
[21] Hosokai S, Norinaga K, Kimura T, et al. Reforming of volatiles from the biomass pyrolysis over charcoal in a sequence of coke deposition and steam gasification of coke[J]. Energy & Fuels, 2011, 25(11): 5387-5393.
[22] Sueyasu T, Oike T, Mori A, et al. Simultaneous steam reforming of tar and steam gasification of char from the pyrolysis of potassium-loaded woody biomass[J]. Energy & Fuels, 2011, 26(1): 199-208.
[23] Yang H, Kudo S, Norinaga K, et al. Steam–Oxygen Gasification of Potassium-Loaded Lignite: Proof of Concept of Type IV Gasification[J]. Energy & Fuels, 2015, 30(3): 1616-1627.
[24] Matsuhara T, Hosokai S, Norinaga K, et al. In-Situ Reforming of Tar from the Rapid Pyrolysis of a Brown Coal over Char[J]. Energy & Fuels, 2009, 24(1): 76-83.
[25] Li X, Hayashi J, Li C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006, 85(10): 1509-1517.
[26] Li X, Li C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VIII. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10): 1518-1525.
[27] Wu H, Li X, Hayashi J, et al. Effects of volatile–char interactions on the reactivity of chars from NaCl-loaded Loy Yang brown coal[J]. Fuel, 2005, 84(10): 1221-1228.
[28] Zhang S, Min Z, Tay H L, et al. Effects of volatile–char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam[J]. Fuel, 2011, 90(4): 1529-1535.
[29] Keown D M, Hayashi J I, Li C Z. Drastic changes in biomass char structure and reactivity upon contact with steam[J]. Fuel, 2008, 87(7): 1127-1132.
[30] Wang X, Si J, Tan H, et al. Nitrogen, sulfur, and chlorine transformations during the pyrolysis of straw[J]. Energy & Fuels, 2010, 24(9): 5215-5221.
[31] Va?ha?-Savo N, DeMartini N, Hupa M. Fate of Char Nitrogen in Catalytic Gasification Formation of Alkali Cyanate[J]. Energy & Fuels, 2013, 27(11): 7108-7114.
[32] Illán-Gómez M J, Linares-Solano A, Salinas-Martinez de Lecea C, et al. Nitrogen oxide (NO) reduction by activated carbons. 1. The role of carbon porosity and surface area[J]. Energy & Fuels, 1993, 7(1): 146-154.
[33] Illan-Gomez M J, Linares-Solano A, Radovic L R, et al. NO reduction by activated carbons. 7. Some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy & Fuels, 1996, 10(1): 158-168.
[34] Li C Z. Advances in the science of Victorian brown coal[M]. Elsevier, 2004.
[35] McKenzie L J, Tian F J, Li C Z. Effects of volatile–char interaction on the formation of HCN and NH3during the gasification of Victorian brown coal in O 2 at 500 C[J]. Fuel, 2006, 85(14): 2148-2154.
[36] Tian F J, Wu H, Yu J, et al. Formation of NOprecursors during the pyrolysis of coal and biomass. Part VIII. Effects of pressure on the formation of NH 3 and HCN during the pyrolysis and gasification of Victorian brown coal in steam[J]. Fuel, 2005, 84(16): 2102-2108.
[37] Mckenzie L J, Tian F J, Li C Z. NH3formation and destruction during the gasification of coal in oxygen and steam[J]. Environmental science & technology, 2007, 41(15): 5505-5509.
Basic Principles of the Interaction Between Volatiles and Char in Thermochemical Conversion Process of Low Rank Carbonaceous Fuels
1,2,3,1,4*
(1. Beijing GeoEnviron Engineering & Technology, Inc, Beijing 100095, China; 2. China Tianchen Engineering Corporation, Tianjin 300400, China; 3. COFCO Nutrition and Health Research Institute, Beijing 102209, China; 4.Shaanxi University of Science & Technology,Shaanxi Xi'an 71002, China)
Volatile–char interaction is an important phenomenon for thermochemical conversion process of low rank carbonaceous fuels. The volatile–char interaction can significantly affect almost every aspects of low-rank fuel thermochemical conversion process,including promoting volatilisation of alkali and alkaline earth metallic(AAEM), restraining gasification, catalyzing tar decomposition,etc.In this paper, research progress in the interaction between volatiles and char in thermochemical conversion process of low rank carbonaceous fuels was introduced.
volatile-char interaction; pyrolysis; gasification
TQ 028
A
1671-0460(2016)09-2252-04
2016-02-17
楊華(1985-),男,山東青州市人,中級(jí),博士,2014 年畢業(yè)于九州大學(xué)(日本),研究方向:主要從事生物質(zhì)能源和固廢處理。E-mail:odyyang@gmail.com。
張立欣(1984-),男,吉林延邊人,講師,博士,2013 年畢業(yè)于九州大學(xué)(日本),研究方向:主要從事褐煤、生物質(zhì)熱解/氣化和固廢處理研究。E-mail:zhanglixin@sust.edu.cn。