国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

塔里木河流域胡楊葉片解剖結(jié)構(gòu)比較研究

2016-11-10 10:49黃文娟焦培培黃金花
植物研究 2016年5期
關鍵詞:尉犁縣葉肉阿拉爾

黃文娟 焦培培 黃金花 張 丹

(1.新疆生產(chǎn)建設兵團塔里木盆地生物資源保護利用重點實驗室,阿拉爾 843300; 2.塔里木大學植物科學學院,阿拉爾 843300; 3.塔里木大學生命科學學院,阿拉爾 843300)

塔里木河流域胡楊葉片解剖結(jié)構(gòu)比較研究

黃文娟1,2焦培培1,3黃金花3張 丹2*

(1.新疆生產(chǎn)建設兵團塔里木盆地生物資源保護利用重點實驗室,阿拉爾 843300;2.塔里木大學植物科學學院,阿拉爾 843300;3.塔里木大學生命科學學院,阿拉爾 843300)

從區(qū)域尺度著手,沿塔里木河流域分別從上游、中游和下游選擇氣候和土壤條件有差異的阿拉爾、輪臺縣和尉犁縣分布的天然胡楊林為研究區(qū),在每個研究區(qū)內(nèi),選擇8個大小相等的50 m×50 m樣方,在樣方內(nèi)隨機選擇成年胡楊植株3株,并取其葉片作為研究對象,采用常規(guī)石蠟切片法,對3個不同區(qū)域分布的胡楊葉片解剖結(jié)構(gòu)特征進行比較觀察和研究,探討胡楊為適應不同分布區(qū)環(huán)境條件所表現(xiàn)出的解剖學特征及適應策略差異。結(jié)果表明:(1)3個研究區(qū)分布的胡楊在葉片基本解剖結(jié)構(gòu)特征上相一致,表現(xiàn)為:a.上下表皮均為由雙層細胞所構(gòu)成的復表皮;b.葉肉在接近上下表皮處均分化有柵欄組織,屬于等面葉,同時葉肉組織中均可見染色相對較深的粘液細胞;c.葉脈維管束外均可見呈“帽”狀包圍的厚壁細胞,類似禾本科植物的“維管束鞘”。(2)從整個塔里木河流域來看,葉片各解剖結(jié)構(gòu)指標變異程度不同:變異系數(shù)大小范圍為0.029~1.786,且上表皮細胞厚度變異系數(shù)最小,葉片厚度的變異系數(shù)最大。(3)葉片解剖結(jié)構(gòu)指標的量化值在不同地區(qū)間存在一定差異:葉片厚度、柵欄組織厚度、角質(zhì)層厚度、下皮層厚度和柵/海等指標均表現(xiàn)為尉犁縣>輪臺>阿拉爾,表明胡楊以增加葉片厚度、角質(zhì)層厚度、表皮細胞厚度等方式來儲藏水分和減少水分散失,以適應較為干旱的環(huán)境。(4)各結(jié)構(gòu)指標多與海拔、經(jīng)緯度間存在顯著相關性:上表皮厚度和上角質(zhì)層厚度分別與經(jīng)度呈顯著(P<0.05)和極顯著(P<0.01)正相關;葉片厚度、葉肉厚度、柵欄組織厚度和柵/海均與經(jīng)度呈極顯著(P<0.01)負相關;上表皮厚度、上角質(zhì)層厚度及柵/海與海拔高度呈顯著(P<0.05)或極顯著(P<0.01)負相關。

塔里木河流域;胡楊;葉片解剖特征;環(huán)境因子;相關分析

胡楊(PopuluseuphraticaOliv.)是楊柳科(Salicaceae)胡楊亞屬喬木植物,主要分布于中亞、蒙古、非洲及地中海地區(qū)。目前,世界胡楊林資源的54.3%分布在塔里木盆地,占全國胡楊林面積的89.1%[1~6]。胡楊是塔里木河流域荒漠河岸林的建群種,以其抗鹽、抗旱、抗寒、抗風沙、喜光等特征,在保持塔河流域生態(tài)系統(tǒng)穩(wěn)定,防止荒漠化,保護生物多樣性等方面發(fā)揮著非常重要的作用[7],也使其成為應急輸水生態(tài)恢復的目標植物之一。然而,近年來由于人為破壞和不合理利用及氣候等方面原因,已使得塔里木河流域胡楊林生態(tài)系統(tǒng)嚴重退化,胡楊林資源日趨枯竭。因此,關于胡楊林各個層次和水平的研究已然成為關系荒漠區(qū)生態(tài)環(huán)境的穩(wěn)定和可持續(xù)發(fā)展及南疆人民生產(chǎn)和生活的重要課題,同時在保護和管理該區(qū)的生態(tài)環(huán)境,保持邊疆地區(qū)經(jīng)濟可持續(xù)發(fā)展等方面具有重要意義[8]。

