楊曉月,廖曉輝,葉靜,邵燦,王斌,劉穎△
右旋-色氨酸對(duì)變異鏈球菌生物膜形成及離散的影響
楊曉月1,廖曉輝2,葉靜3,邵燦1,王斌1,劉穎1△
目的探討右旋-色氨酸(D-Trp)對(duì)變異鏈球菌(S.mutans)生物膜形成及離散的影響,以及在D-Trp作用下S.mutans對(duì)氯己定(CHX)藥物敏感性的變化。方法吸光度法檢測(cè)5.0 mmol/L D-Trp對(duì)懸浮S.mutans生長(zhǎng)的影響,非處理組不作D-Trp處理;結(jié)晶紫染色法檢測(cè)1.0、2.5及5.0 mmol/L D-Trp處理組S.mutans生物膜形成的變化,非處理組不添加D-Trp;結(jié)晶紫染色法及激光掃描共聚焦顯微鏡(CLSM)觀察1.0、2.5及5.0 mmol/L D-Trp處理組對(duì)24 h S.mutans生物膜的離散作用;刃天青鈉鹽指示法檢測(cè)5.0 mmol/L D-Trp處理(實(shí)驗(yàn)組)和陰性對(duì)照組的最小抑菌濃度(MIC)及最小生物膜抑菌濃度(MBIC)。結(jié)果單菌種懸浮S.mutans在D-Trp處理組與非處理組的作用下,28 h內(nèi)生長(zhǎng)趨勢(shì)一致,均從4 h開(kāi)始進(jìn)入對(duì)數(shù)期,22 h到達(dá)平臺(tái)期。1.0、2.5及5.0 mmol/L D-Trp處理組與非處理組相比,S.mutans生物膜在0~72 h內(nèi)生物膜生物量均隨時(shí)間推移而增加;同一時(shí)間點(diǎn),各處理組各時(shí)點(diǎn)生物膜生物量均低于非處理組(P<0.05)。結(jié)晶紫染色法示1.0、2.5及5.0 mmol/L D-Trp處理組生物膜生物量(OD570)均低于非處理組(P<0.01)。激光掃描共聚焦顯微鏡觀察結(jié)果顯示,1.0、2.5及5.0 mmol/L D-Trp處理組均有細(xì)菌黏附于介質(zhì)表面,處理組生物膜生物量低于非處理組(P<0.01)。實(shí)驗(yàn)組和陰性對(duì)照組對(duì)S.mutans的MIC均為0.073 mg/L,對(duì)S.mutans的MBIC分別為0.293 mg/L和2.344 mg/L,添加5.0 mmol/L D-Trp后,CHX對(duì)S.mutans的MBIC降至1/8。結(jié)論D-Trp能夠抑制生物膜形成,促進(jìn)已形成生物膜離散,并提高S.mutans對(duì)CHX的敏感性。
鏈球菌,變異;生物膜;氯己定;微生物敏感性試驗(yàn);右旋色氨酸;最小抑菌濃度
變異鏈球菌(Streptococcus mutans,S.mutans)作為齲病最主要的致病菌,可黏附于牙面形成牙菌斑生物膜,從而在適當(dāng)條件下產(chǎn)生大量的酸性物質(zhì)而致齲[1]。生物膜因其特殊的結(jié)構(gòu)及理化性質(zhì),使其中的細(xì)菌對(duì)抗菌藥的敏感性遠(yuǎn)遠(yuǎn)低于浮游狀態(tài)的細(xì)菌[2]。近期研究發(fā)現(xiàn),成熟的枯草芽孢桿菌生物膜通過(guò)產(chǎn)生多種右旋氨基酸(D-amino acids,D-AA)來(lái)抑制自身生物膜形成,促進(jìn)已成熟的生物膜離散[3]。另有研究顯示,D-AA混合物能夠增強(qiáng)S.mutans對(duì)乳酸鏈菌素的敏感性[4]。本實(shí)驗(yàn)通過(guò)研究右旋-色氨酸(D-Tryptophan,D-Trp)對(duì)S.mutans生物膜形成及離散的作用,以期尋找有效控制菌斑生物膜的新方法。
