摘要: 證明三維湍流Richardson擴(kuò)散方程中的變系數(shù)拉普拉斯算子是基本解為r-7/3的一個(gè)勢(shì)算子,并稱其為Richardson勢(shì)算子,其中,r是空間中兩點(diǎn)的歐幾里得距離.基于Kolmogorov標(biāo)度律和湍流快擴(kuò)散(superdiffusion)理論,運(yùn)用隱式微積分方程建模方法提出雷諾方程中的Richardson勢(shì)算子湍流渦黏性本構(gòu)方程.
關(guān)鍵詞: 湍流; 渦黏性本構(gòu); Richardson擴(kuò)散方程; 基本解; Richardson勢(shì)算子; 隱式微積分方程建模
中圖分類號(hào): O39; O241.8文獻(xiàn)標(biāo)志碼: A
Abstract: It is verified that the Laplacian operator with varying coefficient in the 3D turbulence Richardson diffusion equation is a potential operator having the fundamental solution r-7/3, which is called the Richardson potential operator and where r is the Euclidean distance between two points. Based on the Kolmogorov scaling law and turbulence superdiffusion theory, a Richardson potential operator equation of turbulence eddy viscosity constitutive relationship in the Reynolds equation is proposed by the implicit calculus equation modeling approach.
Key words: turbulence; eddy viscosity constitutive relationship; Richardson diffusion equation; fundamental solution; Richardson potential operator; implicit calculus equation modeling
3討論
隱式微積分建模方法將微積分建模與統(tǒng)計(jì)模型深刻緊密地結(jié)合起來,揭示確定性模型與隨機(jī)模型的內(nèi)在聯(lián)系.本文利用隱式微積分建模方法發(fā)展的雷諾湍流模型,是一個(gè)統(tǒng)計(jì)意義清晰的確定性物理模型.
Richardson勢(shì)算子基本解r-7/3與湍流的Kolmogorov標(biāo)度率有數(shù)學(xué)、力學(xué)上的清晰聯(lián)系.另一方面,其也許與湍流的分形結(jié)構(gòu)有關(guān),深入分析這個(gè)問題是下一步工作的重點(diǎn).
類似于文獻(xiàn)[2]的方法,也可以用Richardson勢(shì)算子構(gòu)造間歇性湍流的統(tǒng)計(jì)方程Pt-γΔRP-υΔP=0(11)式中:P為概率密度函數(shù).式(11)包含渦尺度和分子尺度的黏性擴(kuò)散行為,可刻畫湍流的多尺度行為.
文獻(xiàn)[2]提出的分?jǐn)?shù)階拉普拉斯算子渦黏性本構(gòu)模型,本質(zhì)上假設(shè)湍流渦的擴(kuò)散服從Lévy穩(wěn)態(tài)分布[3],但是湍流實(shí)驗(yàn)數(shù)據(jù)更接近伸展高斯分布[6].本文引入的Richardson勢(shì)算子湍流渦黏性本構(gòu)模型在統(tǒng)計(jì)上反映湍流的伸展高斯分布特征.此外,Lévy穩(wěn)態(tài)分布的2階矩?zé)o窮大[3],而伸展高斯分布沒有這個(gè)問題.有關(guān)這兩個(gè)模型的數(shù)值驗(yàn)證是一個(gè)非常重要的工作,可以考慮從槽道湍流問題入手.
參考文獻(xiàn):
[1]BATCHELOR G K. Theory of homogeneous turbulence[M]. Cambridge: Cambridge University Press, 1953.
[2]CHEN W. A speculative study of 2/3order fractional Laplacian modeling of turbulence: Some thoughts and conjectures[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2006, 16(2): 023126. DOI: 10.1063/1.2208452.
[3]SAICHEV A, ZASLAVSKY G M. Fractional kinetic equations: Solutions and applications[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1997, 7(4): 753764. DOI: 10.1063/1.166272.
[4]JULLIEN M C, PARET J, TABELING P. Richardson pair dispersion in twodimensional turbulence[J]. Physical Review Letters, 1999, 82(14): 28722875. DOI: 10.1103/PhysRevLett.82.2872.
[5]MAJDA A J, KRAMER P R. Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena[J]. Physics Reports, 1999, 314(45): 237574.
[6]PORTA A L, VOTH G A, CRAWFORD A M, et al. Fluid particle accelerations in fully developed turbulence[J]. Nature, 2001, 409: 10171019.
[7]SOKOLOV I M, KLAFTER J, BLUMEN A. Ballistic versus diffusive pair dispersion in the Richardson regime[J]. Physical Review E, 2000, 61(3): 27172722. DOI:10.1103/PhysRevE.61.2717.
[8]陳文.復(fù)雜科學(xué)與工程問題仿真的隱式微積分建模[J]. 計(jì)算機(jī)輔助工程, 2014, 23(5): 16.
CHEN W. Implicit calculus modeling for simulating complex scientific and engineering problems[J]. Computer Aided Engineering, 2014, 23(5): 16. DOI: 10.13340/j.cae.2014.05.001.
(編輯于杰)