葉片是植物進化過程中對環(huán)境變化較為敏感且可塑性較大的器官,環(huán)境變化常導致葉的長、寬及厚度,葉表面氣孔、表皮細胞及附屬物,葉肉柵欄組織、海綿組織、胞間隙、厚角組織和葉脈等形態(tài)解剖結(jié)構(gòu)的響應與適應[9]。對于胡楊葉片解剖結(jié)構(gòu),已有不少學者做過相關研究,除對胡楊基本葉片解剖結(jié)構(gòu)特征進行制片觀察外[5,10],也比較研究了胡楊雌、雄株葉片[11]及不同形狀葉片解剖結(jié)構(gòu)特征的差異[4,10],并探討水分、光照等生態(tài)因子對胡楊葉片解剖結(jié)構(gòu)的影響,認為胡楊葉片上、下表皮角質(zhì)層厚度、氣孔數(shù)目、葉肉細胞密度、柵欄組織和海綿組織厚度等結(jié)構(gòu)一方面與分布地水分、光照等生態(tài)因子以及植物自身的各種抗性有關,另一方面也與植物本身的適應性調(diào)節(jié)能力存在一定的內(nèi)在聯(lián)系[10,12~13],但這些研究僅局限于一塊特定的研究區(qū)域,并在大體上指出影響胡楊葉片解剖結(jié)構(gòu)的因素,并未進行系統(tǒng)的相關研究,更缺乏大尺度上環(huán)境因子對胡楊葉片解剖結(jié)構(gòu)特征影響的研究。

本文從區(qū)域尺度著手,沿塔里木河流域分別從上游、中游和下游選擇氣候和土壤條件有差異的3個天然胡楊林作為研究區(qū),以其內(nèi)分布的成年胡楊葉片作為研究對象,采用常規(guī)石蠟切片法,對3個不同區(qū)域分布的胡楊葉片解剖結(jié)構(gòu)特征進行比較觀察和研究,并結(jié)合分布區(qū)的氣候、地理和土壤等環(huán)境因子進行綜合分析,探討胡楊為適應不同分布區(qū)環(huán)境條件所表現(xiàn)出的解剖學特征及適應策略,為胡楊的研究和保育及綜合研究荒漠生態(tài)系統(tǒng)中植被與環(huán)境關系提供科學依據(jù)。

1 研究區(qū)域與研究方法

1.1 研究區(qū)自然概況

塔里木河流域?qū)俚湫偷臏貛Ц珊荡箨懶詺夂颍鉄豳Y源十分豐富,流域內(nèi)干燥多風,日氣溫差較大,降水稀少,蒸發(fā)強烈[14]。

按照塔里木河自西向東的流向分別從上游、中游和下游分別選擇阿拉爾、輪臺和尉犁縣(34團)3個市縣為研究區(qū)域,在這些區(qū)域內(nèi)選擇遠離村落、人為干擾少并集中分布的天然胡楊林作為研究對象,進行供試樣品的采集和相關生態(tài)因子的調(diào)查。3個研究區(qū)氣候特征見表1。

表1各研究區(qū)域基本氣候特征

Table1Basicclimaticcharacteristicsofdifferentstudyarea

研究區(qū)域Studyarea平均氣溫Meantemperature(℃)平均日照Meantemperature(h)年均降水量Annualprecipitation(mm)年均蒸發(fā)量Annualevaporation(mm)蒸降比Evaporation/precipitation阿拉爾市AlarCity10.8290065216033.23輪臺縣LuntaiCounty10.6278752207739.94尉犁縣YuliCounty11.0297543270062.79

1.2 葉片樣品的采集

實驗于7月中旬胡楊葉片發(fā)育成熟時進行。在每個研究區(qū)域內(nèi)選擇胡楊較為集中分布的樣點各8個進行葉片樣品的采集(每個樣點間距約1 km)。每個樣點進行葉片采集時,均在樣方內(nèi)隨機選擇3棵成熟植株,為全面考慮到光照等因子對不同方位和不同冠層葉片生長的影響,采樣時每個樣株均應在同一方位相同高度進行葉片樣品的采集,且應盡量保證采集的葉片發(fā)育程度相同,本研究均選擇樣株的南面,距地面約5 m處進行葉片采集,每樣株采集發(fā)育成熟葉片3枚,用剪刀剪取中脈及周圍約5 mm×10 mm的組織,浸于事先備好的FAA固定液中封好,并用注射器抽凈其中空氣,放置48 h以上,用作葉片解剖結(jié)構(gòu)的研究。