1.1 材料S.mutans UA159菌株(天津醫(yī)科大學(xué)口腔醫(yī)學(xué)院實(shí)驗(yàn)室)。腦心浸出液培養(yǎng)基(BHI,奧博星生物技術(shù)有限責(zé)任公司)、D-AA(美國(guó)Sigma公司)、SYTO-9/PI混合染料(美國(guó)Invitrogen公司)、激光共聚焦培養(yǎng)皿(無(wú)錫耐思生物科技有限公司)、葡萄糖酸氯己定溶液(上海拜力生物科技有限公司)、刃天青鈉鹽(上海麥恪林生化科技有限公司)。722型可見(jiàn)光分光光度計(jì)(上海光譜儀器有限公司)、SynergyMx多功能酶標(biāo)計(jì)(美國(guó)BioTek公司)、激光掃描共聚焦顯微鏡(FV1200,日本Olympus公司)。
1.2 方法
1.2.1 D-Trp對(duì)懸浮S.mutans生長(zhǎng)的影響將S.mutans培養(yǎng)至對(duì)數(shù)生長(zhǎng)期,菌懸液以體積比1∶50(下同)稀釋于BHI液體培養(yǎng)基中,處理組添加5.0 mmol/L D-Trp,非處理組不添加D-Trp,靜置培養(yǎng)28 h。每隔2 h用紫外分光光度計(jì)測(cè)菌懸液在600 nm處的光密度(OD600)值,繪制單菌種懸浮S.mutans的生長(zhǎng)曲線。
1.2.2 結(jié)晶紫染色法檢測(cè)D-Trp對(duì)S.mutans生物膜形成的影響參照文獻(xiàn)[5],將S.mutans培養(yǎng)至對(duì)數(shù)生長(zhǎng)期,接種于96孔板,處理組分為3個(gè)亞組,分別加入含1.0、2.5及5.0 mmol/L D-Trp的BHI培養(yǎng)液。非處理組不添加D-Trp,每組3個(gè)復(fù)孔,靜置培養(yǎng)。培養(yǎng)4、12、24、48及72 h時(shí),取各組培養(yǎng)液,去除培養(yǎng)基及懸浮細(xì)菌,PBS沖洗,每孔加200 μL結(jié)晶紫溶液,染色15 min,ddH2O漂洗,37℃溫箱烘干10 min,每孔加200 μL體積分?jǐn)?shù)33%的醋酸,待其完全溶解,酶標(biāo)儀檢測(cè)菌懸液在570 nm處的OD570。
1.2.3 結(jié)晶紫染色法檢測(cè)D-Trp對(duì)24 h S.mutans生物膜的離散作用以96孔板為介質(zhì)建立S.mutans 24 h單菌種生物膜,靜置培養(yǎng)24 h,去除原培養(yǎng)液及懸浮細(xì)菌。處理組分別加入含1.0、2.5及5.0 mmol/L D-Trp的BHI培養(yǎng)液,非處理組不添加D-Trp,每組3個(gè)復(fù)孔,繼續(xù)培養(yǎng)24 h。結(jié)晶紫染色法檢測(cè)各組S.mutans生物膜總生物量(OD570)[5]。
1.2.4 激光掃描共聚焦顯微鏡觀察D-Trp對(duì)24 h S.mutans生物膜的離散作用以激光共聚焦培養(yǎng)皿為介質(zhì)建立S.mutans單菌種生物膜,每皿加入2 mL稀釋菌液,封口膜封閉培養(yǎng)皿接口,靜置培養(yǎng)24 h。去除原培養(yǎng)液及懸浮細(xì)菌,處理組分別加入含1.0、2.5及5.0 mmol/L D-Trp的BHI培養(yǎng)液,非處理組不添加D-Trp,繼續(xù)培養(yǎng)24 h。無(wú)菌生理鹽水輕洗皿底2次,去除懸浮菌,避光條件下,每皿加入1 mL混合染液SYTO-9/PI,室溫避光靜置染色15 min。無(wú)菌生理鹽水沖洗去除多余染料,吸盡沖洗液,無(wú)菌生理鹽水封片,待觀察。每組隨機(jī)讀取3個(gè)視野,以激光掃描共聚焦顯微鏡分層掃描生物膜樣本,Imaris軟件對(duì)圖像進(jìn)行三維重建并測(cè)量生物膜綠色熒光體積、生物膜紅色熒光體積,并以紅色熒光和綠色熒光體積的總和作為細(xì)菌生物膜的總生物量。
