陳宗婭,王永杰,舒瑞,付芳婧,吳永貴*
(1.貴州大學(xué)資源與環(huán)境工程學(xué)院,貴陽(yáng)550002;2.南京大學(xué)環(huán)境學(xué)院污染控制與資源化研究國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京210023;3.貴州省農(nóng)村綜合經(jīng)濟(jì)信息中心,貴陽(yáng)550002;4.貴州省農(nóng)產(chǎn)品質(zhì)量與安全信息化研究中心,貴陽(yáng)550002)
秸稈覆蓋還田對(duì)稻麥輪作體系中土壤及作物甲基汞累積的影響
陳宗婭1,王永杰2,舒瑞2,付芳婧3,4,吳永貴1*
(1.貴州大學(xué)資源與環(huán)境工程學(xué)院,貴陽(yáng)550002;2.南京大學(xué)環(huán)境學(xué)院污染控制與資源化研究國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京210023;3.貴州省農(nóng)村綜合經(jīng)濟(jì)信息中心,貴陽(yáng)550002;4.貴州省農(nóng)產(chǎn)品質(zhì)量與安全信息化研究中心,貴陽(yáng)550002)
以貴州萬(wàn)山汞礦區(qū)的汞污染稻田土為研究對(duì)象,采用盆栽模擬探究了小麥-水稻輪作情況下秸稈覆蓋還田對(duì)土壤及小麥與水稻在重要生育期(出苗期、分蘗期、拔節(jié)期、揚(yáng)花-灌漿期、乳熟-收獲期)甲基汞累積的影響。結(jié)果表明:秸稈還田能提高土壤中甲基汞含量,且不同作物秸稈還田對(duì)土壤甲基汞及作物甲基汞的影響存在顯著差別,其中,小麥秸稈還田后土壤甲基汞含量增加127.1%,水稻秸稈還田后土壤甲基汞含量增加25.1%,這可能緣于迥異的種植條件。同時(shí),作物秸稈還田后小麥、水稻植株體內(nèi)甲基汞含量也呈增加趨勢(shì),其中,小麥根部、地上部(莖葉)和籽粒甲基汞含量分別增加124.6%、79.2%和169%,水稻根部、地上部和籽粒甲基汞含量依次增加40.1%、61.7%和25.9%,表明作物甲基汞吸收累積量的上升可能主要源于土壤甲基汞含量的上升。因此,汞污染地區(qū)傳統(tǒng)農(nóng)藝措施中慣常采用的秸稈還田可能會(huì)顯著增加人體甲基汞暴露風(fēng)險(xiǎn),在汞污染地區(qū)推廣作物秸稈還田措施時(shí)應(yīng)持謹(jǐn)慎態(tài)度。
秸稈還田;稻田土壤;稻麥輪作;作物;甲基汞
2014年全國(guó)土壤污染狀況調(diào)查公報(bào)顯示,我國(guó)土壤汞污染點(diǎn)位超標(biāo)率為1.6%[1],尤其是在工礦業(yè)廢棄地,土壤汞污染較為突出[2-3]。貴州萬(wàn)山地區(qū)作為我國(guó)最大的汞礦區(qū),雖早已停止開(kāi)采,但該礦區(qū)的土壤汞含量仍高達(dá)790 mg·kg-1[4]。近期研究表明,稻田能促使土壤中汞的甲基化,雖然其占總汞的比例通常小于1%[5],但高毒性的甲基汞易在稻米中富集[6],導(dǎo)致汞礦區(qū)稻米甲基汞含量可達(dá)145 μg·kg-1[2],這對(duì)當(dāng)?shù)鼐用竦纳眢w健康構(gòu)成了極大威脅[7-8]。因此,稻米的攝食已成為我國(guó)內(nèi)陸居民甲基汞暴露的重要途徑之一[8-10]。通常,作物收獲后其秸稈會(huì)被提倡以還田的方式加以利用,我國(guó)每年還田的作物秸稈超過(guò)1.5億t,且仍在快速增加[11]。