黃啟亮, 楊必成
(廣東第二師范學(xué)院 數(shù)學(xué)系, 廣東 廣州 510303)
?
一個聯(lián)系指數(shù)函數(shù)的全平面Hilbert積分不等式
黃啟亮, 楊必成
(廣東第二師范學(xué)院 數(shù)學(xué)系, 廣東 廣州 510303)
引入獨立參量與指數(shù)函數(shù)中間變量,應(yīng)用權(quán)函數(shù)的方法及實分析技巧,建立一個具有最佳常數(shù)因子的全平面Hilbert型積分不等式.考慮了其等價式、逆式及特殊參數(shù)的齊次與非齊次不等式;還求出了等價不等式的算子及范數(shù)表示.
權(quán)函數(shù);全平面Hilbert型積分不等式;等價式;全平面Hilbert型積分算子;范數(shù)
(1)
(2)
(3)
1998年,文[5-6]中引入獨立參量λ∈(0,∞)及beta函數(shù),推廣式(1)為
(4)
(5)
(6)
2009年,文[22]綜述了參量化負(fù)數(shù)齊次核Hilbert型不等式的一系列研究思想. 2013年,文[23]論述了齊次與非齊次核Hilbert型積分不等式的等價聯(lián)系.
2007年,文[24]發(fā)表了如下具有最佳常數(shù)因子的全平面非齊次核Hilbert型積分不等式:
(7)
隨后,文[25-32]繼續(xù)討論了這一課題. 2009-2014年,楊在專著[21,33-37]中詳細(xì)論述了一般實數(shù)齊次核參量化Hilbert型不等式及其算子刻畫的理論.該理論凸顯了引入獨立參數(shù)及兩對共軛指數(shù)的參量化思想,且討論了Hilbert型積分算子的范數(shù)合成性質(zhì),它改進(jìn)及推廣了文[3]的理論成果;文[38]則全面綜述了近代Hilbert型不等式理論的研究思想及方法.
本文引入獨立參量及指數(shù)函數(shù)中間變量,應(yīng)用權(quán)函數(shù)的方法及實分析技巧,建立如下一個類似于式(7)的具有最佳常數(shù)因子的全平面齊次核Hilbert型積分不等式:
(8)
(λ>0).考慮了其引入獨立參量的更一般形式、等價式、逆式及特殊參量的齊次及非齊次形式;定義了全平面Hilbert型積分算子,并求出了等價不等式的算子及范數(shù)表示.
定義1設(shè)α,β≠0,0<σ<λ.定義如下權(quán)函數(shù):
(9)
(10)
(11)
(12)
(13)
(14)
(ii) 若0
證明 (i) 當(dāng)p>1時,配方并由帶權(quán)的H?lder不等式[39]及式(9),有
(15)
由式(11)及交換積分次序的Fubini定理[40],有
(16)
再由式(12)及式(13),有式(14).
(ii) 當(dāng)0
(17)
(18)
(19)
證明配方,并由H?lder不等式,有
(20)
故得式(14),且它與式(17)等價.
任給足夠大的n∈N (N為正整數(shù)集),定義集合Eα∶={x∈R;αx≥0},Fβ∶={y∈R;βy≤0},及
則可算得
對上式作變換 u=eλ(βy+αx),應(yīng)用交換積分次序的Fubini定理,我們有
由上面計算結(jié)果,有
(21)
(22)
及化簡得K(σ)≤k.故k=K(σ)為式(17)的最佳值.
式(14)的常數(shù)因子K(σ)必為最佳值,不然,由式(20),必導(dǎo)出式(17)的常數(shù)因子也不為最佳值的矛盾.證畢.
定理3在定理2的條件下,若把p>1改成0
故得式(14)的逆式,且它與式(17)的逆式等價.
若有常數(shù)k≥K(σ),使取代式(17)的逆式的常數(shù)因子K(σ)后仍成立,任給足夠大的n∈N,則可得式(21)的逆式.
而
令n→∞,式(21)的逆式可化為式(22)的逆式,即有K(σ)≥k.故k=K(σ)為式(17)的逆式的最佳值.式(14)的逆式的常數(shù)因子必為最佳值,不然,由式(20)的逆式必導(dǎo)出式(17)的逆式的常數(shù)因子也不為最佳值矛盾.證畢.