1.2.5 D-Trp與氯己定(chlorhexidine,CHX)聯(lián)合應(yīng)用對(duì)懸浮S.mutans最小抑菌濃度(minimum inhibitory concentration,MIC)的影響將S.mutans培養(yǎng)至對(duì)數(shù)生長(zhǎng)期,接種于96孔板,實(shí)驗(yàn)組加入100 μL含5.0 mmol/L D-Trp的BHI培養(yǎng)基,陰性對(duì)照組培養(yǎng)基中不添加D-Trp,空白對(duì)照組不接種S.mutans,僅加入等量的BHI。每組3個(gè)復(fù)孔,每孔加入含質(zhì)量分?jǐn)?shù)為0.001%刃天青鈉鹽[6]的BHI培養(yǎng)基30 μL。質(zhì)量分?jǐn)?shù)為0.12%的CHX按照二倍稀釋法后,依次加入各組,靜置培養(yǎng)24 h。參照文獻(xiàn)[7]確定MIC??瞻讓?duì)照組未接種S.mutans,不同濃度的CHX對(duì)其無(wú)影響,用于計(jì)算實(shí)驗(yàn)組和陰性對(duì)照組的MIC。
1.2.6 D-Trp與CHX聯(lián)合應(yīng)用對(duì)S.mutans生物膜MIC(MBIC)的影響以96孔板為介質(zhì)建立24 h S.mutans單菌種生物膜,PBS沖洗。實(shí)驗(yàn)組加入100 μL 5.0 mmol/L D-Trp的BHI培養(yǎng)基,陰性對(duì)照組培養(yǎng)基中不添加D-Trp,空白對(duì)照組不接種S.mutans,僅加入等量的BHI。每組3個(gè)復(fù)孔,靜置培養(yǎng)24 h;質(zhì)量分?jǐn)?shù)為0.12%的CHX按照二倍稀釋法逐級(jí)稀釋,依次加入各組,靜置培養(yǎng)24 h;每孔加入含0.001%的刃天青鈉鹽的BHI培養(yǎng)基30 μL,繼續(xù)培養(yǎng)24 h,參照文獻(xiàn)[7]確定MBIC。
1.3 統(tǒng)計(jì)學(xué)方法采用SPSS 13.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。符合正態(tài)分布的計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差表示,多組間均數(shù)比較采用單因素方差分析,組間多重比較采用LSD-t法,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 D-Trp對(duì)懸浮S.mutans生長(zhǎng)的影響單菌種懸浮S.mutans在D-Trp處理組與非處理組的作用下,28 h內(nèi)生長(zhǎng)趨勢(shì)一致,均從4 h開(kāi)始進(jìn)入對(duì)數(shù)期,22 h到達(dá)平臺(tái)期,見(jiàn)圖1。
Fig.1Growth curves of D-Trp on planktonic S.mutans圖1 懸浮S.mutans的生長(zhǎng)曲線
2.2 D-Trp對(duì)S.mutans生物膜形成的影響1.0、2.5及5.0 mmol/L D-Trp處理組與非處理組相比,S.mutans生物膜在0~72 h內(nèi)生物膜生物量均隨時(shí)間推移而增加;同一時(shí)間點(diǎn),各處理亞組各時(shí)點(diǎn)生物膜生物量均低于非處理組(P<0.05),見(jiàn)圖2。
Fig.2Effects of different concentrations of D-Trp on the formation of S.mutans biofilms圖2 不同濃度D-Trp對(duì)S.mutans生物膜形成的影響