1.3 解剖結(jié)構(gòu)的觀察和相關指標的測定

用石蠟切片法對FAA固定好的胡楊葉片進行制片,將制好的石蠟切片置于Leica數(shù)碼顯微鏡下,分別從表皮、葉肉和葉脈三部分結(jié)構(gòu)進行觀察,并記錄其主要結(jié)構(gòu)特點,同時拍照,并用Leica Application Suite V4.0.0 DVD圖像分析軟件對葉片厚度、葉肉厚度、柵欄組織和海綿組織厚度、角質(zhì)層厚度、表皮細胞厚度及寬度等結(jié)構(gòu)參數(shù)進行測量。

1.4 生態(tài)因子調(diào)查

在采集葉片樣品的同時,在每個采樣點用GPS定位系統(tǒng)測定采樣地點的經(jīng)緯度和海拔高度等,并采集樣方內(nèi)的土樣,進行土壤含水量測定。

1.5 數(shù)據(jù)分析

用Exel軟件進行相關數(shù)據(jù)的分析。變異系數(shù)(變異系數(shù)=標準差/平均數(shù))表示各指標變量的變異程度;用Pearson相關系數(shù)來檢驗葉片解剖結(jié)構(gòu)特征指標變量與環(huán)境因子間相關性。

2 結(jié)果與分析

2.1 胡楊葉片基本解剖結(jié)構(gòu)特征

在光學顯微鏡下觀察胡楊葉片解剖結(jié)構(gòu)(圖1)可以發(fā)現(xiàn):不論哪個研究區(qū)域,胡楊葉片的基本結(jié)構(gòu)特征是一致的,即:胡楊葉片的上下表皮均為單層細胞,其外均覆蓋一層染色較深的角質(zhì)膜,表皮下方有1~2層薄壁細胞所構(gòu)成的下皮層與表皮細胞共同構(gòu)成“復表皮”。葉肉分化出柵欄組織和海綿組織,屬于等面葉,靠近上、下表皮處均有柵欄組織的分化,且二者的發(fā)達程度大抵相當;中央夾著一至多層不規(guī)則細胞所構(gòu)成的海綿組織,且不同地區(qū)胡楊葉片的海綿組織發(fā)達程度不同;葉肉細胞在靠近氣孔處間隙發(fā)達,形成較明顯的氣孔下室。葉脈維管束外均有“帽”狀的厚壁組織包圍,構(gòu)成類似禾本科植物的“維管束鞘”,中脈維管束鞘外有薄壁組織和厚角組織存在,使得中脈靠近上下表皮處均有明顯突起,且以背面突起更為明顯,但不同地區(qū)的胡楊葉片中脈處薄壁組織和厚角組織的發(fā)達程度出現(xiàn)差異,使得中脈的突起大小有所不同。在葉肉和葉脈處均可見少量染色較深的粘液細胞存在,以增強葉片的持水、保水能力,對于提高耐旱性有一定意義。

2.2 胡楊葉片各解剖結(jié)構(gòu)指標的變異性

表2列出了整個塔里木河流域胡楊葉片各解剖結(jié)構(gòu)指標的變異系數(shù),從整個塔里木河流域來看,胡楊葉片的上表皮厚度、上角質(zhì)層厚度及下皮層厚度的變異系數(shù)較小(C.V<0.1),屬于弱變異,且以上表皮細胞厚度變異性最小,僅為0.029;柵欄組織厚度和海綿組織厚度變異系數(shù)分別為0.786和0.903,均為中等變異;葉片厚度、葉肉厚度和柵/海的變異系數(shù)分別為1.786、1.503和1.106,均為強變異,且以葉片厚度的變異系數(shù)最大。說明研究區(qū)域的環(huán)境特征對胡楊葉片厚度、葉肉厚度及柵欄組織/海綿組織的變化影響較大,而對上表皮厚度、上角質(zhì)層厚度和下皮層厚度的影響較小。

