劉靜坤,王霖邦,王 兵,盛亞玲,賀 靜,夢(mèng)粉鴿
?
·實(shí)驗(yàn)研究·
生物信息法推算青光眼小鼠視乳頭及視網(wǎng)膜功能變化
劉靜坤1,王霖邦2,王兵3,盛亞玲1,賀靜1,夢(mèng)粉鴿1
1Department of Ophthalmology, Xi’an Honghui Hospital, Xi’an 710054, Shaanxi Province, China;2Chongqing Medical University, Chongqing 400016, China;3Department of the Laboratory, Shaanxi Province Health Inspection Institution, Xi’an 710077, Shaanxi Province, China
?METHODS: The data in this study is from Gene Expression Omnibus(GEO) which belong to Nation Center for Biotechnology Information (NCBI), the quality of the raw data CEL files was processed and analyzed by the Expression software which belong to Affymetrix Inc., Santa Clare, CA, USA. Significant analysis method (SAM) which base on the T test was used to identified the significant genes. Based on GRNInfer and Gvedit soft we set up gene networks of optic and retina of mice and further more enriched analysis which based on DAVID and MAS3.0 online software were processed.
?RESULTS: The analysis between the group of the optic nerve heads and retinas in different stage of glaucoma showed that the amount of significant different expressed genes in the optic never head group increased significantly comparing with the group of retina in the early stage of glaucoma, the analysis of the genes network construction show that: the node genes of optic nerve heads included Unc13c、Kif5a、TRPM1、PANX; and the node genes of retina include POU4F1, NEFL, BC03870, CALB2. Metabolic pathways enrichment analysis which based on MAS3.0 online platform show that there was mainly the amyotrophic lateral sclerosis, tyrosine metabolism, melanogenesis, Nitrogen metabolism, Gap junction, Leukocyte transendothelial migration metabolism pathway enriched out in optic nerve head; and there was mainly amyotrophic lateral sclerosis, neurodegenerative disorders, prostate cancer, leukocyte transendothelial migration metabolism pathway enriched out in retina.
?CONCLUSION: By understanding bioinformatics result, it seems optic were more sensitive than the retina to high intraocular pressure, and weather high expression of TYrp1 gene can be as a sensitive diagnostic item require more evidence back up. Functional enrich analysis of node gene showed that cytoskeleton reconstructed,molecular motor and nutrients transport function improve in optic; and in retina, the most prominent finding in retina was enrichment function modules were focus on regeneration, repairing and differentiation of cells, which remind that we should reinforce research on reparation of retina of primary glaucoma. Metabolic pathways enrichment analysis show that inflammatory response plays prominent place in optic and retina of primary glaucoma, because of the optic narrow and crowed anatomic shape, nutrient metabolism and substances transfer enrichment modules play an important role in optics of primary glaucoma.