關(guān)于作物秸稈還田對(duì)土壤及農(nóng)作物品質(zhì)的影響,近年來(lái)的研究大多集中在作物秸稈還田可增加土壤中有機(jī)質(zhì)含量[12-13]、為植物生長(zhǎng)提供營(yíng)養(yǎng)、使作物增產(chǎn)等[14-15]方面;而在秸稈還田對(duì)土壤中汞的生物地球化學(xué)行為影響方面僅有少量報(bào)道,如有研究表明,淹水條件下添加水稻秸稈能促使土壤中甲基汞含量升高[16-18],但稻米中甲基汞含量增加不明顯[16],而在稻麥輪作條件下作物秸稈還田對(duì)土壤汞凈甲基化及作物甲基汞累積會(huì)造成何種影響,目前尚無(wú)相關(guān)研究。為明確秸稈還田對(duì)稻麥輪作體系中土壤及不同作物甲基汞累積的影響,有必要針對(duì)汞礦區(qū)秸稈還田可能帶來(lái)的汞污染暴露風(fēng)險(xiǎn)開(kāi)展深入的研究工作。本文采集萬(wàn)山汞礦區(qū)的汞污染稻田土開(kāi)展盆栽試驗(yàn),模擬秸稈覆蓋還田方式下水稻-小麥輪作情況時(shí),作物生長(zhǎng)的重要時(shí)期(出苗期、分蘗期、拔節(jié)期、揚(yáng)花-灌漿期、乳熟-收獲期)植株和土壤樣品中甲基汞含量變化特征,旨在探索秸稈還田對(duì)汞污染稻田土壤汞轉(zhuǎn)化及作物甲基汞累積的影響,為汞污染地區(qū)制定合理的作物秸稈還田措施提供科學(xué)依據(jù)。
1.1 實(shí)驗(yàn)材料
供試土壤樣品:采自貴州省萬(wàn)山汞礦區(qū)五坑(27° 32′N,109°14′E)的稻田土壤,經(jīng)室內(nèi)風(fēng)干,研磨,過(guò)2 mm篩備用。基本理化參數(shù):全氮0.18%,全碳2.89%,總有機(jī)碳2.49%,pH值8.04,土壤粘粒36.6%,粗粉砂18.9%,總汞含量(58±3)mg·kg-1,甲基汞含量(1.62± 0.41)μg·kg-1。
供試作物秸稈:水稻、小麥秸稈均采自未受汞污染的貴州省貴陽(yáng)市花溪區(qū)。秸稈洗凈,30℃烘干至恒重,磨碎過(guò)2 mm篩備用。水稻秸稈總汞含量0.33 mg· kg-1,甲基汞含量0.083 μg·kg-1;小麥秸稈總汞含量0.19 mg·kg-1,甲基汞含量0.061 μg·kg-1。供試作物品種:煙農(nóng)19號(hào)小麥,中優(yōu)808水稻。
1.2 實(shí)驗(yàn)設(shè)計(jì)
供試土壤按總氮100 mg·kg-1、總磷100 mg·kg-1、總鉀143 mg·kg-1施加底肥后混勻,根據(jù)表1實(shí)驗(yàn)方案開(kāi)展小麥種植(12月到次年5月),第二茬淹水種植水稻(次年6月到11月),種植水稻前土壤經(jīng)風(fēng)干,再次過(guò)2 mm篩以去除殘留麥根的影響。具體方法:每盆3.5 kg土壤+35 g秸稈(即土壤和秸稈質(zhì)量比為100∶1)[19-20],加靜置數(shù)日的自來(lái)水平衡2 d,撒播飽滿的小麥種子8~10粒;水稻季淹水10 d后,插播20 d的優(yōu)質(zhì)水稻秧7~8株(無(wú)汞污染土壤培育秧苗)。所有盆栽實(shí)驗(yàn)均在室外進(jìn)行,但采用玻璃板防止雨水的影響。作物生長(zhǎng)期,小麥種植土壤含水率在13.5%~17.6%之間,水稻種植土壤淹水層在3~6 cm。同時(shí),進(jìn)行例行的蟲(chóng)害、肥料管理。
作物盆栽種植周期為小麥140 d、水稻120 d,均選取重要的5個(gè)時(shí)期:出苗期、分蘗期、拔節(jié)期、揚(yáng)花-灌漿期、乳熟-收獲期,連根采集植株2株,同時(shí)采集根區(qū)土壤。植株用去離子水洗凈后,用0.8 mmol·L-1半胱氨酸溶液浸泡10 min[21],以去除植株表面吸附的甲基汞。根部去除鐵膜[22],去離子水清洗3遍,凍干、粉碎,密封保存待測(cè);土壤樣品凍干、研磨過(guò)100目篩,密封保存待測(cè)。
