国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

循環(huán)腫瘤DNA在臨床應(yīng)用中的研究進(jìn)展

2016-11-18 06:49李妙竹林健振趙海濤
關(guān)鍵詞:測(cè)序癌癥血液

李妙竹,林健振,趙海濤

1美國(guó)杜克大學(xué)人群衰老健康研究所,北卡羅來(lái)納州 277052 中國(guó)醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院肝臟外科,北京 100730

?

·綜 述·

循環(huán)腫瘤DNA在臨床應(yīng)用中的研究進(jìn)展

李妙竹1,林健振2,趙海濤2

1美國(guó)杜克大學(xué)人群衰老健康研究所,北卡羅來(lái)納州 277052中國(guó)醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院肝臟外科,北京 100730

分子診斷檢測(cè)腫瘤相關(guān)突變正越來(lái)越多的被應(yīng)用于癌癥患者的臨床護(hù)理和管理。含有腫瘤突變的循環(huán)腫瘤DNA(ctDNA)可以在疾病進(jìn)程中被多次采集,是一種簡(jiǎn)單有效的非侵入性“液體活檢”技術(shù)。作為一種潛在的腫瘤標(biāo)志物,ctDNA檢測(cè)有望在腫瘤治療中對(duì)疾病預(yù)后判斷、動(dòng)態(tài)監(jiān)測(cè)、用藥指導(dǎo)和異質(zhì)評(píng)估發(fā)揮重要的臨床應(yīng)用價(jià)值。但ctDNA檢測(cè)技術(shù)需要進(jìn)一步規(guī)范檢測(cè)流程,提高檢測(cè)的可重復(fù)性和準(zhǔn)確性,才能更好服務(wù)于精準(zhǔn)醫(yī)療。

循環(huán)腫瘤DNA;腫瘤;基因突變;動(dòng)態(tài)監(jiān)測(cè);異質(zhì)性

ActaAcadMedSin,2016,38(5):594-600

癌癥是世界范圍發(fā)病率和死亡率最高的疾病之一,2012年全球新發(fā)病例1410萬(wàn)例,死亡820萬(wàn)例。預(yù)計(jì)到2035年,全球癌癥總數(shù)將超過(guò)2400萬(wàn)例,1460萬(wàn)人死于癌癥[1]。癌癥發(fā)生的過(guò)程中存在各種基因突變和結(jié)構(gòu)改變,檢測(cè)腫瘤組織中存在的突變類(lèi)型有助于了解腫瘤的發(fā)病機(jī)制,如果將腫瘤特異性分子標(biāo)記用于診斷、評(píng)估和預(yù)測(cè),可以獲得良好的治療效果[2]。MIT Technology Review 公布的2015年度十大突破技術(shù)之一——液體活檢,以其簡(jiǎn)單易行、靈敏特異、無(wú)創(chuàng)或微創(chuàng),給傳統(tǒng)癌癥治療帶來(lái)了顛覆性變革。其中,外周血中游離的核酸小片段DNA,循環(huán)腫瘤DNA (circulating tumor DNA,ctDNA)作為一種潛在的腫瘤標(biāo)志物近來(lái)備受關(guān)注。

ctDNA的發(fā)現(xiàn)史和生物學(xué)特性

1948年,Mandel等[3]從正常人血液中檢測(cè)到游離的DNA 片段(cell-free DNA,cfDNA),但他們的先驅(qū)工作并未得到足夠重視。1977年,Leon等[4]發(fā)現(xiàn)腫瘤患者體內(nèi)cfDNA含量明顯高于健康個(gè)體,而晚期腫瘤患者含量更高。隨著研究不斷深入,1989年,Stroun[5]發(fā)現(xiàn)在腫瘤患者的血漿和血清cfDNA中存在與腫瘤基因改變相同的DNA片段,科學(xué)家將其命名為ctDNA[6]。血液中循環(huán)DNA主要來(lái)源于細(xì)胞的凋亡、壞死和分泌[7],通常cfDNA會(huì)被實(shí)時(shí)清除并保持極低含量,每毫升血漿中只有大約十幾納克(ng)的cfDNA。例如常規(guī)科研實(shí)踐采集10 ml的血液里,有約2萬(wàn)細(xì)胞的cfDNA。但在腫瘤組織中細(xì)胞代謝旺盛導(dǎo)致大量凋亡和壞死,增加釋放游離核酸cfDNA。因此,碎片化、低含量的ctDNA有以下獨(dú)有特征:(1)片段短小,約150~200 bp[8];(2)半衰期短:15 min至數(shù)小時(shí)(平均約2 h);(3)ctDNA占cfDNA比例0.01%~90.00%不等;(4)ctDNA水平與腫瘤類(lèi)型、腫瘤負(fù)荷和腫瘤進(jìn)展等相關(guān)[9]。

ctDNA的檢測(cè)技術(shù)