目的:本研究運(yùn)用生物信息學(xué)軟件,利用數(shù)據(jù)庫(kù)資料,推測(cè)青光眼早期小鼠視乳頭及視網(wǎng)膜可能的信號(hào)路徑及基因生物功能模塊,為研究青光眼發(fā)病機(jī)制提供新的途徑。
方法:本研究的數(shù)據(jù)是從美國(guó)生物技術(shù)信息中心GEO基因表達(dá)數(shù)據(jù)庫(kù)獲得。利用美國(guó)昂飛公司Expression Console軟件對(duì)原始的CEL數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化及對(duì)數(shù)化轉(zhuǎn)換處理。利用以t檢驗(yàn)為基礎(chǔ)的基因表達(dá)差異顯著性分析方法SAM對(duì)基因芯片數(shù)據(jù)進(jìn)行顯著性差異分析,分析后篩選顯著性差異表達(dá)基因,采用GNRInfer軟件構(gòu)建了小鼠視乳頭及視網(wǎng)膜前50個(gè)有顯著差異表達(dá)基因的調(diào)控網(wǎng)絡(luò),同時(shí)我們利用MAS3.0分子注釋系統(tǒng)軟件及DAVID軟件這兩種在線分析平臺(tái)中進(jìn)一步富集基因信號(hào)通路。
結(jié)果:青光眼各組視乳頭和視網(wǎng)膜及其相對(duì)應(yīng)組的顯著性差異基因分析表明,在青光眼早期視乳頭組及視網(wǎng)膜組較之正常組相比視乳頭組顯著性差異基因數(shù)量明顯增多,青光眼視乳頭及視網(wǎng)膜網(wǎng)絡(luò)構(gòu)建顯示,視乳頭基因網(wǎng)絡(luò)中主要調(diào)控節(jié)點(diǎn)基因包括Unc13c、Kif5a、TRPM1、PANX;視網(wǎng)膜基因網(wǎng)絡(luò)中主要調(diào)控節(jié)點(diǎn)基因包括POU4F1、NEFL、BC03870、CALB2。MAS在線信號(hào)通路分析顯示,視乳頭組織中主要的信號(hào)代謝通路包括肌萎縮側(cè)索硬化代謝通路、神經(jīng)退行性紊亂、白細(xì)胞穿內(nèi)皮性遷移及前列腺癌信號(hào)通路。視網(wǎng)膜組織主要代謝通路包括肌萎縮側(cè)索硬化代謝、酪氨酸代謝、黑色素生成、氮代謝、縫隙連接、白細(xì)胞穿內(nèi)皮遷移。
結(jié)論:早期青光眼階段視乳頭較視網(wǎng)膜對(duì)眼壓更為敏感,特別是Tyrp1基因在早期高眼壓的表達(dá)能否作為青光眼早期生物學(xué)指標(biāo)有待進(jìn)一步探討。在青光眼高眼壓壓力下,節(jié)點(diǎn)分子生物學(xué)功能顯示在視乳頭組織中,細(xì)胞骨架的重排、生物驅(qū)動(dòng)馬達(dá)動(dòng)力、物質(zhì)代謝及運(yùn)輸力均為增強(qiáng);而在視網(wǎng)膜組織中,最突出的表現(xiàn)在細(xì)胞的再生、分化及修復(fù)作用,此結(jié)果提示我們?cè)谇喙庋鄣难芯恐袘?yīng)重視哺乳動(dòng)物視網(wǎng)膜損傷后自身修復(fù)的研究。代謝通路富集分析顯示,炎性反應(yīng)在視乳頭及視網(wǎng)膜的病理反應(yīng)中均起到非常重要的作用,而在視乳頭中由于其狹窄而擁擠的解剖結(jié)構(gòu)在青光眼發(fā)病中存在營(yíng)養(yǎng)代謝及物質(zhì)轉(zhuǎn)運(yùn)障礙。
青光眼;生物計(jì)算;信號(hào)通路;生物標(biāo)記
引用:劉靜坤,王霖邦,王兵,等.生物信息法推算青光眼小鼠視乳頭及視網(wǎng)膜功能變化.國(guó)際眼科雜志2016;16(11):2014-2018
青光眼可引起眼部多部位損傷,是眼科常見(jiàn)的退化性病變,全世界約有7億患病人群,高眼壓是引起青光眼患者眼部損傷的重要因素,但目前降低眼壓治療并不是總是有效,且有很多毒副作用,因此為改善治療效果,研究青光眼病理生理學(xué)分子生物學(xué)機(jī)制有重要意義。青光眼屬于多基因致病及環(huán)境因素致病性疾病,在高眼壓作用下視網(wǎng)膜組織與對(duì)照組織基因芯片顯著性差異表達(dá)基因數(shù)量較多,如何確定重要的節(jié)點(diǎn)基因還有很多新的思路及方法有待探索。目前對(duì)青光眼早期致病性基因研究相對(duì)較少。為進(jìn)一步探究早期青光眼發(fā)病機(jī)制,我們挖掘NCBI中GEO數(shù)據(jù)庫(kù)數(shù)據(jù),運(yùn)用生物信息學(xué)方法構(gòu)建并推算早期青光眼視網(wǎng)膜及視乳頭可能發(fā)生信號(hào)通路及代謝的改變,并進(jìn)一步運(yùn)用線性代數(shù)法構(gòu)建視網(wǎng)膜及視乳頭基因調(diào)控網(wǎng)絡(luò),推算基因節(jié)點(diǎn)基因在相應(yīng)組織的功能。
1.1材料本研究數(shù)據(jù)來(lái)源于美國(guó)生物技術(shù)信息中心(Nation Center for Biotechnology Information,NCBI)的GEO(Gene Expression Omnibus)數(shù)據(jù)庫(kù),數(shù)據(jù)樣本號(hào)為GSE26299(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26299)。我們選取了樣本中的100個(gè)基因芯片數(shù)據(jù)。樣本分組定義:對(duì)照組;青光眼1組:無(wú)青光眼癥狀第一階段(NO1);青光眼2組,無(wú)青光眼癥狀第二階段(NO2);青光眼3組,出現(xiàn)中度青光眼癥狀(MOD);青光眼4組,出現(xiàn)重度青光眼癥狀(SEV)。樣本分組:對(duì)照組中視乳頭組及視網(wǎng)膜組各10眼;青光眼1組,視乳頭組及視網(wǎng)膜組各10眼;青光眼2組,視乳頭組及視網(wǎng)膜組各10眼;青光眼3組,視乳頭組及視網(wǎng)膜組各10眼;青光眼4組,視乳頭組及視網(wǎng)膜組各10眼。