由式(14),有
(23)
定義2定義全平面Hilbert型積分算子T:Lp,φ(R)→Lp,ψ1-p(R)為:任f∈Lp,φ(R),唯一確定Tf=h∈Lp,ψ1-p(R).稱式(23)為算子T所對應(yīng)的不等式.
由定理2,式(23)的常數(shù)因子是最佳的,故得
(24)
則式(17),式(14)可改寫成如下等價的算子與范數(shù)表示式:
(Tf,g)<||T||·||f||p,φ||g||q,ψ,||Tf||p,ψ1-p<||T||·||f||p,φ.
(25)
評注在式(17)與式(14)中,令α=-1,β=1,μ=λ-σ(>0),以eλxf(x)取代f(x),則有
(26)
(27)
[1] SCHUR I. Bernerkungen sur Theorie der beschrankten Billnearformen mit unendlich vielen Veranderlichen[J]. J Math,1911,140:1-28.
[2] HARDY G H. Note on a theorem of Hilbert concerning series of positive terms[J]. Proceedings London Math Soc,1925,23(2):Records of Proc xlv-xlvi.
[3] HARDY G H,LITTLEWOOD J E,POLYA G. Inequalities[M]. Cambridge:Cambridge Univ Press,1952.
[4] MITRINOVIC D S,PECARIC J E,FINK A M. Inequalities involving functions and their integrals and derivatives[M]. Boston:Kluwer Academic Publishers,1991.
[5]YANG Bi-cheng. On Hilbert′s integral inequality[J]. Journal of Mathematical Analysis and Applications,1998,220:778-785.
[6] YANG Bi-cheng. A note on Hilbert′s integral inequality[J]. Chinese Quarterly,1998,13(4):83-86.
[7] YANG Bi-cheng,RASSIAS Th M. On the way of weight coefficient and research for Hilbert-type inequalities[J],Math Ineq Appl,2003,6(4):625-658.
[8] YANG Bi-cheng. On an extension of Hilbert′s integral inequality with some parameters[J]. The Australian Journal of Mathematical Analysis and Applications,2004,1(1):1-8.
[9] YANG Bi-cheng. On the norm of an integral operator and application[J]. Journal of Mathematical Analysis and Applications,2006,321:182-192.
[10]YANGBi-cheng.OnthenormofaHilbert’stypelinearoperatorandapplications[J].JMathAnalAppl,2007,325:529-541.
[11]YANGBi-cheng,BRNETICI,KRNICM,etal.GeneralizationofHilbertandHardy-Hilbertintegralinequalities[J].MathIneqandAppl,2005,8(2):259-272.
[12]KRNICM,PECARICJE.Hilbert′sinequalitiesandtheirreverses[J].PublMathDebrecen,2005,67(3-4):315-331.
[13]HONGYong.OnHardy-Hilbertintegralinequalitieswithsomeparameters[J].JIneqinPure&AppliedMath,2005,6(4):1-10.
[14]BRNETICI,PECARICJE,GeneralizationsofHilbert′sintegralinequality[J].MathIneq&Appl,2004,7(2):199-205.
[15]KRNICM,PECARICJE.GeneralHilbert′sandHardy′sinequalities[J].MathIneq&Appl,2005,8(1):29-51.
[16]ARPADB,CHOONGHONGO.Bestconstantforcertainmultilinearintegraloperator[J].JournalofInequalitiesandApplications,2006,no.28582.
[17]KUANGJi-chang,DEBNATHL.OnHilbert′stypeinequalitiesontheweightedOrliczspaces[J].PacificJApplMath,2007,1(1):95-103.
[18]LIYong-jin,HEBing.OninequalitiesofHilbert′stype[J].BulletinoftheAustralianMathematicalSociety,2007,76(1):1-13.
[19]ZHONGWu-yi,YANGBi-cheng.OnmultipleHardy-Hilbert′sintegralinequalitywithkernel[J].JournalofInequalitiesandApplications,2007,ArtID27962,17pages,doi:10.1155/ 2007/27.
[20] 楊必成. 一個Hilbert型積分不等式[J].浙江大學(xué)學(xué)報(理學(xué)版),2007,34(2):121-124.
[21] 楊必成.算子范數(shù)與Hilbert型不等式[M].北京:科學(xué)出版社,2009.
[22] 楊必成.參量化的Hilbert型不等式研究綜述[J].數(shù)學(xué)進(jìn)展,2009,38(3):257-268.
[23] 楊必成.論Hilbert型積分不等式及其算子表示[J].廣東第二師范學(xué)院學(xué)報,2013,33(5):1-17.