2.3 D-Trp對(duì)S.mutans生物膜的離散作用結(jié)晶紫染色法示1.0、2.5及5.0 mmol/L D-Trp處理組生物膜生物量(OD570)均低于非處理組(0.132±0.008、0.087±0.004、0.071±0.002及0.298±0.006,F(xiàn)= 691.326,P<0.01)。激光掃描共聚焦顯微鏡觀察結(jié)果顯示,1.0、2.5及5.0 mmol/L D-Trp處理組均有細(xì)菌黏附于介質(zhì)表面,其生物膜生物量分別為(5 964.667±197.356)μm3、(6 091.000±418.442)μm3及(2 736.333±91.040)μm3,明顯低于對(duì)非處理組(114 150±1 208.445)μm3,差異有統(tǒng)計(jì)學(xué)意義(F=14 189.949,P<0.01),見(jiàn)圖3。
2.4 D-Trp與CHX聯(lián)合應(yīng)用對(duì)懸浮S.mutans MIC的影響實(shí)驗(yàn)組和陰性對(duì)照組對(duì)S.mutans的MIC均為0.073 mg/L。
2.5 D-Trp與CHX聯(lián)合應(yīng)用對(duì)S.mutans MBIC的影響實(shí)驗(yàn)組和陰性對(duì)照組對(duì)S.mutans的MBIC分別為0.293 mg/L、2.344 mg/L,添加5.0 mmol/L DTrp后,CHX對(duì)S.mutans的MBIC降至陰性對(duì)照組的1/8。
細(xì)菌生物膜在許多疾病的發(fā)生中起到重要作用。如S.mutans作為齲病的主要致病菌,通過(guò)黏附于牙齒或修復(fù)體表面,從而在口腔中定植并形成生物膜,并產(chǎn)生毒性作用[1,8]。生物膜集落固有的保護(hù)性質(zhì)使得絕大多數(shù)生物膜相關(guān)感染難以甚至不可能根除[9]。有研究證實(shí),破壞生物膜有利于其相關(guān)疾病,如糖尿病足[10]、根尖周炎[11]、牙周?。?2]等的預(yù)防與控制。
Kolodkin-Gal等[3]研究發(fā)現(xiàn),成熟的枯草芽孢桿菌生物膜在成熟后期通過(guò)自發(fā)產(chǎn)生D-AA來(lái)促進(jìn)生物膜離散,實(shí)現(xiàn)細(xì)菌的播散。然后,D-AA對(duì)生物膜的作用開(kāi)始被關(guān)注。目前,已有研究證實(shí),外源性添加D-AA對(duì)枯草芽孢桿菌[3]、銅綠假單胞菌[13]、金黃色葡萄球菌[14]、牙齦卟啉單胞菌[15]、變異鏈球菌[16]等致病生物膜亦具有一定的破壞作用;而D-Trp能抑制銅綠假單胞菌、金黃色葡萄球菌、枯草芽孢桿菌生物膜的形成[17-18],且能夠離散枯草芽孢桿菌已形成的生物膜[3]。
本研究發(fā)現(xiàn),添加或不添加D-Trp,懸浮S.mutans生長(zhǎng)趨勢(shì)一致,且5.0 mmol/L D-Trp與CHX聯(lián)合應(yīng)用和單獨(dú)應(yīng)用CHX對(duì)S.mutans的MIC均為0.073 mg/L,證實(shí)了D-Trp對(duì)懸浮S.mutans生長(zhǎng)無(wú)抑制作用。結(jié)晶紫染色及激光掃描共聚焦電鏡結(jié)果顯示,1.0、2.5、5.0 mmol/L D-Trp均能抑制S.mutans生物膜的形成,離散已形成生物膜,其中以5.0 mmol/L的濃度作用最為顯著。
既往研究證實(shí),D-AA在離散生物膜的同時(shí),有助于提高細(xì)菌對(duì)抗菌藥物的敏感性;D-酪氨酸與阿米卡星聯(lián)合應(yīng)用使得銅綠假單胞菌的MBIC降至單用時(shí)的1/8[19]。D-蛋氨酸、D-苯丙氨酸、D-Trp聯(lián)合應(yīng)用能夠增強(qiáng)金黃色葡萄球菌對(duì)利福平的敏感性[14]。D-天冬氨酸、D-半胱氨酸、D-谷氨酸混合物能夠提高S.mutans對(duì)乳酸鏈球菌素的敏感性[4]。