表1青光眼各組視網(wǎng)膜與對(duì)照組顯著高表達(dá)基因數(shù)目及功能富集模塊數(shù)目
組別顯著高表達(dá)基因數(shù)目視乳頭視網(wǎng)膜功能富集模塊數(shù)目視乳頭視網(wǎng)膜青光眼1組19230青光眼2組20220青光眼3組20330青光眼4組1741425542
1.2方法
1.2.1原始數(shù)據(jù)處理原始數(shù)據(jù)均為CEL格式,原始數(shù)據(jù)的處理采用美國(guó)昂飛公司Expression Console軟件對(duì)原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化及對(duì)數(shù)化轉(zhuǎn)換處理。
1.2.2基因芯片顯著性差異表達(dá)分析基因表達(dá)差異顯著性分析方法(significance analysis of microarray,SAM)是一種對(duì)基因芯片數(shù)據(jù)進(jìn)行顯著性差異分析的方法,該方法是一種以t檢驗(yàn)為基礎(chǔ)的統(tǒng)計(jì)學(xué)分析,本研究中SAM分析是采用TM4軟件的子軟件MuliExperiment(MeV)的SAM分析功能。本研究中,分別對(duì)比視乳頭及視網(wǎng)膜組中D2-Glaucoma與相應(yīng)的NOE1組、NOE2組、MOD組及SEV組。
1.2.3基因調(diào)控網(wǎng)絡(luò)構(gòu)建基因調(diào)控網(wǎng)絡(luò)屬于系統(tǒng)生物學(xué)的研究范疇,使用GNRInfer軟件是在線性代數(shù)基礎(chǔ)上推算基因間相互關(guān)系的工具軟件,結(jié)合GVedit(http://www.graphviz.org)畫圖軟件可將以基因表達(dá)數(shù)值矩陣轉(zhuǎn)化為基因間相互作用的可視化圖像。GNRInfer[1]中等式(1)代表一組數(shù)據(jù)所有的可能網(wǎng)絡(luò)。
J=(A'-A)U^1VT+YV=J+YVT(1)
1.2.4 DAVID聚類分析DAVID(Database for Annotation,Visualization,and Integrated Discovery)(http://www.david.niaid.nih.gov)由數(shù)據(jù)分析軟件及生物學(xué)數(shù)據(jù)庫(kù)構(gòu)成,用數(shù)學(xué)算法從大量生物信息中挖掘有用的生物信息,并進(jìn)一步對(duì)基因的功能進(jìn)行注釋、富集及功能聚類[2-3]。
1.2.5分子注釋系統(tǒng)3.0(MAS 3.0)分子注釋系統(tǒng)MAS3.0(Molecule Annotation System 3.0)是對(duì)高通道基因芯片提供基因功能注釋及富集分析的免費(fèi)在線分析平臺(tái)。MAS3.0 在線分析平臺(tái)將Genebank等生物數(shù)據(jù)庫(kù)信息通過(guò)富集分析提供給研究者基因本體注釋、信號(hào)通路等知識(shí)。本研究應(yīng)用MAS3.0系統(tǒng)分別富集視乳頭及視網(wǎng)膜顯著差異高表達(dá)基因信號(hào)通路富集圖。
2.1青光眼各組視乳頭及視網(wǎng)膜與其相應(yīng)對(duì)照組的SAM分析分析表明,在青光眼視乳頭組4組高表達(dá)基因分別有19、20、20和174個(gè),而視網(wǎng)膜組高表達(dá)基因數(shù)分別為2、2、3和142個(gè)(表1)。其中視乳頭組青光眼1組中DAVID富集功能模塊包括:膜結(jié)合、黑色素代謝、信號(hào)傳遞、轉(zhuǎn)錄調(diào)節(jié);2組中DAVID富集功能模塊包括膜結(jié)合、黑色素代謝模塊;3組中DAVID富集功能模塊包括膜結(jié)合、信號(hào)傳遞及分泌、轉(zhuǎn)錄調(diào)節(jié);4組中DAVID富集功能模塊則富集出55個(gè)功能模塊。視網(wǎng)膜組青光眼1、2、3組中均未富集出DAVID功能模塊;4組中則富集出42個(gè)功能模塊。
圖1視乳頭顯著高表達(dá)基因網(wǎng)絡(luò)(圖中圓圈的內(nèi)容均為基因的名稱,藍(lán)色線條及箭頭均表示上游基因?qū)ο掠位虻臏p弱作用,紅色線條及箭頭均表示上游基因?qū)ο掠位虻募訌?qiáng)作用)。
圖2視網(wǎng)膜顯著高表達(dá)基因網(wǎng)絡(luò)(圖中圓圈的內(nèi)容均為基因的名稱,藍(lán)色線條及箭頭均表示上游基因?qū)ο掠位虻臏p弱作用,紅色線條及箭頭均表示上游基因?qū)ο掠位虻募訌?qiáng)作用)。
2.2視乳頭和視網(wǎng)膜顯著高差異表達(dá)基因網(wǎng)絡(luò)構(gòu)建本研究分別應(yīng)用線性代數(shù)方法將縱軸為基因序列號(hào)、橫軸為時(shí)間軸顯著高表達(dá)基因矩陣轉(zhuǎn)化為基因相互作用網(wǎng)絡(luò),網(wǎng)絡(luò)中每個(gè)基因均有其上游基因及下游基因,基因間相互關(guān)系分為加強(qiáng)或減弱,其中紅線及箭頭表示加強(qiáng)作用,藍(lán)線及箭頭表示減弱作用。圖1為視乳頭顯著高表達(dá)基因網(wǎng)絡(luò),圖2為視網(wǎng)膜顯著高表達(dá)基因網(wǎng)絡(luò)。視乳頭基因網(wǎng)絡(luò)中主要調(diào)控節(jié)點(diǎn)基因包括Unc13c、Kif5a、TRPM1、PANX2,視網(wǎng)膜基因網(wǎng)絡(luò)中主要調(diào)控節(jié)點(diǎn)基因包括POU4F1、NEFL、BC03870、CALB2。