[24]YANGBi-cheng.AnewHilbert’stypeintegralinequality[J].SoochowJournalofMathematics,2007,33(4):849-859.
[25] 楊必成. 一個新的參量化Hilbert型積分不等式[J].吉林大學(xué)學(xué)報(理學(xué)版),2008,46(6):1085- 1090.
[26]XINDong-mei,YANGBi-cheng.AHilbert-typeintegralinequalityinthewholeplanewiththehomogeneouskernelofdegree-2[J].JournalofInequalitiesandApplications,2011,ArticleID401428,11pages,doi:10.1155/2011/401428.
[27]WANGAi-zhen,YANGBi-cheng.AnewHilbert-typeintegralinequalityinthewholeplanewiththenon-homogeneouskernel[J].JournalofInequalitiesandApplications,2011:123,doi:10.1186/1029-242X-2011-123.
[28]XIEZi-tian,RAJARAMAGANDHIK,ZENGZheng.AnewHilbert-typeintegralinequalitywiththehomogeneouskernelofrealdegreeformandtheintegralinwholeplane[J].BulletinofSocietyforMathematicalServices&Applications,2013,2(1):95-109.
[29]XIEZi-tian,ZENGZheng.AnewHilbert-typeinequalityinwholeplanewiththehomogeneouskernelofdegree0[J].i-manager′sJournalonMathematics,2013,2(1):13-19.
[30]XIEZi-tian,ZENGZheng,SUNYu-feng.AnewHilbert-typeinequalitywiththehomogeneouskernelofdegree-2[J].AdvancesandApplicationsinMathematicalSciences,2013,12(7):391-401.
[31]YANGBi-cheng,CHENQiang.TwokindsofHilbert-typeintegralinequalitiesinthewholeplane[J].JournalofInequalitiesandApplications,2015:21.
[32]RASSIASMTh,YANGBi-cheng.AHilbert-typeintegralinequalityinthewholeplanerelatedtothehypergeometricfunctionandthebetafunction[M].JournalofMathematicalAnalysisandApplications,2015,428(2):1286-1308.
[33]YANGBi-cheng.Hilbert-typeintegralinequalities[M].TheUnitedArabEmirates:BenthamSciencePublishersLtd,2009.
[34]YANGBi-cheng.DiscreteHilbert-typeinequalities[M].TheUnitedArabEmirates:BenthamSciencePublishersLtd,2011.
[35]YANGBi-cheng.TwokindsofmultipleHalf-discreteHilbert-typeinequalities[M].Berlin:LambertAcademicPublishing,2012.
[36]YANGBi-cheng.TopicsonHalf-discreteHilbert-typeInequalities[M].Berlin:LambertAcademicPublishing,2013.
[37]YANGBi-cheng,DEBNATHL.Half-discreteHilbert-typeInequalities[M].Singapore:WorldScientificPublishingCoPteLtd,2014.
[38]DEBNATHL,YANGBi-cheng.RecentdevelopmentsofHilbert-typediscreteandintegralinequalitieswithapplications[J].InternationalJournalofMathematicsandMathematicalSciences,2012,ArticleID871845,29pages.
[39] 匡繼昌.常用不等式[M].濟(jì)南:山東科技出版社,2004.
[40] 匡繼昌.實分析與泛函分析(續(xù)論)(上冊)[M].北京:高等教育出版社,2015.
A Hilbert-Type Integral Inequality in the Whole Plane Related to the Exponential Function
HUANG Qi-liang, YANG Bi-cheng
(Department of Mathematics, Guangdong University of Education, Guangzhou,Guangdong, 510303, P. R. China)
By introducing independent parameters and interval variables, applying the weight functions and using technique of real analysis, a Hilbert-type integral inequality in the whole plane related to the exponential function with a best possible constant factor is provided. The equivalent forms, the reverses, the related homogeneous homes and non-homogeneous forms with particular parameters are considered. The operator expressions with the norm for the equivalent inequalities are obtained.
weight function; Hilbert-type integral inequality in the whole plane; equivalent form; Hilbert-type integral operator in the whole plane; norm
2016-06-26
國家自然科學(xué)基金資助項目(61370186); 廣東第二師范學(xué)院教授博士科研專項基金資助項目(2015ARF25)
黃啟亮,男,廣西桂林人,廣東第二師范學(xué)院數(shù)學(xué)系教授.
O178
A
2095-3798(2016)05-0021-08