CHX作為常用的抗菌藥物,可作為含漱劑治療牙齦炎,亦可用于根管消毒[11]、菌斑控制[20]??谇恢械难谰呤怯啥嗑N組成的生物膜,在適當(dāng)條件下可引起齲病、牙周病等細(xì)菌感染相關(guān)疾病。本實(shí)驗(yàn)結(jié)果顯示,5.0 mmol/L D-Trp與CHX聯(lián)合應(yīng)用S.mutans的MIBC降至單獨(dú)應(yīng)用CHX的1/8,表明D-Trp可作用于生物膜形式的S.mutans,協(xié)助提高S.mutans生物膜對(duì)CHX的敏感性。Tong等[4]未能證實(shí)D-AA混合物是否能夠提高S.mutans生物膜對(duì)CHX的敏感性,可能的原因是所用D-AA不同。結(jié)合相關(guān)研究,筆者認(rèn)為通過(guò)破壞生物膜的方法,同時(shí)降低CHX等抗菌藥物的使用濃度,可能成為一種控制菌斑的新方法。
由于不同細(xì)菌形成生物膜的機(jī)制不同,因此D-AA對(duì)生物膜形成和離散的作用機(jī)制也不盡相同。研究顯示,D-AA可通過(guò)影響生物膜基質(zhì)中肽聚糖的結(jié)構(gòu)、數(shù)量和強(qiáng)度[4,13],增加細(xì)菌游動(dòng)性[21],干擾胞外脂蛋白的合成[16]等方式抑制生物膜形成。DAA可引起細(xì)菌細(xì)胞壁淀粉樣蛋白的釋放,離散成熟的生物膜[22]。
綜上所述,D-Trp能夠抑制S.mutans生物膜形成,促進(jìn)已形成生物膜離散,可能成為臨床控制菌斑的新方法。然而,目前,D-Trp對(duì)S.mutans生物膜的作用機(jī)制仍尚未明確,有待進(jìn)一步研究。
(圖3見(jiàn)插頁(yè))
[1]Wu X,Hou J,Chen X,et al.Identification and functional analysis of theL-ascorbate-specificenzymeIIcomplexofthe phosphotransferase system in Streptococcus mutans[J].BMC Microbiol,2016,16:51.doi:10.1186/s12866-016-0668-9.
[2]Hall-Stoodley L,Stoodley P.Evolving concepts in biofilm infections[J].Cell Microbiol,2009,11(7):1034-1043.doi:10.1111/j.1462-5822.2009.01323.x.
[3]Kolodkin-Gal I,Romero D,Cao S,et al.D-Amino Acids Trigger Biofilm Disassembly[J].Science,2010,328(5978):627-629.doi: 10.1126/science.1188628.
[4]Tong Z,Zhang L,Ling J,et al.An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans[J].PLoS One,2014,9(6):e99513.doi:10.1371/journal.pone.0099513.
[5]Chen Y,Liu T,Wang K,et al.Baicalein inhibits staphylococcus aureus biofilm formation and the quorum sensing system in vitro[J].PLoS One,2016,11(4):e153468.doi:10.1371/journal. pone.0153468.
[6]Sakuma Y,Washio J,Sasaki K,et al.A high-sensitive and nonradioisotopic fluorescence dye method for evaluating bacterial adhesion to denture materials[J].Dent Mater J,2013,32(4):585-591.