目前既可以對(duì)ctDNA濃度進(jìn)行定量分析,也可以對(duì)ctDNA進(jìn)行定性分析,包括檢測(cè)基因突變、缺失、插入、融合、重排、拷貝數(shù)變異、甲基化、微衛(wèi)星不穩(wěn)定(microsatellite instability,MSI)和雜合性缺失(loss of heterozygosity,LOH)等。定量和定性?xún)煞N方法均可以反映腫瘤的存在和嚴(yán)重程度。常見(jiàn)ctDNA突變和結(jié)構(gòu)變化的檢測(cè)方法大致分兩種,一種以聚合酶鏈?zhǔn)椒磻?yīng)(polymerase chain reaction,PCR)為基礎(chǔ)擴(kuò)增,另一種以新一代測(cè)序(next generation sequencing,NGS)為基礎(chǔ)檢測(cè)。PCR相關(guān)技術(shù)檢測(cè)精度高,靈敏度也較高,但獲得信息較為局限,可以用于微量核酸檢測(cè);NGS相關(guān)技術(shù)檢測(cè)速度快,覆蓋廣,可以實(shí)現(xiàn)全基因組高通量檢測(cè),但假陽(yáng)性比率有待進(jìn)一步驗(yàn)證??茖W(xué)家們?cè)诖嘶A(chǔ)上開(kāi)發(fā)了以下一系列靈敏特異的ctDNA檢測(cè)方法,包括:定量PCR(quantitative polymerase chain reaction,qPCR)、微滴數(shù)字式PCR(droplet digital PCR,ddPCR)[10],數(shù)字PCR結(jié)合流式技術(shù)(beads,emulsion,amplification,magnetics,BEAMing)[11- 13]、標(biāo)記擴(kuò)增深度測(cè)序法(Tagged-amplicon deep sequencing,TAm-seq)[14]、腫瘤個(gè)體化分析深度測(cè)序法(cancer personalized profiling by deep sequencing,CAPP-Seq)[15- 16]、全基因組測(cè)序[17- 18]、全外顯子測(cè)序,全基因組甲基化測(cè)序等[19]。表1列舉了目前一些常見(jiàn)ctDNA的檢測(cè)方法對(duì)比和應(yīng)用。

ctDNA檢測(cè)的臨床應(yīng)用

傳統(tǒng)癌癥治療中,醫(yī)生通過(guò)手術(shù)或穿刺針取出腫瘤樣本,在顯微鏡下觀察病理組織切片并進(jìn)行遺傳學(xué)分析,做出診斷指導(dǎo)治療。這種方法具有侵入性和一定風(fēng)險(xiǎn),而且比較昂貴。對(duì)于腫瘤演化產(chǎn)生的異質(zhì)性和抗藥性,以及轉(zhuǎn)移期患者體內(nèi)存在多個(gè)腫瘤病灶,單次原位活檢存在很大局限。ctDNA檢測(cè)則具有以下多方面優(yōu)勢(shì):(1)低創(chuàng)無(wú)創(chuàng),最大程度減少患者痛苦;(2)靈敏特異,檢測(cè)準(zhǔn)確率高;(3)取樣容易,多次采集實(shí)時(shí)監(jiān)控;(4)全面廣泛,適合腫瘤轉(zhuǎn)移擴(kuò)散的患者。因此,在臨床醫(yī)學(xué)上有多方面應(yīng)用。

早期診斷 采用ctDNA檢測(cè)技術(shù)對(duì)早期患者的診斷依然處于科研探索階段,特別對(duì)Ⅰ期患者的檢測(cè)敏感性在50%左右[15,43]。Beaver 等[28]采用靈敏的ddPCR檢測(cè),對(duì)29例早期(Ⅰ~Ⅲ期)乳腺癌患者在術(shù)前同時(shí)對(duì)組織和血漿熱點(diǎn)突變PIK3CA進(jìn)行檢測(cè),15例在腫瘤組織中、14例在循環(huán)血液中檢測(cè)到突變。ctDNA檢測(cè)敏感性93.3%,特異性100%。術(shù)前10例血漿檢測(cè)到ctDNA的患者中,5例術(shù)后血漿中依然能檢測(cè)到微量PIK3CA突變。對(duì)于早期患者,檢測(cè)血液ctDNA做診斷目前處于科研探索階段,可以作為一些熱點(diǎn)突變的初篩和腫瘤組織檢測(cè)的補(bǔ)充。