表1 實(shí)驗(yàn)設(shè)計(jì)方案Table 1 Designed of pot experiments
1.3 測(cè)定方法
土壤與作物樣品甲基汞測(cè)定,均采用25%KOHCH3OH方法消解[23],利用自動(dòng)甲基汞儀(ModelⅢ,
Brooks,美國(guó),參考美國(guó)EPA方法1630)進(jìn)行測(cè)定分析。選用河口沉積物(ERM-CC580,Belgium)和魚(yú)蛋白(DORM-3,Canada)標(biāo)準(zhǔn)物質(zhì),同時(shí)采用加標(biāo)回收方法,以檢驗(yàn)實(shí)驗(yàn)分析的準(zhǔn)確性,所得回收率在94%~102%。
1.4 統(tǒng)計(jì)分析方法
土壤與作物甲基汞含量變化均采用單因素方差分析(One-way ANOVA)進(jìn)行統(tǒng)計(jì)學(xué)檢驗(yàn)。檢驗(yàn)組間差異使用兩兩比較(Tukey′HSD),并用Origin 8.5進(jìn)行繪圖。
的Hg-S-DOM三元絡(luò)合物[27-28],促使無(wú)機(jī)汞轉(zhuǎn)化為毒性更強(qiáng)的甲基汞。隨著淹水時(shí)間的增長(zhǎng),厭氧條件趨于穩(wěn)定,同時(shí)水稻根系發(fā)育分泌大量活性有機(jī)質(zhì)[29-30],導(dǎo)致秸稈還田對(duì)汞凈甲基化的促進(jìn)作用越來(lái)越不明顯??傮w來(lái)說(shuō),無(wú)論是在小麥種植時(shí)期還是在水稻種植時(shí)期,秸稈還田均能促使土壤汞的凈甲基化而使土壤甲基汞含量增加。
2.1 秸稈還田對(duì)稻田土壤甲基汞濃度的影響
秸稈還田增加了土壤中甲基汞含量(圖1),隨著小麥生長(zhǎng)時(shí)間的變化,土壤中甲基汞含量呈現(xiàn)一個(gè)動(dòng)態(tài)變化趨勢(shì)(圖1A)。秸稈還田組土壤甲基汞含量在1.36~5.78 μg·kg-1間波動(dòng);對(duì)照組的土壤甲基汞含量在1.42~2.45 μg·kg-1間波動(dòng)。秸稈還田組土壤甲基汞平均含量(4.59 μg·kg-1)是對(duì)照組甲基汞含量(2.07 μg·kg-1)的2.2倍。秸稈還田后的50 d內(nèi)(拔節(jié)期前),土壤中甲基汞含量變化不大(平均含量為2.42±0.59 μg·kg-1);秸稈還田50 d后土壤甲基汞含量迅速增加(平均為5.04±0.48 μg·kg-1),是50 d前的2.1倍??梢?jiàn),水稻秸稈還田對(duì)土壤汞凈甲基化是一個(gè)持續(xù)影響過(guò)程,可能原因是前期(12月到次年3月)氣溫較低導(dǎo)致土壤微生物活性較低造成秸稈分解緩慢,后期(次年3月到5月)隨著氣溫回升,土壤中微生物活性增強(qiáng)促使秸稈分解后產(chǎn)生大量的活性有機(jī)碳[5,24],在微生物與活性有機(jī)碳的共同作用下促進(jìn)汞的凈甲基化,最終導(dǎo)致土壤中甲基汞含量增多,使其與對(duì)照組的差異日趨明顯。
圖1B顯示,添加小麥秸稈淹水10 d(圖中0 d)后,秸稈還田組土壤甲基汞含量(2.99 μg·kg-1)是對(duì)照組土壤甲基汞含量(1.59 μg·kg-1)的1.9倍。但淹水40 d后(圖中30 d,拔節(jié)期),對(duì)照組的土壤甲基汞含量在(3.37±0.38)μg·kg-1上下波動(dòng),秸稈還田組土壤甲基汞含量在(3.70±0.59)μg·kg-1上下波動(dòng),略高于對(duì)照組,但無(wú)顯著性差異。小麥秸稈還田初期土壤中汞的凈甲基化加快可能與厭氧微生物參與下小麥秸稈快速分解有關(guān)[25]。有研究表明,淹水36 d內(nèi)小麥秸稈以64.9 mg·d-1的腐解速率快速分解[26],分解產(chǎn)生的溶解性有機(jī)質(zhì)(DOM)和硫酸鹽還原產(chǎn)生的還原性硫(S)可能與無(wú)機(jī)汞絡(luò)合形成可被汞甲基化細(xì)菌所利用