2.3 塔里木河流域生態(tài)因子及其變異性

將塔里木河從上游到下游3個研究區(qū)測得的各生態(tài)因子變異系數(shù)進行計算和分析,可以反映各生態(tài)因子在整個塔河流域的變異特點(表3)。按照變異系數(shù)的劃分等級:弱變異性,C.V<0.1;中等變異性,C.V=0.1-1.0;強變異性,C.V>1.0。各生態(tài)因子中,除土壤含水量在各個研究區(qū)及整個塔里木河流域范圍內(nèi)的變異系數(shù)較大(C.V.=0.1-1.0),為中等變異外,經(jīng)度、緯度和海拔高度3個指標的變異系數(shù)均為弱度變異(C.V.<0.1)。比較不同研究區(qū)域:土壤平均含水量為阿拉爾市最高,可達21.22%;輪臺縣次之,為9.9%;尉犁縣(34團)最低,為8.30%。平均海拔高度為阿拉爾最高,輪臺縣次之,尉犁縣最低。

圖1 胡楊葉片解剖結(jié)構(gòu)圖 A.阿拉爾;B.輪臺;C.尉犁 1.葉脈維管束;2.柵欄組織;3.海綿組織;4.上表皮;5.下表皮;6.下皮層;7.厚角組織;8.厚壁組織Fig.1 Leaf anatomical structure of P.euphratica A. Alar; B. Luntai; C.Yuli 1.Vascular bundle; 2.Palisade tissue; 3.Spongy tissue; 4.Upper epidermis; 5.Lower epidermis; 6.Hypodermis; 7.Collenchyma; 8.Sclemchyma

葉片厚度Bladethickness(μm)葉肉厚度Mesophyllthickness(μm)海綿組織厚度Spongytissuethickness(μm)柵欄組織厚度Fencetissuethickness(μm)上表皮厚度Upperepidermisthickness(μm)上角質(zhì)層厚度Upperstratumcorneumthickness(μm)下皮層厚度Corticalthickness(μm)柵/海F/S平均值Meanvalue282.96210.1066.22160.5419.662.8713.082.79變異系數(shù)C.V1.7861.5030.7860.9030.0910.0290.0861.106

表3 各生態(tài)因子的變異系數(shù)C.V

結(jié)合表1中各研究區(qū)的氣候特征可以看出:全年平均氣溫和平均日照時數(shù)均為尉犁縣(34團)最高,阿拉爾次之,輪臺縣最低,說明地理位置偏南的阿拉爾和尉犁縣(34團)氣候較輪臺縣略為溫暖;降水量為阿拉爾最高,輪臺縣次之,尉犁縣(34團)最低,但蒸降比卻剛好相反,阿拉爾最低,尉犁縣最高,說明阿拉爾氣候相對最為濕潤,而尉犁縣(34團)相對最為干旱,即沿著塔里木河的流向,氣候逐漸變得干旱少雨。氣候和土壤等生態(tài)因子的差異必然使得不同地區(qū)的胡楊在葉片結(jié)構(gòu)上表現(xiàn)出一定的差異性。

2.4 各研究區(qū)域胡楊葉片解剖結(jié)構(gòu)比較分析

對比阿拉爾、輪臺和尉犁縣(34團)3個研究區(qū)域的胡楊葉片解剖結(jié)構(gòu)特征可以發(fā)現(xiàn):葉片厚度、柵欄組織厚度、角質(zhì)層厚度、下皮層厚度和柵/海等指標均表現(xiàn)為尉犁縣(34團)>輪臺>阿拉爾(圖2),這與尉犁地區(qū)、阿拉爾地區(qū)和輪臺地區(qū)的氣候特征有關,葉肉厚度和海綿組織厚度表現(xiàn)為輪臺縣最大,而表皮厚度表現(xiàn)為輪臺縣最小。

表4 葉片各解剖結(jié)構(gòu)指標與各環(huán)境因子的Pearson相關系數(shù)

n=24,**P<0.01,*P<0.05.