[7]Chen J,Chen ZF,Rao YY,et al.Rapid determination of mycobacterium MIC and serotype identification by trace resazurin coloration[J].Chin J Clin Lab Sci,2011,2011(3):174-175.[陳軍,陳志飛,饒有益,等.微量刃天青顯色法快速測(cè)定結(jié)核分枝桿菌MIC及菌型鑒定[J].臨床檢驗(yàn)雜志,2011,2011(3):174-175].
[8]Dige I,Gronkjaer L,Nyvad B.Molecular studies of the structural ecology of natural occlusal caries[J].Caries Res,2014,48(5): 451-460.doi:10.1159/000357920.
[9]Makarewicz O,Klinger-Strobel M,Ernst J,et al.A blue fluorescent labeling technique utilizing micro-and nanoparticles for tracking in LIVE/DEAD®;stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia[J].Int J Nanomedicine,2016,11: 575.doi:10.2147/IJN.S98401.
[10]Mottola C,Matias CS,Mendes JJ,et al.Susceptibility patterns of Staphylococcus aureus biofilms in diabetic foot infections[J].BMC Microbiol,2016,16(1):119.doi:10.1186/s12866-016-0737-0.
[11]Lahor-Soler E,Miranda-Rius J,Brunet-Llobet L,et al.In vitro study of the apical microleakage with resilon root canal filling using different final endodontic irrigants[J].J Clin Exp Dent,2015,7(2): e212-e217.doi:10.4317/jced.51755.
[12]Carrouel F,Viennot S,Santamaria J,et al.Quantitative molecular detection of 19 major pathogens in the interdental biofilm of periodontally healthy young adults[J].Front Microbiol,2016,7: 840.doi:10.3389/fmicb.2016.00840.eCollection 2016.
[13]Lam H,Oh DC,Cava F,et al.D-amino acids govern stationary phase cell wall remodeling in bacteria[J].Science,2009,325(5947):1552-1555.doi:10.1126/science.1178123.
[14]Sanchez CJ,Akers KS,Romano DR,et al.D-Amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of staphylococcus aureus and pseudomonas aeruginosa[J]. Antimicrob Agents Chemother,2014,58(8):4353-4361.doi: 10.1016/j.biomaterials.2013.06.026.
[15]Li C,Pan YP,Lin L,et al.The effect of D-animo acid on Porphyromonas gingivalis biofilm formation[J].Stomatology,2014,34(1):13-15.[李琛,潘亞萍,林莉,等.右旋氨基酸對(duì)牙齦卟啉單胞菌生物膜形成的影響[J].口腔醫(yī)學(xué),2014,34(1):13-15].
[16]Zhang LD,Ling JQ,Tong ZC.Effects of free amino acids on Streptococci mutans proliferation and Bioflim formation[J].Chin J Conserv Dent,2014,24(6):313-316.[張羅丹,凌均棨,童忠春.游離氨基酸對(duì)變異鏈球菌生長(zhǎng)及生物膜形成的影響[J].牙體牙髓牙周病學(xué)雜志,2014,24(6):313-316].
[17]Brandenburg KS,Rodriguez KJ,Mcanulty JF,et al.Tryptophan inhibitsbiofilmformationbypseudomonasaeruginosa[J]. Antimicrob Agents Chemother,2013,57(4):1921-1925.doi: 10.1128/AAC.00007-13.
[18]Sanchez CJ,Prieto EM,Krueger CA,et al.Effects of local delivery of d-amino acids from biofilm-dispersive scaffolds on infection in contaminated rat segmental defects[J].Biomaterials,2013,34(30):7533-7543.
[19]She P,Chen L,Liu H,et al.The effects of d-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa[J]. Microbial Pathogenesis,2015,86:38-44.doi:10.1016/j.micpath. 2015.07.009.
[20]Yeturu SK,Acharya S,Urala AS,et al.Effect of Aloe vera,chlorine dioxide,and chlorhexidine mouth rinses on plaque and gingivitis:A randomized controlled trial[J].J Oral Biol Craniofac Res,2016,6(1):54-58.doi:10.1016/j.jobcr.2015.08.008.