圖1 秸稈還田后土壤甲基汞濃度變化Figure 1 Concentrations of MeHg in soil with wheat planting and rice planting after straw amendment during plant growth period
2.2 秸稈還田對(duì)作物根部甲基汞濃度的影響
秸稈還田對(duì)作物根部甲基汞累積具有一定影響,根部甲基汞含量的變化總體與土壤甲基汞含量變化規(guī)律一致(圖2)。在小麥種植后50 d內(nèi)(圖2A),雖然對(duì)照組小麥根部甲基汞累積量(4.19~8.60 μg·kg-1)遠(yuǎn)高于秸稈還田組(2.46~4.52 μg·kg-1)。但是小麥種植50 d以后,秸稈還田組小麥根部甲基汞的累積量逐漸增多,收獲時(shí)達(dá)到22.29 μg·kg-1,對(duì)照組小麥根部甲基汞的累積量變化不大,收獲時(shí)為3.99 μg·kg-1,僅為秸稈還田組的18%。
相關(guān)分析表明,水稻秸稈還田組小麥根部甲基汞
含量與土壤甲基汞含量有較好的正相關(guān)關(guān)系(r2=0.695,P<0.05),說(shuō)明根部甲基汞含量主要受土壤甲基汞含量的影響。水稻種植季(圖2B,生長(zhǎng)30 d左右,拔節(jié)期),秸稈還田促進(jìn)水稻根部甲基汞含量大幅增加,其含量(32.95 μg·kg-1)是對(duì)照組根部甲基汞含量(11.99 μg·kg-1)的2.8倍;水稻種植30 d以后,秸稈還田組水稻根部甲基汞含量有所降低,但與對(duì)照組沒(méi)有顯著性差異,且其含量變化處于一個(gè)相對(duì)穩(wěn)定的水平。另外,就對(duì)照組小麥與水稻根部甲基汞平均含量(汞暴露期)而言,小麥根部甲基汞含量(4.18 μg·kg-1)僅為水稻根部甲基汞含量(13.92 μg·kg-1)的1/3,說(shuō)明在汞污染地區(qū),水稻根部對(duì)土壤中甲基汞有高累積性??傮w上,作物根部甲基汞累積量主要受土壤中甲基汞含量變化的影響。這一規(guī)律與已有研究結(jié)果一致[31]。
2.3 秸稈還田對(duì)作物地上部甲基汞濃度的影響
秸稈還田在一定程度上能促進(jìn)水稻與小麥植株地上部(均為莖葉混合部分,不包括籽粒部分)對(duì)甲基汞的累積(圖3)。苗期20 d時(shí)秸稈還田組小麥地上部甲基汞含量為1.78 μg·kg-1,50 d時(shí)甲基汞含量為0.97 μg·kg-1,與對(duì)照相比,同時(shí)間點(diǎn)分別增加24.5%和59.4%。在收獲期,秸稈還田組小麥地上部甲基汞含量(4.09 μg·kg-1)是對(duì)照組甲基汞(2.26 μg·kg-1)的1.8倍(圖3A)。顯然,水稻秸稈還田組小麥地上部甲基汞的含量明顯高于對(duì)照組。
如圖3B所示,在水稻種植過(guò)程中,植株生長(zhǎng)30 d時(shí),秸稈還田組水稻地上部甲基汞含量(20.2 μg·kg-1)是對(duì)照組的水稻地上部甲基汞含量(6.99 μg·kg-1)的2.9倍。從30 d后到收獲時(shí),秸稈還田組地上部甲基汞含量(4.77μg·kg-1)與對(duì)照組地上部甲基汞含量(4.92 μg·kg-1)無(wú)明顯差異。
圖2 作物根部甲基汞濃度變化Figure 2 Concentrations of MeHg in root from wheat and rice after straw amendment during plant growth period