2.3 MAS3.0富集結(jié)果結(jié)果顯示,視乳頭組織中主要的信號(hào)代謝通路網(wǎng)絡(luò)如圖3,主要代謝通路包括肌萎縮側(cè)索硬化代謝、酪氨酸代謝、黑色素生成、氮代謝、縫隙連接、白細(xì)胞穿內(nèi)皮遷移;視網(wǎng)膜組織中主要代謝通路網(wǎng)絡(luò)如圖4,主要的信號(hào)代謝通路包括肌萎縮側(cè)索硬化代謝通路、神經(jīng)退行性紊亂、白細(xì)胞穿內(nèi)皮性遷移及前列腺癌信號(hào)通路。
既往研究顯示,病理性高眼壓小鼠模型可發(fā)生視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的凋亡、視乳頭杯盤比的增大及視神經(jīng)纖維束腫脹斷裂[4]等病理性病變,但早期青光眼視網(wǎng)膜及視乳頭病理生理學(xué)發(fā)病機(jī)制及其基因網(wǎng)絡(luò)構(gòu)建的研究較為缺乏,為探索其發(fā)病機(jī)制,我們挖掘了GEO數(shù)據(jù)庫(kù)并利用線性代數(shù)軟件進(jìn)一步推算其數(shù)據(jù)中所蘊(yùn)含的生物學(xué)信息。
圖3視乳頭顯著高表達(dá)基因網(wǎng)絡(luò)信號(hào)通路網(wǎng)絡(luò)圖(圖中矩形內(nèi)容為所富集的信號(hào)通路,紅色的深度代表富集值的強(qiáng)度,顏色越深,富集值越高,黃色橢圓內(nèi)容代表基因名稱;Amyotrophic lateral sclerosis:ALS,肌萎縮側(cè)索硬化信號(hào)通路;Tyrosine metabolism:酪氨酸代謝信號(hào)通路;Melanogenesis:黑色素代謝信號(hào)通路;Nitrogen metabolism:氮代謝信號(hào)通路;Gap junction:縫隙連接信號(hào)通路;Leukocyte transendothelial migration:白細(xì)胞游走遷移信號(hào)通路)。
早期青光眼視網(wǎng)膜及視乳頭顯著差異基因分析表明,視乳頭組在青光眼早期及中期即青光眼1組、2組及3組顯著增高基因數(shù)目較視網(wǎng)膜明顯增多,富集青光眼1組中19個(gè)基因我們發(fā)現(xiàn)了3個(gè)基因功能模塊,主要包括細(xì)胞膜結(jié)合功能、色素代謝模塊、轉(zhuǎn)錄功能,以上結(jié)果表明在早期青光眼階段視乳頭較視網(wǎng)膜對(duì)眼壓更為敏感。從解剖學(xué)原因分析,視乳頭的組織或細(xì)胞及視網(wǎng)膜動(dòng)、靜脈受到壓力后可以緩沖的外界環(huán)境較視網(wǎng)膜所處的環(huán)境相比比較受限,視乳頭不僅受到機(jī)械壓力,同時(shí)高眼壓對(duì)動(dòng)靜脈的壓力可造成視乳頭組織及細(xì)胞的缺血缺氧等反應(yīng),這些原因均可對(duì)早期青光眼小鼠視乳頭基因的表達(dá)產(chǎn)生影響。
圖4視乳頭顯著高表達(dá)基因網(wǎng)絡(luò)信號(hào)通路網(wǎng)絡(luò)圖(圖中矩形內(nèi)容為所富集的信號(hào)通路,紅色的深度代表富集值的強(qiáng)度,顏色越深,富集值越高,黃色橢圓內(nèi)容代表基因名稱;Amyotrophic lateral sclerosis:ALS,肌萎縮側(cè)索硬化信號(hào)通路;Neurodegenerative Disorders:神經(jīng)退行性信號(hào)通路;Prostate cancer:前列腺癌信號(hào)通路;Leukocyte transendothelial migration:白細(xì)胞游走遷移信號(hào)通路)。
青光眼其本質(zhì)是一種神經(jīng)退行性疾病,病理性眼壓升高被認(rèn)為是青光眼疾病發(fā)生的重要危險(xiǎn)因素。視乳頭組及視網(wǎng)膜組相應(yīng)組別中高表達(dá)差異基因的富集結(jié)果顯示,在青光眼早期,這些基因?qū)毫^為敏感,對(duì)抵御損傷較為重要。既往研究顯示,青光眼組織的損傷可導(dǎo)致一系列的信號(hào)傳導(dǎo)通路障礙,包括線粒體功能異常、蛋白水解級(jí)聯(lián)反應(yīng)、內(nèi)質(zhì)網(wǎng)壓力及氧化應(yīng)激等,但我們的研究卻推測(cè)視乳頭在青光眼早期高表達(dá)基因主要加強(qiáng)了基因轉(zhuǎn)錄、黑色素代謝、信號(hào)傳遞、膜結(jié)合信號(hào)傳遞功能,這些功能常出現(xiàn)在急性的各種炎癥、機(jī)械等壓力下[5]。黑色素代謝模塊中的酪氨酸酶相關(guān)蛋白1(Tyrp1)控制黑色素生物合成鏈的遠(yuǎn)端反應(yīng),在早期高眼壓視乳頭中Tyrp1基因的高表達(dá)能否作為青光眼損傷的早期敏感性指標(biāo)之一有待于進(jìn)一步研究。
構(gòu)建基因網(wǎng)絡(luò)并推算基因間的相互作用方式是近年來(lái)系統(tǒng)生物學(xué)的研究熱點(diǎn)之一。各種生物分子及其相互作用可被簡(jiǎn)化為一個(gè)基因網(wǎng)絡(luò)。通過(guò)基因芯片的矩陣數(shù)據(jù),應(yīng)用線性代數(shù)計(jì)算出網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)圖,從而揭示基因間復(fù)雜的作用機(jī)制,并推測(cè)相關(guān)基因功能。隨著高通量基因檢測(cè)技術(shù)發(fā)展,網(wǎng)絡(luò)構(gòu)建成為從生物系統(tǒng)學(xué)層次上研究基因的功能提供有效的手段,并依次可識(shí)別節(jié)點(diǎn)“hub”基因。同時(shí)可以通過(guò)“連坐法”(guilt-by-association,GBA)來(lái)發(fā)現(xiàn)新的基因功能[6],另外越來(lái)越多的證據(jù)表明表型是由基因社團(tuán)(community)來(lái)決定,社團(tuán)間基因相互作用可提供更多的生物表型方式[7],因此基因的網(wǎng)絡(luò)構(gòu)建為從系統(tǒng)層次揭示生命本質(zhì)提供新的機(jī)遇。