術(shù)后判斷 通過(guò)檢測(cè)ctDNA水平評(píng)估手術(shù)效果,判斷腫瘤是否已經(jīng)切除干凈。手術(shù)和化療可以明顯影響ctDNA的含量,ctDNA濃度與患者生存率顯著相關(guān),濃度越高患者生存率越低[13]。Sausen等[44]收集了101例Ⅱ期胰腺癌患者的腫瘤標(biāo)本和血液樣本,進(jìn)行全外顯子組測(cè)序。結(jié)果發(fā)現(xiàn),在接受腫瘤切除的早期胰腺癌患者中,如果檢測(cè)不到ctDNA,說(shuō)明手術(shù)成功預(yù)后較好;如果檢測(cè)到ctDNA,可能有殘留組織預(yù)后較差,更容易復(fù)發(fā),兩組患者存在顯著差異。同時(shí),與標(biāo)準(zhǔn)CT影像學(xué)相比,ctDNA可以提前6.5個(gè)月檢測(cè)到腫瘤復(fù)發(fā)。

表 1 常見(jiàn)血液循環(huán)腫瘤DNA檢測(cè)方法對(duì)比

PCR:聚合酶鏈?zhǔn)椒磻?yīng);ARMS:擴(kuò)增耐突變系統(tǒng);SSCP:?jiǎn)捂湗?gòu)象多態(tài)性;Bi-PAP-A:雙向焦磷酸解活性聚合等位基因特異性擴(kuò)增;MAP:MIDI活化的焦磷酸鹽溶解;BEAMing:小珠、乳濁液、擴(kuò)增、磁性;SafeSeq:安全測(cè)序系統(tǒng);Tam-Seq:靶向擴(kuò)增子深度測(cè)序;CAPP-Seq:腫瘤的個(gè)體化深度分析;PARE:重排末端的個(gè)體化分析;MPS:大量平行測(cè)序;WGS:全基因組測(cè)序;WES:全外顯子組測(cè)序;KRAS:Kirsten鼠肉瘤病毒癌基因同源;EGFR:表皮生長(zhǎng)因子受體;PIK3CA:磷脂酰環(huán)己六醇- 4,5-磷酸氫鹽- 3激酶的α催化亞基;SNVs:?jiǎn)魏塑账岫鄳B(tài)性;CNVs:拷貝數(shù)變異

PCR:polymerase chain reaction;ARMS:amplified refractory mutation system;SSCP:single-strand conformation polymorphism;Bi-PAP-A:bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification;MAP:MIDI-Activated pyrophosphorolysis;BEAMing:beads,emulsion,amplification,and magnetics;SafeSeq:safe sequencing system;Tam-Seq:tagged amplicon deep sequencing;CAPP-Seq:cancer personalized profiling by deep sequencing;PARE:personalized analysis of rearranged ends;MPS:massively parallel sequencing;WGS:whole-genome sequencing;WES:whole-exome sequencing;KRAS:Kirsten rat sarcoma viral oncogene homolog;EGFR:epidermal growth factor receptor;PIK3CA:phosphatidylinositol- 4,5-biphosphate 3-kinase,catalytic subunit alpha;SNVs:single-nucleotide variants;CNVs:copy number variations

英國(guó)癌癥研究所腫瘤分子研究團(tuán)隊(duì)Garcia-Murillas等[45]研究了55例早期乳腺癌患者手術(shù)前后血液ctDNA的變化情況,患者均先后接受手術(shù)和化療。利用ddPCR和原發(fā)性腫瘤體細(xì)胞突變標(biāo)識(shí),研究人員發(fā)現(xiàn)治療后血液樣本ctDNA與乳腺癌高風(fēng)險(xiǎn)復(fù)發(fā)相關(guān)。在15例復(fù)發(fā)患者中,12例(80%)在變異追蹤中檢測(cè)到ctDNA;而對(duì)于沒(méi)有出現(xiàn)復(fù)發(fā)的患者,有96%在突變追蹤都未能發(fā)現(xiàn)ctDNA。治療后血液ctDNA呈陽(yáng)性的患者癌癥復(fù)發(fā)概率比ctDNA呈陰性的患者高12倍。血液中的ctDNA可提前7.9個(gè)月發(fā)現(xiàn)乳腺癌復(fù)發(fā)。