圖3 作物地上部甲基汞濃度變化Figure 3 Concentrations of MeHg in aboveground part from wheat and rice after straw amendment during plant growth period
上述結(jié)果表明,在淹水條件下,添加小麥秸稈能促使水稻植株地上部對(duì)甲基汞的累積,主要集中在水稻植株生長(zhǎng)的揚(yáng)花期(60 d)前。另外,就對(duì)照組小麥植株與水稻植株地上部甲基汞平均含量而言,水稻植株地上部甲基汞含量是小麥植株甲基汞含量的4倍。值得注意的是,小麥地上部甲基汞含量不斷累積,而水稻地上部甲基汞含量在揚(yáng)花期后不斷減少。Meng等[32]研究表明,在水稻揚(yáng)花-灌漿期后,大部分甲基汞
會(huì)從莖葉向籽粒轉(zhuǎn)運(yùn),使得莖葉中甲基汞含量降低。本研究也發(fā)現(xiàn)了類似的規(guī)律。關(guān)于小麥地上部甲基汞不斷累積的原因有待進(jìn)一步研究。
2.4 秸稈還田對(duì)作物籽粒甲基汞濃度的影響
研究結(jié)果表明,秸稈還田同樣促進(jìn)甲基汞在作物籽粒中累積(圖4)。水稻秸稈還田能顯著增加小麥籽粒中甲基汞的含量(圖4A):秸稈還田組小麥籽粒甲基汞含量(4.09 μg·kg-1)是對(duì)照組籽粒含量(1.41 μg· kg-1)的2.9倍,且遠(yuǎn)低于國(guó)家食品安全限量標(biāo)準(zhǔn)20 μg·kg-1。小麥秸稈還田組水稻籽粒甲基汞含量(16.26 μg·kg-1)與對(duì)照組(14.79 μg·kg-1)比較,只有略微增加,并無(wú)顯著差異(圖4B),但水稻籽粒中甲基汞含量接近國(guó)家食品安全限量標(biāo)準(zhǔn)。
采用籽粒甲基汞含量/土壤中甲基汞含量計(jì)算富集系數(shù)(圖4C),小麥籽粒對(duì)甲基汞的累積能力遠(yuǎn)低于水稻籽粒對(duì)甲基汞的累積能力,如對(duì)照組中水稻對(duì)甲基汞的富集系數(shù)(5.46)是小麥對(duì)甲基汞的富集系數(shù)(1.04)的5.22倍。水稻籽粒甲基汞富集系數(shù)(5.78)是小麥籽粒甲基汞富集系數(shù)(0.87)的6.7倍,表明秸稈還田促進(jìn)甲基汞在水稻籽粒的富集。這可能是由于秸稈還田導(dǎo)致土壤中甲基汞含量增加;在水稻灌漿期間,甲基汞從莖葉向稻米轉(zhuǎn)運(yùn)[32],而小麥中甲基汞主要累積在莖葉中(圖3A)。顯然,汞礦區(qū)居民攝食稻米比攝食小麥的甲基汞暴露風(fēng)險(xiǎn)更高。
(1)秸稈還田顯著提高土壤甲基汞含量,同時(shí)增加了作物各組織甲基汞含量,這將導(dǎo)致汞污染地區(qū)糧食作物食品安全風(fēng)險(xiǎn)升高,因而在汞污染地區(qū),應(yīng)慎重使用秸稈還田這一傳統(tǒng)農(nóng)藝措施。
(2)不同作物秸稈還田對(duì)稻麥輪作體系土壤甲基汞及作物甲基汞的影響存在顯著差別,這可能是由于變化的稻麥輪作體系與不同作物秸稈還田共同作用造成的,故秸稈還田對(duì)土壤及作物甲基汞累積的影響有待進(jìn)一步研究。
圖4 作物籽粒甲基汞濃度及富集系數(shù)Figure 4 Concerntrations of MeHg in grains from wheat and rice and bioaccumulation factors of MeHg from soil to grains
[1]王玉軍,劉存,周東美,等.客觀地看待我國(guó)耕地土壤環(huán)境質(zhì)量的現(xiàn)狀:關(guān)于《全國(guó)土壤污染狀況調(diào)查公報(bào)》中有關(guān)問(wèn)題的討論和建議[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(8):1465-1473.