本研究所構(gòu)建青光眼視乳頭基因網(wǎng)絡(luò)中的節(jié)點(diǎn)基因包括Unc13c、Kif5a、TRPM1、PANX2。研究認(rèn)為Munc13對(duì)神經(jīng)元發(fā)育來(lái)說(shuō)甚至必不可少[8],并參與了神經(jīng)的可塑性過(guò)程,與細(xì)胞骨架的重排有關(guān)[9]。能高效地將三磷酸腺苷(adenosine triphosphate,ATP)結(jié)合以及水解產(chǎn)生的化學(xué)能轉(zhuǎn)化為機(jī)械能[10],同時(shí)攜帶著“貨物”沿著微管定向移動(dòng)[11-13]。TRPM1屬瞬時(shí)受體電位離子通道(transient receptor potential channels,TRP channels)。維持細(xì)胞內(nèi)外環(huán)境的離子穩(wěn)態(tài)等眾多生命活動(dòng)[14-17]。PANX2屬于Pannexin蛋白,是縫隙連接通道的亞單位,可傳遞突融的傳遞[18-19]、ATP的釋放[20]、金屬離子的傳遞[21]和感覺(jué)信號(hào)的傳導(dǎo)[22]。從以上生物信息學(xué)結(jié)果可推測(cè),視乳頭在青光眼的機(jī)械壓力下,篩板各層的的物理壓力可引起相應(yīng)基因的表達(dá)增高,并進(jìn)一步加強(qiáng)視乳頭組織中細(xì)胞骨架的重排、生物驅(qū)動(dòng)馬達(dá)的動(dòng)力的增強(qiáng)、ATP、離子通道等運(yùn)輸?shù)募訌?qiáng)以及囊泡運(yùn)輸?shù)脑鰪?qiáng),這些分子標(biāo)志為青光眼的診斷、治療及防治提供新思路。
而在視網(wǎng)膜中的節(jié)點(diǎn)基因中,Pou4F1屬于第四類POU結(jié)構(gòu)域(POU4),它們對(duì)各種感覺(jué)神經(jīng)系統(tǒng)的發(fā)育及神經(jīng)元的分化方向選擇中起著重要作用[23-29]。研究發(fā)現(xiàn)屬于POU結(jié)構(gòu)域轉(zhuǎn)錄因子家族成員Brn3在維持RGC亞型多樣性中所發(fā)揮著獨(dú)特作用[30]。神經(jīng)絲輕鏈多肽(neurofilament light polypeptide,NEFL)在多種神經(jīng)系統(tǒng)炎癥和非炎癥性神經(jīng)系統(tǒng)疾病均有不同程度增高,對(duì)維持神經(jīng)是細(xì)胞骨架的關(guān)鍵成分,在維持神經(jīng)細(xì)胞形態(tài)及使有髓鞘的軸突再生方面有重要的作用[31-34]。鈣視網(wǎng)膜蛋白(Calretinin)又稱CALB2。當(dāng)細(xì)胞受到外界刺激可使細(xì)胞質(zhì)內(nèi)Ca2+濃度增加時(shí),CaBP即與Ca2+結(jié)合,隨即與相應(yīng)靶蛋白結(jié)合發(fā)揮生物學(xué)效應(yīng)鈣結(jié)合蛋白(CaBP),在細(xì)胞內(nèi)激活酶或蛋白質(zhì),參與調(diào)節(jié)細(xì)胞的功能代謝,同時(shí)在細(xì)胞核內(nèi)對(duì)細(xì)胞分化、發(fā)育、增殖、壞死和凋亡等功能也起重要作用[35-37]。Neuritin(Nrn1)基因是1996年Nedivi等通過(guò)大鼠光刺激誘導(dǎo)實(shí)驗(yàn),在視皮質(zhì)中首次發(fā)現(xiàn)并報(bào)道的可塑性相關(guān)候選基因15(CPG15)。在神經(jīng)系統(tǒng)受損后發(fā)揮重要的再生修復(fù)作用[38-39]。以往的研究顯示哺乳動(dòng)物視網(wǎng)膜組織的再生能力非常有限,但我們的研究顯示視網(wǎng)膜受到高眼壓后,節(jié)點(diǎn)基因功能富集均與視網(wǎng)膜的再生有關(guān),提示我們應(yīng)重視哺乳動(dòng)物視網(wǎng)膜修復(fù)功能的研究。
MAS3.0視乳頭及視網(wǎng)膜差異表達(dá)基因中富集網(wǎng)絡(luò)信號(hào)通路圖3和4發(fā)現(xiàn)均存在肌萎縮硬化代謝通路(ASL)的改變,目前ASL的發(fā)病主要以基因突變學(xué)說(shuō)為主,ASL主要侵犯脊髓前角細(xì)胞、腦干運(yùn)動(dòng)神經(jīng)元及錐體束,但視網(wǎng)膜屬感覺(jué)神經(jīng)末梢,強(qiáng)烈的富集值進(jìn)一步證明相同的基因群在不同的發(fā)病部位可引起不同的疾病,疾病致病原因可由基因突變引起,也可與基因數(shù)量表達(dá)調(diào)控有關(guān)。視乳頭及視網(wǎng)膜也共同富集出白細(xì)胞內(nèi)皮遷移,說(shuō)明炎癥性反應(yīng)在青光眼病理生理發(fā)病進(jìn)程中起到非常重要的作用。而視乳頭獨(dú)有縫隙連接通路、酪氨酸代謝、黑色素生成、氮代謝,說(shuō)明視乳頭代謝特點(diǎn)上存在營(yíng)養(yǎng)代謝及物質(zhì)轉(zhuǎn)運(yùn)困難的視乳頭狹窄而擁擠的解剖結(jié)構(gòu)及高眼壓下組織水腫壓迫血管,更進(jìn)一步加重局部的血供及營(yíng)養(yǎng)物質(zhì)的供應(yīng)。