動(dòng)態(tài)監(jiān)測(cè) 以ctDNA作為腫瘤標(biāo)志物,多次取樣定性定量檢測(cè)腫瘤負(fù)荷,監(jiān)控疾病復(fù)發(fā);同時(shí)還可以追蹤藥物對(duì)患者腫瘤的響應(yīng)程度,通過(guò)藥物療效信息及時(shí)采取調(diào)整或治療措施。當(dāng)靶向藥有效時(shí),ctDNA中藥物敏感的腫瘤特異突變減少,一旦產(chǎn)生耐藥,ctDNA中耐藥突變?cè)黾?。目前在肝癌[46]、乳腺癌[41,45]、胰腺癌[47]、結(jié)直腸癌[43]、非小細(xì)胞肺癌[41]等多種癌癥中都有報(bào)道。最經(jīng)典的案例之一是來(lái)自劍橋大學(xué)的研究人員對(duì)1例乳腺癌患者長(zhǎng)達(dá)3年的追蹤研究。Murtaza等[48]對(duì)1例腫瘤擴(kuò)散至身體其他部位的乳腺癌患者,分別采集腫瘤樣本和血液樣本,并仔細(xì)對(duì)比了同一時(shí)間點(diǎn)采集的ctDNA和活體組織切片。結(jié)果顯示,血液樣本中的ctDNA與活體腫瘤樣本測(cè)序結(jié)果相匹配,反映了當(dāng)腫瘤進(jìn)展和響應(yīng)藥物治療時(shí)的相同模式和遺傳變化。結(jié)合患者采取的治療方案,治療過(guò)程中做了一系列血漿ctDNA突變分析:(1)深度測(cè)序觀察PIK3CA突變動(dòng)態(tài)變化,PIK3CA突變可能與他莫昔芬和曲妥珠單抗使用過(guò)程中瘤體大小有關(guān);(2)深度測(cè)序觀察ERBB4突變動(dòng)態(tài)變化,ERBB4可能是導(dǎo)致拉帕替尼耐藥性突變位點(diǎn)。說(shuō)明ctDNA可以實(shí)時(shí)監(jiān)控疾病情況,輔助調(diào)整治療方案。

用藥指導(dǎo) 通過(guò)對(duì)ctDNA中腫瘤特異的突變檢測(cè),能夠有效反映患者對(duì)治療的響應(yīng)。取治療前后的血漿樣本,對(duì)ctDNA測(cè)序鑒定藥物治療過(guò)程中產(chǎn)生的耐藥突變。Newman 等[15]采用新研發(fā)的高敏感ctDNA檢測(cè)方法CAPP-Seq,分別對(duì)早、晚期非小細(xì)胞肺癌(non-small cell lung cancer,NSCLC)患者進(jìn)行檢測(cè)。結(jié)果顯示,1例Ⅵ期NSCLC患者在接受3個(gè)月化療后通過(guò)影像學(xué)檢查發(fā)現(xiàn)腫瘤縮小,同時(shí)ctDNA水平有所下降。但8個(gè)月后,患者ctDNA水平呈現(xiàn)升高,提示隱匿微小腫瘤病灶出現(xiàn)進(jìn)展。通過(guò)對(duì)ctDNA檢測(cè)發(fā)現(xiàn)患者存在ALK融合基因,隨即使用 ALK融合基因靶向藥物克唑替尼進(jìn)行治療,患者病情得到很大改善,ctDNA水平也再次降低。在NSCLC治療中,檢測(cè)表皮生長(zhǎng)因子受體(epithelial growth factor receptor,EGFR)對(duì)決定用藥治療方案非常重要。通過(guò)血漿ctDNA檢測(cè)可以發(fā)現(xiàn)當(dāng)新的T790M位點(diǎn)突變產(chǎn)生后,患者出現(xiàn)對(duì)吉非替尼[41]、厄洛替尼或厄洛替尼和帕妥珠單抗聯(lián)用藥物耐受[49]。一旦出現(xiàn)T790M位點(diǎn)突變會(huì)出現(xiàn)EGFR-酪氨酸激酶抑制劑(EGFR-tyrosine kinase inhibitor,EGFR-TKI)抵抗[50],需要調(diào)整治療方案,嘗試新一代不可逆EGFR-TKI抑制劑、化療等其他臨床選擇[51]。

出現(xiàn)KRAS和BRAF基因突變是轉(zhuǎn)移性結(jié)直腸癌三線治療原發(fā)抵抗的主要原因,Diaz等[52]檢測(cè)了28例接受帕尼單抗治療結(jié)腸癌患者的ctDNA,發(fā)現(xiàn)只有40%的野生型KRAS患者對(duì)EGFR阻斷治療敏感,原發(fā)性及治療過(guò)程中獲得性KRAS突變是出現(xiàn)EGFR阻斷治療不敏感的原因,聯(lián)合治療可能是更長(zhǎng)期緩解的最有效方法[53]。對(duì)晚期結(jié)腸癌血液ctDNA檢測(cè)可以有效指導(dǎo)臨床用藥[54]。