WANG Yu-jun,LIU Cun,ZHOU Dong-mei,et al.A critical view on the status quo of the farmland soil environmental quality in China:Discussion and suggestion of relevant issues on report on the national general survey of soil contamination[J].Journal of Agro-Environment Science, 2014,33(8):1465-1473.
[2]Horvat M,Nolde N,F(xiàn)ajon V,et al.Total mercury,methylmercury and selenium in mercury polluted areas in the province Guizhou,China[J].The Science of Total Environment,2003,304(1-3):231-256.
[3]Feng X B,Li P,Qiu G L,et al.Human exposure to methylmercury through rice intake in mercury mining areas,Guizhou Province,China[J].Environmental Science&Technology,2008,42(1):326-332.
[4]Qiu G L,F(xiàn)eng X B,Wang S F,et al.Mercury and methylmercury in riparian soil,sediments,mine-waste calcines,and moss from abandoned Hg mines in East Guizhou Province,Southwestern China[J].Applied-Geochemistry,2005,20(3):627-638.
[5]Ullrich S M,Tanton T W,Abdrashitova S A.Mercury in the aquatic environment:A review of factors affecting methylation[J].Critical Reviews in Environmental Science and Technology,2001,31(3):241-293.
[6]Zhang H,F(xiàn)eng X B,Larssen T,et al.Bioaccumulation of methylmercury versus inorganic mercury in rice(Oryza sativa L.)grain[J].Environmental Science&Technology,2010,44(12):4499-4504.
[7]Meng B,F(xiàn)eng X B,Qiu G L,et al.Distribution patterns of inorganic mercury and methylmercury in tissues of rice(Oryza sativa L.)plants and possible bioaccumulation pathways[J].Journal of Agricultural and Food Chemisty,2010,58(8):4951-4958.
[8]Zhang H,F(xiàn)eng X B,Larssen T,et al.In inland China,rice,rather than fish,is the major pathway for methylmercury exposure[J].Environmental Health Perspectives,2010,118:1183-1188.
[9]Li P,F(xiàn)eng X B,Yuan X B,et al.Rice consumption contributes to low level methylmercury exposure in Southern China[J].Environment International,2012,49:18-23.
[10]袁曉博,馮新斌,仇廣樂(lè),等.中國(guó)大米汞含量研究[J].地球與環(huán)境,2011,39(3):318-323.
YUAN Xiao-bo,F(xiàn)ENG Xin-bin,QIU Guang-le,et al.Mercury concentrations in rice from China[J].Earth and Environment,2011,39(3):318-323.
[11]李萬(wàn)良,劉武仁.玉米秸稈還田技術(shù)研究現(xiàn)狀及發(fā)展趨勢(shì)[J].吉林農(nóng)業(yè)科學(xué),2007,32(3):32-34.
LI Wan-liang,LIU Wu-ren.Research status and development trends of giving the straws back to the field technique on maize[J].Journal of Jilin Agricultural Sciences,2007,32(3):32-34.
[12]趙士誠(chéng),曹彩云,李科江,等.長(zhǎng)期秸稈還田對(duì)華北潮土肥力、氮庫(kù)組分及作物產(chǎn)量的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(6):1441-1449.