綜上所述,通過(guò)生物信息學(xué)推算,我們發(fā)現(xiàn)早期青光眼階段視乳頭較視網(wǎng)膜對(duì)眼壓更為敏感,特別是Tyrp1基因在早期高眼壓的表達(dá)能否作為青光眼早期生物學(xué)指標(biāo)有待進(jìn)一步探索。在青光眼高眼壓壓力下,節(jié)點(diǎn)分子生物學(xué)功能顯示,在視乳頭組織中,細(xì)胞骨架的重排、生物驅(qū)動(dòng)馬達(dá)動(dòng)力、物質(zhì)代謝及運(yùn)輸力均為增強(qiáng);而在視網(wǎng)膜組織中,最突出的表現(xiàn)為細(xì)胞的再生、分化及修復(fù)作用,此結(jié)果提示我們?cè)谇喙庋鄣难芯恐袘?yīng)重視哺乳動(dòng)物視網(wǎng)膜損傷后自身修復(fù)的研究。在一定的病理?xiàng)l件下必定是一些特定的基因團(tuán)而不是單個(gè)基因發(fā)生了調(diào)節(jié)(表達(dá)增高或表達(dá)減弱),利用生物信息學(xué)方法富集出這些基因團(tuán)的功能模塊、代謝通路,可科學(xué)地、全面掌握病理?xiàng)l件下基因表達(dá)高低所調(diào)節(jié)的功能改變的方向,例如本研究發(fā)現(xiàn)在小鼠眼壓升高時(shí)節(jié)點(diǎn)基因功能模塊主要表現(xiàn)為視網(wǎng)膜的再生模塊,那么進(jìn)一步對(duì)這些節(jié)點(diǎn)基因研究,就可對(duì)視網(wǎng)膜再生機(jī)制、視網(wǎng)膜保護(hù)機(jī)制、抗青光眼藥物及視網(wǎng)膜再生性研究提供基礎(chǔ)。代謝通路富集分析顯示炎性反應(yīng)在視乳頭及視網(wǎng)膜的病理反應(yīng)中均起到非常重要的作用,而在視乳頭中由于其狹窄而擁擠的解剖結(jié)構(gòu)在青光眼發(fā)病中存在營(yíng)養(yǎng)代謝及物質(zhì)轉(zhuǎn)運(yùn)障礙,這些結(jié)論與既往研究及視網(wǎng)膜及視乳頭的解剖結(jié)構(gòu)的一致性證明,再次證明生物信息學(xué)研究的可行性。
1 Wang Y, Joshi T, Zhang XS,etal. Inferring gene regulatory networks from multiple microarray datasets.Bioinformatics2006;22(19):2413-2420
2 Dennis G Jr, Sherman BT, Hosack DA,etal. DAVID: Database for Annotation, Visualization, and Integrated Discovery.GenomeBiol2003;4(5):3
3 Huang DW, Sherman BT, Tan Q,etal. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists.GenomeBiol2007;8(9):R183
4 Gross RL, Ji J, Chang P,etal. A mouse model of elevated intraocular pressure: retina and optic nerve findings.TransAmOphthalmolSoc2003;101:163-171
5 Liu J, Wang B, Wang W,etal. Computational networks of activating transcription factor 3 gene in Huh7 cell lines and hepatitis C virus-infected Huh7 cell lines.MolMedRep2015;12(1):1239-1246
6 Gillis J, Pavlidis P. "Guilt by association" is the exception rather than the rule in gene networks.PLoSComputBiol2012;8(3):e1002444
7 Lee I, Lehner B, Crombie C,etal. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans.NatGenet2008;40(2):181-188
8 Ashery U, Varoqueaux F, Voets T,etal. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells.EMBOJ2000;19(14):3586-3596
9 Rosenmund C, Sigler A, Augustin I,etal. Differential control of vesicle priming and short-term plasticity by Munc13 isoforms.Neuron2002;33(3):411-424
10 Rice S, Lin AW, Safer D,etal. A structural change in the kinesin motor protein that drives motility.Nature1999;402(6763):778-784
11 Svoboda K, Schmidt CF, Schnapp BJ,etal. Direct observation of kinesin stepping by optical trapping interferometry.Nature1993;365(6448):721-727
12 Vale RD. The molecular motor toolbox for intracellular transport.Cell2003;112(4):467-480
13 Hirokawa N, Nitta R, Okada Y. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A.NatRevMolCellBiol2009;10(12):877-884
14 Clapham DE. TRP channels as cellular sensors.Nature2003;426(6966):517-524