異質(zhì)評(píng)估 癌癥在患者體內(nèi)不斷分裂產(chǎn)生新的基因變異,進(jìn)化發(fā)生藥物抗性使癌細(xì)胞繼續(xù)存活并增殖。ctDNA可以作為有效標(biāo)記物,評(píng)估腫瘤異質(zhì)性。英國(guó)癌癥研究院的Garcia-Murillas等[45]對(duì)55例以手術(shù)和化療為根治性治療的早期乳腺癌患者進(jìn)行ctDNA追蹤,結(jié)果發(fā)現(xiàn),在不同個(gè)體中,檢測(cè)到ctDNA的突變可能只出現(xiàn)在原發(fā)瘤或只出現(xiàn)在轉(zhuǎn)移瘤,也可能同時(shí)出現(xiàn)于兩類(lèi)腫瘤組織。

Murtaza等[48]用貝葉斯聚類(lèi)方法PyClone對(duì)已發(fā)現(xiàn)的207個(gè)功能性突變進(jìn)行聚類(lèi),探索出以下3組主要腫瘤異種:(1)突變主要發(fā)生在癌癥進(jìn)化早期;(2)突變?cè)谒修D(zhuǎn)移性腫瘤樣本中存在高豐度,但在原發(fā)腫瘤中不易發(fā)現(xiàn);(3)突變具有相對(duì)多樣性,分散在不同時(shí)期的腫瘤活檢樣本中。血液樣本中ctDNA含有的隨機(jī)突變反映了腫瘤單克隆群的不同大小和活性,揭示出腫瘤異質(zhì)性變化的順序。

其他應(yīng)用 除了研究血液中的ctDNA,科學(xué)家也在積極探索腦脊液ctDNA作為腦腫瘤液體活檢標(biāo)志物克服血腦屏障影響[55],另有最新報(bào)道肺癌患者唾液中ctDNA呈現(xiàn)與血液ctDNA相近的檢測(cè)效果[56]。美國(guó)Trovagene公司則堅(jiān)持多年鉆研樣本源豐富的尿液ctDNA標(biāo)記物。ctDNA檢測(cè)目前已獲得一些臨床和相關(guān)機(jī)構(gòu)認(rèn)可,歐盟和中國(guó)先后于2014、2015年批準(zhǔn)阿斯利康易瑞沙(Iressa)血液ctDNA伴隨診斷,用于篩查腫瘤組織不可評(píng)估的患者人群[57]。

結(jié) 語(yǔ)

盡管潛力巨大,目前ctDNA還無(wú)法成為臨床上的主要診療手段,原因如下:(1)早期癌癥ctDNA檢測(cè)難度大[58]。ctDNA檢測(cè)技術(shù)CAPP-Seq可以實(shí)現(xiàn)1萬(wàn)個(gè)血液DNA檢測(cè)1個(gè)腫瘤DNA,但即使采用超敏感的CAPP-Seq,ctDNA在Ⅱ~Ⅳ期的NSCLC患者中檢測(cè)敏感性100%,而Ⅰ期NSCLC中敏感性?xún)H為50%[15]。與之類(lèi)似,在近10種640例癌癥患者中的研究也報(bào)道,47%的Ⅰ期癌癥患者、55%的Ⅱ期癌癥患者、69%的Ⅲ期癌癥患者及82%的Ⅳ期癌癥患者可檢測(cè)到血液中的ctDNA[43]。(2)不同腫瘤組織ctDNA的含量差異很大。Bettegowda等[43]研究發(fā)現(xiàn),只有不到50%的髓母細(xì)胞瘤、轉(zhuǎn)移性腎癌、前列腺癌或甲狀腺癌,以及不到10%的膠質(zhì)瘤患者可以檢測(cè)到ctDNA;而在超過(guò)75%的晚期胰腺癌、卵巢癌、結(jié)直腸癌、膀胱癌、胃癌、乳腺癌、黑色素瘤、肝癌以及頭頸癌可以檢測(cè)到ctDNA。(3)檢測(cè)結(jié)果參差不齊。ctDNA檢測(cè)需要加強(qiáng)流程規(guī)范,包括前期血液處理過(guò)程和提取cfDNA方法標(biāo)準(zhǔn)化,提高檢測(cè)的可重復(fù)性。(4)臨床成本比較昂貴。特別是更為有效和全面的二代測(cè)序技術(shù),ctDNA的檢測(cè)價(jià)格依然有待進(jìn)一步降低,才可能在臨床實(shí)踐中逐漸普及。