ZHAO Shi-cheng,CAO Cai-yun,LI Ke-jiang,et al.Effects of long term straw return on soil fertility,nitrogen pool fractions and crop yields on a fluvo-aquic soil in North China[J].Plant Nutrition and Fertilizer Science,2014,20(6):1441-1449.
[13]Windham-Myers L,Marvin D M,Kakouros M,et al.Mercury cycling in agricultural and managed wetlands of California,USA:Seasonal influences of vegetation on mercury methylation,storage,and transport[J]. Science of the Total Environment,2014,484:308-318.
[14]張雅潔,陳晨,陳曦,等.小麥-水稻秸稈還田對(duì)土壤有機(jī)質(zhì)組成及不同形態(tài)氮含量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(11):2155-2161.
ZHANG Ya-jie,CHEN Chen,CHEN Xi,et al.Effects of wheat and rice straw returning on soil organic matter composition and content of different nitrogen forms in soil[J].Journal of Agro-Environment Science,2015,34(11):2155-2161.
[15]南雄雄,田霄鴻,張琳,等.小麥和玉米秸稈腐解特點(diǎn)及對(duì)土壤中碳、氮含量的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2010,16(3):626-633.
NAN Xiong-xiong,TIAN Xiao-hong,ZHANG Lin,et al.Decomposition characteristics of maize and wheat straw and their effects on soil carbon and nitrogen contents[J].Plant Nutrition and Fertilizer Science,2010,16(3):626-633.
[16]Zhu H K,Zhong H,Evans D,et al.Effects of rice residue incorporation on the speciation,potential bioavailability and risk of mercury in a contaminated paddy soil[J].Journal of Hazardous Materials,2015,293:64-71.
[17]Zhu H K,Zhong H,Dang F,et al.Incorporation of decomposed crop straw affects potential phytoavailability of mercury in a mining-contaminated farming[J].Bulletin of Environmental Contamination and Toxicology,2015,95(2):254-259.
[18]Shu R,Dang F,Zhong H.Effects of incorporating differently-treated ricestraw on phytoavailability of methylmercury in soil[J].Chemosphere,2016,145:457-463.
[19]Yu J G,Li H X,Chen X Y,et al.Effects of straw application and earthworm inoculation on soil labile organic carbon[J].The Journal of Applied Ecology(China),2007,18(4):818-824.
[20]Zhu H K,Zhong H,Wu J.Incorporating rice residues into paddy soils affects methylmercury accumulation in rice[J].Chemosphere,2016,152:259-264.
[21]Zhong H,Wang W X.Controls of dissolved organic matter and chloride on mercury uptake by a marine diatom[J].Environmental Science& Technology,2009,43(23):8998-9003.
[22]Okkenhaug G,Zhu Y G,He J W,et al.Antimony(Sb)and arsenic(As)in Sb mining impacted paddy soil from Xikuangshan,China:Differences in mechanisms controlling soil sequestration and uptake in rice[J].Environmental Science&Technology,2012,46(6):3155-3162.
[23]Kerry T.Analysis of mercury in sediment and tissue by KOH/CH3OH digestion followed by aqueous phase ethylation[D].Florida Department of Environmental Protection,Standard Operating Procedure,2009.
[24]Yang Y K,Liang L,Wang D Y.Effect of dissolved organic matter on adsorption and desorption of mercury by soils[J].Journal of Environmental Sciences,2008,20(9):1097-1102.
[25]Qiang X,Yuan H,Gao W.Effect of crop-residue incorporation on soil CO2emission and soil microbial biomass[J].The Journal of Applied E-cology,2004,15(3):469-472.
[26]戴志剛,魏劍巍,李小坤,等.不同作物還田秸稈的養(yǎng)分釋放特征實(shí)驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(6):272-276.
DAI Zhi-gang,LU Jian-wei,LI Xiao-kun,et al.Nutrient release characteristics of different crop straws manure[J].Transactions of the CSAE,2010,26(6):272-276.
[27]Luengen A C,F(xiàn)isher N S,Bergamaschi B A.Dissolved organic matter reduces algal accumulation of methylmercury[J].Environmental Toxicology and Chemistry,2012,31(8):1712-1719.