15 Huang CL. The transient receptor potential superfamily of ion channels.JAmSocNephrol2004;15(7):1690-1699
16 Clapham DE, Julius D, Montell C,etal. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels.PharmacolRev2005;57(4):427-450
17 Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels.AnnuRevPhysiol2006;68:619-647
18 Zoidl G, Kremer M, Zoidl C,etal. Molecular diversity of connexin and pannexin genes in the retina of the zebrafish Danio rerio.CellCommunAdhes2008;15(1):169-183
19 Thompson RJ, Jackson MF, Olah ME,etal. Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus.Science2008;322(5907):1555-1559
20 Ellsworth ML, Forrester T, Ellis CG,etal. The erythrocyte as a regulator of vascular tone.AmJPhysiol1995;269(6Pt2):H2155-2161
21 Bunse S, Schmidt M, Hoffmann S,etal. Single cysteines in the extracellular and transmembrane regions modulate pannexin 1 channel function.JMembrBiol2011;244(1):21-33
22 Huang YA, Roper SD. Intracellular Ca2+and TRPM5-mediated membrane depolarization produce ATP secretion from taste receptor cells.JPhysiol2010;588(Pt13):2343-2350
23 Andersen B, Rosenfeld MG. POU domain factors in the neuroendocrine system: lessons from developmental biology provide insights into human disease.EndocrRev2001;22(1):2-35
24 Gerrero MR, McEvilly RJ, Turner E,etal. Brn-3.0: a POU-domain protein expressed in the sensory, immune, and endocrine systems that functions on elements distinct from known octamer motifs.ProcNatlAcadSciUSA1993;90(22):10841-10845
25 Ninkina NN, Stevens GE, Wood JN,etal. A novel Brn3-like POU transcription factor expressed in subsets of rat sensory and spinal cord neurons.NucleicAcidsRes1993;21(14):3175-3182
26 Turner EE, Jenne KJ, Rosenfeld MG. Brn-3.2: a Brn-3-related transcription factor with distinctive central nervous system expression and regulation by retinoic acid.Neuron1994;12(1):205-218
27 Xiang M, Zhou L, Macke JP,etal. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons.JNeurosci1995;15(7Pt1):4762-4785
28 Xiang M, Gan L, Li D,etal. Role of the Brn-3 family of POU-domain genes in the development of the auditory/vestibular, somatosensory, and visual systems.ColdSpringHarbSympQuantBiol1997;62:325-336
29 Xiang M. Requirement for Brn-3b in early differentiation of postmitotic retinal ganglion cell precursors.DevBiol1998;197(2):155-169
30 Loscher CJ, Hokamp K, Kenna PF,etal. Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa.GenomeBiol2007;8(11):R248
31 Filali M, Dequen F, Lalonde R,etal. Sensorimotor and cognitive function of a NEFL(P22S) mutant model of Charcot-Marie-Tooth disease type 2E.BehavBrainRes2011;219(2):175-180