綜上,對(duì)血液ctDNA進(jìn)行檢測(cè)具有低創(chuàng)無(wú)創(chuàng)、靈敏特異、實(shí)時(shí)多次、廣泛全面等臨床優(yōu)勢(shì),其臨床應(yīng)用包括術(shù)后判斷、動(dòng)態(tài)監(jiān)測(cè)、用藥指導(dǎo)、異質(zhì)評(píng)估等。盡管ctDNA檢驗(yàn)技術(shù)還尚未成熟,需要盡快建立統(tǒng)一的臨床標(biāo)準(zhǔn),但隨著ctDNA檢測(cè)技術(shù)基礎(chǔ)實(shí)驗(yàn)、臨床研究和研發(fā)應(yīng)用在深度廣度上的日益拓展,利用敏感特異的無(wú)創(chuàng)液體活檢監(jiān)控癌癥進(jìn)展、跟蹤抗性突變、及時(shí)指導(dǎo)用藥方案、將癌癥從一種致命疾病轉(zhuǎn)變?yōu)橐环N慢性病、基于每個(gè)患者定制模式的精準(zhǔn)醫(yī)療將不再是遙遠(yuǎn)的夢(mèng)想。

[1]Ferlay J,Soerjomataram I,Dikshit R,et al. Cancer incidence and mortality worldwide:sources,methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer,2015,136(5):E359- E386.

[2]Bates S. Progress towards personalized medicine[J]. Drug Discov Today,2010,15(3- 4):115- 120.

[3]Mandel P,Metais P. Les acides nucléiques du plasma sanguin chez l’homme[J]. C R Seances Soc Biol Fil,1948,142(3- 4):241- 243.

[4]Leon SA,Shapiro B,Sklaroff DM,et al. Free DNA in the serum of cancer patients and the effect of therapy[J]. Cancer Res,1977,37(3):646- 650.

[5]Stroun M,Anker P,Maurice P,et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients[J]. Oncology,1989,46(5):318- 322.

[6]Haber DA,Velculescu VE. Blood-based analyses of cancer:circulating tumor cells and circulating tumor DNA[J]. Cancer Discov,2014,4(6):650- 661.

[7]Schwarzenbach H,Hoon DS,Pantel K. Cell-free nucleic acids as biomarkers in cancer patients[J]. Nat Rev Cancer,2011,11(6):426- 437.

[8]Jiang P,Chan CW,Chan KC,et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients[J]. Proc Natl Acad Sci USA,2015,112(11):E1317- E1325.

[9]Diaz LJ,Bardelli A. Liquid biopsies:genotyping circulating tumor DNA[J]. J Clin Oncol,2014,32(6):579- 586.

[10]Sacher AG,Paweletz C,Dahlberg SE,et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer[J]. JAMA Oncol,2016,2(8):1014- 1022.

[11]Li M,Diehl F,Dressman D,et al. BEAMing up for detection and quantification of rare sequence variants[J]. Nat Methods,2006,3(2):95- 97.

[12]Dressman D,Yan H,Traverso G,et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations[J]. Proc Natl Acad Sci USA,2003,100(15):8817- 8822.

[13]Diehl F,Schmidt K,Choti MA,et al. Circulating mutant DNA to assess tumor dynamics[J]. Nat Med,2008,14(9):985- 990.

[14]Forshew T,Murtaza M,Parkinson C,et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA[J]. Sci Transl Med,2012,4(136):136r- 168r.

[15]Newman AM,Bratman SV,To J,et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage[J]. Nat Med,2014,20(5):548- 554.

[16]Newman AM,Lovejoy AF,Klass DM,et al. Integrated digital error suppression for improved detection of circulating tumor DNA[J]. Nat Biotechnol,2016,20(5):548- 554.

[17]Leary RJ,Kinde I,Diehl F,et al. Development of personalized tumor biomarkers using massively parallel sequencing[J]. Sci Transl Med,2010,2(20):14r- 20r.

[18]Leary RJ,Sausen M,Kinde I,et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing[J]. Sci Transl Med,2012,4(162):154r- 162r.

[19]Heitzer E,Ulz P,Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer[J]. Clin Chem,2015,61(1):112- 123.

[20]Board RE,Wardley AM,Dixon JM,et al. Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer[J]. Breast Cancer Res Treat,2010,120(2):461- 467.

[21]Spindler KL,Pallisgaard N,Vogelius I,et al. Quantitative cell-free DNA,KRAS,and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan[J]. Clin Cancer Res,2012,18(4):1177- 1185.

[22]Wang JY,Hsieh JS,Chang MY,et al. Molecular detection of APC,K-ras,and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers[J]. World J Surg,2004,28(7):721- 726.