[28]Gerbig C A,Kim C,Stegemeier J,et al.Formation of nanocolloidal metacinnabar in Mercury-DOM-Sulfide Systems[J].Environmental Science&Technology,2011,45(21):9180-9187.
[29]Shu R,Wang Y J,Zhong H.Biochar amendment reduced methylmercury accumulation in rice plants[J].Journal of Hazardous Materials,2016,313:1-8.
[30]Mark M D,Lisamarie W M,Jennifer L A,et al.Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass,California,USA[J].Science of the Total Environment,2014,484:288-299.
[31]Wang Y J,Dang F,Evans D,et al.Mechanistic understanding of MeHg-Se antagonism in soil-rice systems:The key role of antagonism in soil[J].Scientific Reports,2016.doi:10.1038/srep19477
[32]Meng B,F(xiàn)eng X B,Qiu G L,et al.The process of methylmercury accumulation in rice(Oryza sativa L.)[J].Environmental Science&Technology,2011,45(7):2711-2717.
Effects of straw amendment on methylmercury accumulation in soil and croP Plants under wheat-rice rotation
CHEN Zong-ya1,WANG Yong-jie2,SHU Rui2,F(xiàn)U Fang-jing3,4,WU Yong-gui1*
(1.College of Resources and Environmental Engineering,Guizhou University,Guiyang 550002,China;2.School of Environment,Nanjing University,State Key Laboratory of Pollution Control and Resource Reuse,Nanjing 210023,China;3.Guizhou Rural Economic Information Center,Guiyang 550002,China;4.Institute for Information on Agricultural Quality and Food Safety,Guiyang 550002,China)
There is growing concern about methylmercury(MeHg)accumulation in crop plants in Hg-contaminated areas.To investigate the possible influences of straw amendment on soil methylmercury levels and its accumulation in crop plants,mercury-contaminated paddy soil was collected from Wanshan mercury mine area and amended with 1%(W/W)crop straw(wheat or rice)in a wheat-rice rotation system.At different stages(e.g.,seedling,tillering,jointing,flowering and harvesting)of plant growth,the soil and plant samples were collected and analyzed for MeHg.The results show that straw amendment could lead to a substantial increases in MeHg levels in both soils and plants.Soil MeHg increased by 127.1%under wheat-straw amendment and 25.1%under rice-straw amendment,respectively.This was possibly due to the different planting conditions.Correspondingly,MeHg levels in root,aboveground part and grain of wheat increased by 124.6%,79.2% and 169%,respectively,compared to the control.Similarly,MeHg levels in root,aboveground part and grain of rice increased by 40.1%,61.7%and 25.9%,respectively.Overall,there is a positive relationship between the crop plant MeHg levels and soil MeHg levels under wheat-rice rotation,indicating that straw amendment could increase soil MeHg levels and subsequently the MeHg accumulation in crops,which could enhance the potential risk of human exposure to MeHg in mercury-contaminated areas.These results suggest that it should be cautious when promoting straw amendment in mercury-contaminated areas.
straw return;paddy soil;wheat-rice rotation;crop;methylmercury
X53
A
1672-2043(2016)10-1931-06
10.11654/jaes.2016-0494
陳宗婭,王永杰,舒瑞,等.秸稈覆蓋還田對(duì)稻麥輪作體系中土壤及作物甲基汞累積的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(10):1931-1936.
CHEN Zong-ya,WANG Yong-jie,SHU Rui,et al.Effects of straw amendment on methylmercury accumulation in soil and crop plants under wheat-rice rotation[J].Journal of Agro-Environment Science,2016,35(10):1931-1936.
2016-04-12
貴州省教育廳項(xiàng)目(黔教合KY字2015-330);貴州省山地環(huán)境氣候研究所院士工作站項(xiàng)目(2014)4010;中央高校基本科研業(yè)務(wù)費(fèi)資助項(xiàng)目(021114340125)
陳宗婭(1990—),女,貴州遵義人,碩士研究生,從事環(huán)境污染效應(yīng)、污染控制方面的研究工作。E-mail:chenzongya4711969@163.com
*通信作者:吳永貴E-mail:ygwu72@126.com