[21]Hochbaum AI,Kolodkin-Gal I,F(xiàn)oulston L,et al.Inhibitory effects of D-Amino acids on staphylococcus aureus biofilm development[J].J Bacteriol,2011,193(20):5616-5622.doi:10.1128/ JB.05534-11.
[22]Romero D,Vlamakis H,Losick R,et al.An accessory protein required for anchoring and assembly of amyloid fibres in B.subtilis biofilms[J].Mol Microbiol,2011,80(5):1155-1168.doi:10.1111/ j.1365-2958.2011.07653.x.
(2016-04-22收稿2016-07-01修回)
(本文編輯陸榮展)
Effects of D-tryptophan on biofilm formation and dispersal in Streptococcus mutans
YANG Xiaoyue1,LIAO Xiaohui2,YE Jing3,SHAO Can1,WANG Bin1,LIU Ying1△
1 Department of Endodontics Dentistry,Hospital of Stomatology,Tianjin Medical University,Tianjin 300070,China;2 General Department West Branch of Stomatology Hospital of Zhejiang Province;3 Department of Stomatology,Tianjin Hospital△
ObjectiveTo investigate the effects of D-tryptophan(D-Trp)on the formation of Streptococcus mutans(S.mutans)biofilm and the dispersal of 24 h-old biofilm,and the drug susceptibility of S.mutans against chlorhexidine(CHX)under the role of D-Trp.MethodsOptical density assay was used to evaluate the growth curve of S.mutans exposed to 5.0 mmol/L D-Trp for 28 h.The non-treated group was not added with D-Trp.After treatment with 1.0,2.5 and 5.0 mmol/L D-Trp,crystal violet staining was used to observe the changes of S.mutans biofilm formation in treatment group and nontreatment group.Crystal violet staining and confocal laser scanning microscopy(CLSM)were applied to illustrate the effects of 1.0,2.5 and 5.0 mmol/L D-Trp on the dispersal of 24 h-old S.mutans biofilm.Resazurin sodium was used to indicate the effect of 5.0 mmol/L D-Trp on the minimum inhibitory concentration(MIC)and the minimum biofilm inhibitory concentration(MBIC)of treatment groups and negative control group.ResultsThe growth curves of planktonic S.mutans within 28 h was consistent in treatment group and the non-treated group,both attained exponential phase after 4 h and reached stationary phase at 22 h.Notably,when compared with non-treated group,the biomass of S.mutans biofilm was increased with time from 0 to 72 h after treatment with 1.0,2.5 and 5.0 mmol/L D-Trp.And at the same time point,the biomass was significantly less in each subgroup of treatment group than that of non-treated group(P<0.05).Crystal violet staining demonstrated that values of biomass(OD570)were less in treatment groups treated with 1.0,2.5 and 5.0 mmol/L DTrp than those of non-treated group(P<0.01).CLSM also showed that bacteria was adhered to the surface of media intreatment groups treated with 1.0,2.5 and 5.0 mmol/L D-Trp.The values of biomass were lower in treatment groups than those of non-treated group(P<0.01).The MIC against S.mutans was 0.073 mg/L in both experimental group and negative control group.The values of MBIC were 0.293 mg/L and 2.344 mg/L in experimental group and negative control group,respectively.Under the action of 5.0 mmol/L D-Trp,the MBIC of S.mutans was reduced to 1/8.ConclusionResults indicate that D-Trp may inhibit the formation of S.mutans biofilm and promote the dispersal of biofilm already formed.DTrp may further help CHX exert its bactericidal activity to S.mutans.
Streptococcus mutans;biofilms;Chlorhexidine;microbial sensitivity tests;D-tryptophan;the minimum inhibitory concentration
R781.1
A
10.11958/20160341
1天津醫(yī)科大學(xué)口腔醫(yī)院牙體牙髓科(郵編300070);2浙江省口腔醫(yī)院城西分院綜合科;3天津市天津醫(yī)院口腔科
楊曉月(1991),女,碩士在讀,主要從事右旋氨基酸對(duì)變異鏈球菌生物膜形成及離散的研究
△通訊作者E-mail:yingliu04@tmu.edu.cn