圖2 不同研究區(qū)胡楊葉片解剖特征比較Fig.2 Comparation of P.euphrates leaf anatomical features in the study area

2.5 胡楊葉片解剖特征與環(huán)境因子關系

由表4可知,所有葉片解剖結(jié)構(gòu)指標均與土壤含水量間無顯著相關性,說明土壤含水量對葉片解剖結(jié)構(gòu)建成的影響不大。上表皮厚度和上角質(zhì)層厚度分別與經(jīng)度呈顯著(P<0.05)和極顯著(P<0.01)正相關,而其他解剖結(jié)構(gòu)指標與經(jīng)度相關性不顯著。葉片厚度、葉肉厚度、柵欄組織厚度和柵/海均與經(jīng)度呈極顯著(P<0.01)負相關,說明緯度越高,葉片厚度、葉肉厚度、柵/海等反映葉片旱生特點的結(jié)構(gòu)越不發(fā)達。上表皮厚度、上角質(zhì)層厚度及柵/海與海拔高度呈顯著(P<0.05)或極顯著(P<0.01)負相關。

4 討論

葉片是植物進化過程中對環(huán)境變化較敏感且可塑性較大的器官,其解剖結(jié)構(gòu)特征最能體現(xiàn)環(huán)境因子對植物的影響或植物對環(huán)境的適應[15]。干旱環(huán)境下生長的植物,通常具有葉片厚度大,葉脈致密,毛被發(fā)達,單位面積氣孔數(shù)量多且常下陷成氣孔窩,柵欄組織發(fā)達且靠近上下表皮處都有柵欄組織分化而形成等面葉,葉脈機械組織發(fā)達,角質(zhì)層和表皮細胞厚度大,具粘液細胞或含晶細胞等特點[16~23]。通過前人研究及本項研究對胡楊葉片的結(jié)構(gòu)觀察發(fā)現(xiàn),胡楊葉片的解剖結(jié)構(gòu)幾乎具有所有旱生植物的典型性適應特征,如,葉片厚度較大,以延長水分從葉脈向表皮擴散的距離,從而防止水分過度蒸騰[22,25];表皮細胞和角質(zhì)層較厚,氣孔數(shù)量多且略下陷,以控制水分過度蒸騰[19];葉脈厚壁組織發(fā)達,以提高機械強度減少物理損傷和因失水萎蔫而造成的不良影響[19,26];柵欄組織和葉肉薄壁組織中存在大量粘液細胞以使細胞滲透勢減小從而有利于植物吸收水分及葉片保持水分[4~5,11,27~28],以及具有保水功能的下皮層等特征[4]。

本項研究還表明,雖然不同分布區(qū)葉片解剖結(jié)構(gòu)在本質(zhì)上沒有大的區(qū)別,但各結(jié)構(gòu)指標的量化值間存在一定差異,且這種差異與分布區(qū)環(huán)境因子間有較大關系。如,葉片厚度、柵欄組織厚度、角質(zhì)層厚度、下皮層厚度和柵/海等指標均表現(xiàn)為尉犁縣>輪臺>阿拉爾,這是因為尉犁地區(qū)相較而言氣候最為干旱,且日照時間長,土壤含水量最低,植物本身吸水相對困難,但蒸騰作用旺盛,因此尉犁地區(qū)的胡楊一方面可能以通過增加葉片厚度的方式來延長水分從維管束向表皮外散失的距離[22,25];另一方面以增加角質(zhì)層厚度的方式來控制蒸騰,進而減少水分的散失[19]。另外,柵/海表現(xiàn)為阿拉爾和輪臺縣差異不大,且顯著小于尉犁縣,這與尉犁縣光照充足、日照時間長有很大關系。Osbom和Taylor[29]通過對顫毛櫟的研究發(fā)現(xiàn):向陽葉片小于遮陰葉、氣孔較多,葉肉較厚;Sims和Pearc[30]對海芋的葉征解剖結(jié)構(gòu)觀察也發(fā)現(xiàn)日照強度大會使葉肉細胞增厚,細胞大小和數(shù)量增多;楊軼囡[31]對不同生境天女木蘭葉片解剖結(jié)構(gòu)的研究發(fā)現(xiàn),較干旱生境中的天女木蘭葉片柵海比增加,光照強度增大可使天女木蘭葉片柵欄組織厚度、柵海比等增加,這些均與本文的研究結(jié)果相一致。