32 Koutsis G, Pandraud A, Karadima G,etal. Floroskufi P, Wood NW, Houlden H: Mutational analysis of PMP22, EGR2, LITAF and NEFL in Greek Charcot-Marie-Tooth type 1 patients.ClinGenet2013;83(4):388-391
33 Yum SW, Zhang J, Mo K,etal. A novel recessive Nefl mutation causes a severe, early-onset axonal neuropathy.AnnNeurol2009;66(6):759-770
34 Bhagavati S, Maccabee PJ, Xu W. The neurofilament light chain gene (NEFL) mutation Pro22Ser can be associated with mixed axonal and demyelinating neuropathy.JClinNeurosci2009;16(6):830-831
35 Augusto D, Leteurtre E, De La Taille A,etal. Calretinin: a valuable marker of normal and neoplastic Leydig cells of the testis.ApplImmunohistochemMolMorphol2002;10(2):159-162
36 Lugli A, Forster Y, Haas P,etal. Calretinin expression in human normal and neoplastic tissues: a tissue microarray analysis on 5233 tissue samples.HumPathol2003;34(10):994-1000
37 Bar-Shira Maymon B, Yavetz H, Yogev L,etal. Detection of calretinin expression in abnormal immature Sertoli cells in non-obstructive azoospermia.ActaHistochem2005;107(2):105-112
38 Naeve GS, Ramakrishnan M, Kramer R,etal. a gene induced by neural activity and neurotrophins that promotes neuritogenesis.ProcNatlAcadSciUSA1997;94(6):2648-2653
39 Pahnke J, Mix E, Knoblich R,etal. Overexpression of glial cell line-derived neurotrophic factor induces genes regulating migration and differentiation of neuronal progenitor cells.ExpCellRes2004;297(2):484-494
Application of mathematical algorithm for calculating changes of optic and retina function in mice model of glaucoma
Jing-Kun Liu1, Lin-Bang Wang2, Bing Wang3, Ya-Ling Sheng1, Jing He1, Fen-Ge Meng1
Jing-Kun Liu. Department of Ophthalmology, Xi’an Honghui Hospital, Xi’an 710054, Shaanxi Province, China. 1768697234@qq.com
2016-03-21Accepted:2016-09-30
?AIM: To be one of the primary cause injury to multiple sites of ocular of glaucoma which affects over 70 million people worldwide. We applied data mining techniques, linear and the matrix operations, efficiently calculated the network and estimated the possible function of the “node” genes of the retina and optic of glaucoma, in order to provide new thought and method on the pathogenesis of glaucoma.
glaucoma; biological computing; signaling pathway; biomarker
1(710054) 中國(guó)陜西省西安市紅會(huì)醫(yī)院;2(400016)中國(guó)重慶市,重慶醫(yī)科大學(xué);3(710077)中國(guó)陜西省西安市,中國(guó)陜西省衛(wèi)生監(jiān)督所
劉靜坤,畢業(yè)于西安交通大學(xué),碩士,副主任醫(yī)師,研究方向:醫(yī)學(xué)大數(shù)據(jù)挖掘及青光眼。
劉靜坤.1768697234@qq.com
2016-03-21
2016-09-30
Liu JK, Wang LB, Wang B,etal. Application of mathematical algorithm for calculating changes of optic and retina function in mice model of glaucoma.GuojiYankeZazhi(IntEyeSci) 2016;16(11):2014-2018
10.3980/j.issn.1672-5123.2016.11.08