[23]Perkins G,Yap TA,Pope L,et al. Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers[J]. PLoS One,2012,7(11):e47020.

[24]Shi J,Liu Q,Sommer SS. Detection of ultrarare somatic mutation in the human TP53 gene by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification[J]. Hum Mutat,2007,28(2):131- 136.

[25]Chen Z,F(xiàn)eng J,Buzin CH,et al. Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay:monitoring of therapy or recurrence in non-metastatic breast cancer[J]. PLoS One,2009,4(9):e7220.

[26]Mcbride DJ,Orpana AK,Sotiriou C,et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors[J]. Genes Chromosomes Cancer,2010,49(11):1062- 1069.

[27]Pekin D,Skhiri Y,Baret JC,et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics[J]. Lab Chip,2011,11(13):2156- 2166.

[28]Beaver JA,Jelovac D,Balukrishna S,et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer[J]. Clin Cancer Res,2014,20(10):2643- 2650.

[29]Higgins MJ,Jelovac D,Barnathan E,et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood[J]. Clin Cancer Res,2012,18(12):3462- 3469.

[30]Dawson SJ,Tsui DW,Murtaza M,et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer[J]. N Engl J Med,2013,368(13):1199- 1209.

[31]Yung TK,Chan KC,Mok TS,et al. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients[J]. Clin Cancer Res,2009,15(6):2076- 2084.

[32]Kinde I,Wu J,Papadopoulos N,et al. Detection and quantification of rare mutations with massively parallel sequencing[J]. Proc Natl Acad Sci USA,2011,108(23):9530- 9535.

[33]Thompson JD,Shibahara G,Rajan S,et al. Winnowing DNA for rare sequences:highly specific sequence and methylation based enrichment[J]. PLoS One,2012,7(2):e31597.

[34]Rothe F,Laes JF,Lambrechts D,et al. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer[J]. Ann Oncol,2014,25(10):1959- 1965.

[35]Carreira S,Romanel A,Goodall J,et al. Tumor clone dynamics in lethal prostate cancer[J]. Sci Transl Med,2014,6(254):125r- 254r.

[36]Wang TL,Maierhofer C,Speicher MR,et al. Digital karyotyping[J]. Proc Natl Acad Sci USA,2002,99(25):16156- 16161.

[37]Heitzer E,Ulz P,Belic J,et al. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing[J]. Genome Med,2013,5(4):30.

[38]Chan KC,Jiang P,Zheng YW,et al. Cancer genome scanning in plasma:detection of tumor-associated copy number aberrations,single-nucleotide variants,and tumoral heterogeneity by massively parallel sequencing[J]. Clin Chem,2013,59(1):211- 224.

[39]Paweletz CP,Sacher AG,Raymond CK,et al. Bias-corrected targeted next-generation sequencing for rapid,multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients[J]. Clin Cancer Res,2016,22(4):915- 922.

[40]Shaw JA,Page K,Blighe K,et al. Genomic analysis of circulating cell-free DNA infers breast cancer dormancy[J]. Genome Res,2012,22(2):220- 231.

[41]Murtaza M,Dawson SJ,Tsui DW,et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA[J]. Nature,2013,497(7447):108- 112.

[42]Chan KC,Jiang P,Chan CW,et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing[J]. Proc Natl Acad Sci USA,2013,110(47):18761- 18768.

[43]Bettegowda C,Sausen M,Leary RJ,et al. Detection of circulating tumor DNA in early-and late-stage human malignancies[J]. Sci Transl Med,2014,6(224):224r.

[44]Sausen M,Phallen J,Adleff V,et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients[J]. Nat Commun,2015,6:7686.

[45]Garcia-Murillas I,Schiavon G,Weigelt B,et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer[J]. Sci Transl Med,2015,7(302):133r- 302r.

[46]Gall TM,F(xiàn)rampton AE,Krell J,et al. Cell-free DNA for the detection of pancreatic,liver and upper gastrointestinal cancers:has progress been made[J]. Future Oncol,2013,9(12):1861- 1869.

[47]Takai E,Totoki Y,Nakamura H,et al. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer[J]. Sci Rep,2015,16(5):18425.

[48]Murtaza M,Dawson SJ,Pogrebniak K,et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer[J]. Nat Commun,2015,6:8760.

[49]Punnoose EA,Atwal S,Liu W,et al. Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer:association with clinical endpoints in a phase Ⅱ clinical trial of pertuzumab and erlotinib[J]. Clin Cancer Res,2012,18(8):2391- 2401.