葉片的解剖結(jié)構(gòu)與土壤和地理因子間也有一定相關性,如羅文文[32]對不同海拔梯度富士蘋果葉片結(jié)構(gòu)進行觀察研究發(fā)現(xiàn),富士蘋果的葉片形態(tài)結(jié)構(gòu)、解剖結(jié)構(gòu)隨海拔升高,葉片厚度、角質(zhì)層厚、柵海比、主脈最大導管直徑逐漸增大,氣孔長寬比和上下表皮占葉厚比例逐漸減??;楊軼囡發(fā)現(xiàn)[31],土壤含水量較低的天女木蘭葉片厚、柵欄組織厚、海綿組織厚、柵海比等值均較大。張明明[33]對針葉解剖結(jié)構(gòu)指標與生態(tài)因子進行相關性分析初步得出:經(jīng)緯度、年平均溫度、年蒸發(fā)量、年凈輻射、年平均降水量與日本落葉松解剖結(jié)構(gòu)之間相關性達到顯著水平,即這些生態(tài)因子對日本落葉松針葉解剖結(jié)構(gòu)有顯著影響。本研究中,所有葉片解剖結(jié)構(gòu)指標與土壤含水量間相關性均未達到顯著水平;上表皮厚度和上角質(zhì)層厚度分別與經(jīng)度呈顯著(P<0.05)和極顯著(P<0.01)正相關,而其他解剖結(jié)構(gòu)指標與經(jīng)度相關性不顯著。葉片厚度、葉肉厚度、柵欄組織厚度和柵/海均與緯度呈極顯著(P<0.01)負相關,說明緯度越高,葉片厚度、葉肉厚度、柵/海等反映葉片旱生特點的結(jié)構(gòu)越不發(fā)達。上表皮厚度、上角質(zhì)層厚度及柵/海與海拔高度呈顯著(P<0.05)或極顯著(P<0.01)負相關。這些結(jié)果與前人研究結(jié)果既有相似之處,亦有相悖之處,具體仍有待進一步研究。

1.Wang S J,Chen B H,Li H Q.Euphrates poplar forest[M].Beijing:China Environmental Science Press,1996:212.

2.Umut H,Chai Z,Luo S Z,et al.Study on the height volume growth ofPopuluseuphraticaand spatial distribution in lower reaches of Tarim River,Xinjiang[J].Journal of Arid Land Resources and Environment,2008,22(5):187-191.

3.Li Z J,Liu J P,Yu J,et al.Investigation on the characteristics of biology and ecology ofPopuluseuphraticaandPopuluspruinosa[J].Acta Botanica Boreali-Occidentalia Sinica,2003,23(7):1292-1296.

4.Yang S D,Zheng W J,Chen G C,et al.Difference of Ultrastructure and Photosynthetic Characteristics between Lanceolate and Broad-ovate Leaves inPopuluseuphratica[J].Acta Botanica Boreali-Occidentalia Sinica,2005,25(1):14-21.

5.Li Z J,Lü C X,Duan H J.Anatomical studies on the vegetative organs ofPopuluseuphtaticaOliv. andPopuluspruinosaschrenk[J].Journal of Talimu University of Agricultural Reclamation,1996,8(2):21-25.

6.Yang L,Zhang Q L,Chang J B.Spatial distribution characteristics of roots ofPopuluseuphratica[J].Journal of Inner Mongolia University Agricultural University:Natural Science Edition,2006,27(1):15-17.

7.Su P X,Zhang L X,Du M W,et al.Photosynthetic character and water use efficiency of different leaf shapes ofPopuluseuphraticaand their response to CO2enrichment[J].Chinese Journal of Plant Ecology,2003,27(1):34-40.

8.Qiu J,Zheng C X,Yu W P.Comparison of photosynthetic rate and fluorescence characteristics of heteromorphism leaf ofPopuluseuphratica[J].Jilin Forestry Science and Technology,2005,34(3):19-21.

9.Luo Q H,Li Z J,Wu W M,et al.Comparative study of photosynthetic and chlorophyll fluorescence characteristics ofPopuluseuphraticaandP.pruinosa[J].Acta Botanica Boreali-Occidentalia Sinica,2006,26(5):983-988.

10.Ding W,Yang Z H,Zhang S B,et al.Morphological and anatomical structure of leaves onPopuluseuphraticaOliv.in Qaidam Basin[J].Journal of Desert Research,2010,30(6):1411-1415.

11.Yang Z P,Liu Q,Li Z J.Leaf blade comparative anatomy between the female and the male ofPopuluseuphraticaOliv.[J].Acta Botanica Boreali-Occidentalia Sinica,2011,31(1):79-83.

12.Yan L,Li H,He X,et al.Ecological anatomy of nine priority species in a la san area[J].Journal of Inner Mongolia Agricultural University:Natural Science Edition,2000,21(3):65-71.

13.Chartzoulakis K,Patakas A,Kofidis G,et al.Water stress affects leaf anatomy,gas exchange,water relations and growth of two avocado cultivars[J].Scientia Horticulturae,2002,95(1-2):39-50.

14.Yu J,Wang H Z,Zhou Z L,et al.Gas exchange characteristics of desert dominant plants and relationships between them and environmental factors in Tarim Basin[J].Acta Botanica Boreali-Occidentalia Sinica,2008,28(10):2110-2117.

15.Wang X L,Ma J.A study on leaf-structure and the diversity of xerophytes ecology adaptation[J].Acta Ecologica Sinica,1999,19(6):787-792.

16.Pan X,Qiu Q,Li J Y,et al.Drought resistance evaluation based on leaf anatomical structures of 25 shrubs on the Tibetan Plateau[J].Journal of South China Agricultural University,2015,36(2):61-68.

17.Li L Z,Shao L H,Yu Y W,et al.Study on leaf dissection structure and drought resistance of four shrubs growing in desert steppe in Tsaidam[J].Grassland and Turf,2009,(3):20-23.

18.Wu L Z,Liu G H,Ma X Z.An anatomic comparison on leaves structure of four desert plants in Zygophyllaceae and its systematic significance[J].Journal of Inner Mongolia Forestry College,1998,20(4):21-24,26.

19.Zhou Z S,Li L,Wang H S,et al.Selecting of the plants construcitng energy forest on loess plateau-part I.observaton on the anatomic feature of 19 xero-morphic plants leaves through lens[J].Acta Conservationis Soli et Aquae Sinica,1989,3(1):20-30.

20.Shan B Q,He X L.Leaf anatomic characteristics of 12 species ofArtemisiain Mu Us desert[J].Journal of Northwest A&F University:Natural Science Edition,2007,35(6):211-217.

21.Shi X X,Zhang G F,Meng L,et al.Relationship between the leaf tissue characteristic and drought resistance ofIrislacteaPall.var.chinensis(Fisch.)[J].Bulletin of Botanical Research,2008,28(5):584-588.

22.Huang W J,Li Z J,Yang Z P,et al.The structural traits ofPopuluseuphraticaheteromorphic leaves and their correlations[J].Acta Ecologica Sinica,2010,30(17):4636-4642.

23.Zhang H X,Liu G H,Cui X P.Affection of aridity to anatomical structure of leave ofUlmuspumilaL.var.sabulosa[J].Bulletin of Botanical Research,2005,25(1):39-44.

24.Wang H,Shen X H,Guo Y.Anatomical structures of leaves and taxonomic values inIrisfrom the North of China[J].Bulletin of Botanical Research,2008,28(1):30-37.

25.Dong X J,Zhang X S.Some observations of the adaptations of sandy shrubs to the arid environment in the Mu Us sandland:leaf water relations and anatomic features[J].Journal of Arid Environments,2001,48(1):41-48.

26.Castro-díez P,Puyravaus J P,Cornelissen J H C.Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J].Oecologia,2000,124(4):476-486.

27.Zhou H R,Geng Y E.A preliminary study of anatomical structure of leaves or assimiting branches of five xerophytes growing in Xiniang[J].Journal of Anhui University Natural Science Edition,1993,(2):66-71.

28.Zheng C X,Qiu J,Jiang C N,et al.Comparison of characteristics of stomas and photosynthesis ofPopuluseuphraticapolymorphic leaves[J].Scientia Silvae Sinicae,2006,42(8):19-24.

29.Osborn J M,Taylor T N.Morphological and ultrastructural studies of plant cuticular membranes.I,Sun and shade leaves ofQuercusvelutina(Fagaceae)[J].Botanical Gazette,1990,151(4):465-476.

30.Sims D A,Pearcy R W.Response of leaf anatomy and photosynthetic capacity inAlocasiamacrorrhiza(Araceae)to a transfer from low to high light[J].American Journal of Botany,1992,79(4):449-455.

31.Yang Y N.Comparative study on anatomical structure of leaf ofMagnoliasieboldiiunder different ecological habitats[J].Journal of Jilin Agricultural University,2010,32(5):476-482.

32.Luo W W.Leaf and fruit quality of Fuji apple and its relationship with environmental factors in different habitats[D].Yangling:Northwest A&F University,2014.

33.Zhang M M.Comparative study on leaf anatomical structure of Japanese Larch in different regions[D].Harbin:Northeast Forestry University,2012.