[50]Zheng D,Ye X,Zhang MZ,et al. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced NSCLC patients with acquired EGFR-TKI resistance[J]. Sci Rep,2016,6:20913.

[51]Francis G,Stein S. Circulating cell free tumour DNA in the management of cancer[J]. Int J Mol Sci,2015,16(6):14122- 14142.

[52]Diaz LJ,Williams RT,Wu J,et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers[J]. Nature,2012,486(7404):537- 540.

[53]Bertotti A,Papp E,Jones S,et al. The genomic landscape of response to EGFR blockade in colorectal cancer[J]. Nature,2015,526(7572):263- 267.

[54]Spindler KL,Pallisgaard N,Andersen RF,et al. Changes in mutational status during third-line treatment for metastatic colorectal cancer-results of consecutive measurement of cell free DNA,KRAS and BRAF in the plasma[J]. Int J Cancer,2014,135(9):2215- 2222.

[55]De Mattos-Arruda L,Mayor R,Ng CK,et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma[J]. Nat Commun,2015,6:8839.

[56]Wei F,Lin CC,Joon A,et al. Noninvasive saliva-based EGFR gene mutation detection in patients with lung cancer[J]. Am J Respir Crit Care Med,2014,190(10):1117- 1126.

[57]Tsui DW,Berger MF. Profiling non-small cell lung cancer:from tumor to blood[J]. Clin Cancer Res,2016,22(4):790- 792.

[58]Crowley E,Di Nicolantonio F,Loupakis F,et al. Liquid biopsy:monitoring cancer-genetics in the blood[J]. Nat Rev Clin Oncol,2013,10(8):472- 484.

Circulating Tumor DNA in Cancer Management

LI Miao-zhu1,LIN Jian-zhen2,ZHAO Hai-tao2

1Center for Population Health and Aging,Duke University,NC 27705,US2Department of Liver Surgery,PUMC Hospital,CAMS and PUMC,Beijing 100730,China

LI Miao-zhu Tel:1- 919- 813- 8269,E-mail:duke.dcssa.v@gmail.com;ZHAO Hai-tao Tel:13901246374,E-mail:zhaoht@pumch.cn

Molecular techniques can be very useful in detecting a patient’s tumor to guide treatment decisions is increasingly been applied in the care and management of cancer patients. Circulating tumor DNA (ctDNA) containing mutations can be identified in the plasma of cancer patients during the course of the disease. As a non-invasive “l(fā)iquid biopsies”,ctDNA is a potential surrogate for the entire tumor genome. The use of ctDNA might help to determine the disease prognosis,monitor disease progression,monitor the molecular resistance and monitor the tumor heterogeneity. Future developments will need to provide clinical standards to validate the ctDNA as a clinical biomarker and improve the reproducibility and accuracy,in order to be better exploited for personalized medicine.

circulating tumor DNA; tumour; gene mutation; dynamic monitor; heterogeneity

國(guó)際科技合作與交流項(xiàng)目(2015DFA30650)、公益性行業(yè)科研專(zhuān)項(xiàng)(201402015)、首都臨床特色應(yīng)用研究項(xiàng)目(Z151100004015170)和首都衛(wèi)生發(fā)展科研專(zhuān)項(xiàng)(2014- 2- 4012)Supported by the Key Program for International S&T Cooperation Projects of China (2015DFA30650),the Special Scientific Research Fund (201402015),the Capital Clinical Research and Application of Special (Z151100004015170),and the Capital Health Research and Development of Special (2014- 2- 4012)

李妙竹 電話:1- 919- 813- 8269,電子郵件:duke.dcssa.v@gmail.com;趙海濤 電話:13901246374,電子郵件:zhaoht@pumch.cn

[R34]

A

1000- 503X(2016)05- 0594- 07

10.3881/j.issn.1000- 503X.2016.05.019

2016- 03- 10)

猜你喜歡
測(cè)序癌癥血液
BCAA代謝異常與癌癥的相關(guān)性研究進(jìn)展
FBP1在癌癥中的研究進(jìn)展
體檢發(fā)現(xiàn)的結(jié)節(jié),離癌癥有多遠(yuǎn)?
外顯子組測(cè)序助力產(chǎn)前診斷胎兒骨骼發(fā)育不良
血液灌流聯(lián)合血液透析治療銀屑病療效觀察
中草藥DNA條形碼高通量基因測(cè)序一體機(jī)驗(yàn)收會(huì)在京召開(kāi)
基因測(cè)序技術(shù)研究進(jìn)展
多彩血液大揭秘
外顯子組測(cè)序助力產(chǎn)前診斷胎兒骨骼發(fā)育不良
癌癥“偏愛(ài)”那些人?