This work funded by Natural Science Foundation of China(31160110); Open foundation of Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin,Xinjiang Production & Construction Group(BRYB1003); President Foundation of Tarim university(TDZKSS201419,TDZKSS201217); Corps special foundation for youth science and technology innovation(2013CB015)

introduction:HUANG Wen-Juan(1980—),female,associate professor,research on biodiversity and conservation of desert plants.

date:2016-01-04

LeafAnatomicalStructureofPopuluseuphraticainTarimRiverBasin

HUNG Wen-Juan1,2JIAO Pei-Pei1,3HUANG Jin-Hua3ZHANG Dan2*

(1.Key Laboratory of Biological Resources Protection and Utilization in Tarim Basin,Xinjiang Production and Construction Corps,Alar 843300;2.College of Plant Sciences,Tarim University,Alar 843300;3.College of Life Sciences,Tarim University,Alar 843300)

From the regional scale, three natural ranges ofPopuluseuphraticain Alar, Luntai and Yuli County with different climate and soil conditions were chosen from the upper, middle and lower reaches of Tarim River Basin, respectively. In each site, 8 plots with the same size of 50 m×50 m were chosen and within each plot, leaves from 3 adult trees ofP.euphraticawere selected randomly. Routine paraffin sectioning method was used to observe and compare the leaf anatomical characters ofP.euphratica, and explore their adaptive strategies and anatomical features to adapt to different environmental conditions. The results showed: (1)The basic leaf anatomical characters from 3 distribution areas were consistent with each other, and showed: a. The upper and lower epidermis were both mutiple epidermis and consisted of double layer of cells; b. Palisade tissue of mesophyll was differentiated close to upper and lower epidermis, and the leaf belonged to isolateral leaf. The mucous cells which relatively deep stained were also visible in the mesophyll tissue. c. The “bundle sheath” consisting of thick-walled cells was visible outside the vein vascular bundle. (2)From the whole point of the Tarim River Basin, there were vary degrees of variations among the leaf anatomical structure indexes. The range of variation coefficient was from 0.029 to 1.786, and the thickness variation coefficient of upper epidermal cells was smallest, while the blade thickness was largest. (3)The quantitative values of leaf anatomical structure index varied in different areas: leaf thickness, palisade tissue thickness, cuticle layer thickness, lower epidermis thickness and the grid/sea showed Yuli County>Luntai County>Alar County, which indicated thatP.euphraticastored water and reduced water loss to adapt to the relatively dry environment through increasing the thickness of leaf, cuticle layer and epidermal cells. (4)There was significant correlation between the structure indexes and altitude, latitude and longitude. The thickness of upper epidermal and upper cuticle layer were positively correlated with longitude significantly(P<0.05)and highly significantly(P<0.01). The leaf thickness, mesophyll thickness, palisade tissue thickness and grid/sea were negatively correlated with longitude highly significantly(P<0.01). The thickness of upper epidermal, upper cuticle layer and grid/sea were negatively correlated with altitude significantly(P<0.05)or highly significantly(P<0.01).

Tarim River Basin;PopuluseuphraticaOliv.;leaf anatomical characters;environmental factors;correlation analysis

國家自然科學基金資助項目(31160110);新疆生產(chǎn)建設兵團塔里木盆地生物資源保護利用重點實驗室開放課題(BRYB1003);塔里木大學校長基金自然科學項目(TDZKSS201419,TDZKSS201217);兵團青年科技創(chuàng)新資金專項(2013CB015)

黃文娟(1980—),女,副教授,主要從事荒漠區(qū)生物多樣性及保育方面的研究。

* 通信作者:E-mail: hwjzky@163.com

2016-01-04

* Corresponding author:E-mail: hwjzky@163.com

S792.11

A

10.7525/j.issn.1673-5102.2016.05.006

猜你喜歡
尉犁縣葉肉阿拉爾
不死的慈善家
揚州大學揭示有效減少葉肉細胞中糖積累的新機制
一生,僅僅就是一片落葉
黃沙金樹
蘆薈脯加工工藝流程
尉犁縣棉花大田示范肥料對照試驗報告
尉犁破獲一起詐騙案
怎樣加工蘆薈脯
尉犁縣紅棗種植氣候條件分析
阿拉爾地區(qū)機采棉種植關鍵措施
荣昌县| 滦平县| 威海市| 承德县| 赫章县| 湘潭市| 嵊州市| 万山特区| 肇州县| 北流市| 古浪县| 荃湾区| 道真| 张家港市| 抚州市| 兖州市| 枝江市| 伊川县| 新化县| 揭东县| 西平县| 武城县| 常州市| 包头市| 囊谦县| 钦州市| 乌拉特中旗| 林甸县| 耿马| 郧西县| 岳普湖县| 泰宁县| 仪陇县| 鄂伦春自治旗| 麻阳| 虎林市| 渑池县| 惠来县| 泌阳县| 松滋市| 信丰县|