馬雨楠,游穎,沈歡歡,孫兆增,曾林,法云智
(軍事醫(yī)學(xué)科學(xué)院實(shí)驗(yàn)動物中心,北京 100071)
?
Noggin基因沉默對BMP和Wnt信號通路表達(dá)的影響
馬雨楠,游穎,沈歡歡,孫兆增,曾林*,法云智*
(軍事醫(yī)學(xué)科學(xué)院實(shí)驗(yàn)動物中心,北京 100071)
目的 檢測分析Noggin基因沉默對毛囊發(fā)育中BMP和Wnt信號通路的影響。方法 采用實(shí)時(shí)熒光定量PCR和western blot技術(shù)對Noggin基因沉默的MC3T3-E1穩(wěn)轉(zhuǎn)細(xì)胞系中BMP-2、BMP-4、BMPR-IA、BMP-6、BMP-7、LEF-1、β-catenin的表達(dá)情況進(jìn)行檢測分析。 結(jié)果 實(shí)時(shí)熒光定量PCR結(jié)果顯示,BMP信號通路中的五個(gè)基因的表達(dá)都受到Noggin基因沉默的顯著的影響,其中BMP-2(P<0.001)、BMP-4(P<0.01)、BMP-6(P<0.001)、BMP-7(P<0.001)表達(dá)量均升高;BMPR-IA(P<0.01)表達(dá)量降低。同時(shí)Wnt信號通路中的兩個(gè)基因LEF-1(P<0.001)、β-catenin(P<0.001)的表達(dá)也都顯著降低。Western blot結(jié)果顯示,兩條信號通路中這幾種蛋白的表達(dá)也都受到影響,其中顯著升高的有BMP-2(P<0.05)、BMP-4(P<0.05)、BMP-6(P<0.05)和BMP-7(P<0.05);顯著降低的是β-catenin(P<0.05)、BMPR-IA(P<0.01)和LEF-1(P<0.001)。結(jié)論 在體外Noggin基因?qū)MP信號通路可能存在反饋性抑制機(jī)制,而對Wnt信號通路存在反饋性激活機(jī)制,為下一步探究在體內(nèi)Noggin基因?qū)MP和Wnt信號通路表達(dá)的作用提供一定的依據(jù)。
Noggin基因;BMP信號通路;Wnt信號通路;毛囊
毛囊(hair follicle,HF)被認(rèn)為是一種由外胚層中胚層相互作用形成的微型器官[1]。HF形態(tài)發(fā)生是在早期胚胎階段開始的。Uncv無毛小鼠是由于常染色體基因突變導(dǎo)致其HF發(fā)育缺陷而產(chǎn)生的無毛性狀。Uncv突變引起的小鼠毛囊發(fā)育缺陷是有助于研究HF發(fā)育調(diào)控的關(guān)鍵因素。HF形態(tài)的正常發(fā)育和規(guī)律周期取決于Wnt信號通路[2,3]、BMP信號通路[4-6]、Shh信號通路[7]、Notch信號通路[8]以及最近發(fā)現(xiàn)的mTOR信號通路[9]在上皮和間充質(zhì)細(xì)胞之間的相互作用[10]。其中Wnt在誘導(dǎo)HF形成的過程中起著至關(guān)重要的作用,BMP主要參與細(xì)胞的分化,Shh參與形態(tài)發(fā)生及后期的分化,Notch決定干細(xì)胞的命運(yùn),而mTOR信號通路在毛發(fā)再生過程中能夠促進(jìn)干細(xì)胞的活化[11]。
已有研究資料表明Noggin基因在HF的發(fā)育過程中發(fā)揮了重要作用[12]。本實(shí)驗(yàn)借助之前構(gòu)造的Noggin基因沉默表達(dá)載體,對影響HF發(fā)育信號通路中BMP和Wnt兩條信號通路中相關(guān)因子進(jìn)行分析,探索研究Noggin基因?qū)F形態(tài)發(fā)育相關(guān)信號通路的影響,以便于研究Uncv無毛小鼠毛囊發(fā)育信號通路的調(diào)控,分析其在毛囊發(fā)育調(diào)控中的作用和機(jī)理。
1.1 材料
1.1.1 主要試劑
EZgeneTMtissue RNA Kit(R6311-01)購自Biomiga公司(美國),PrimeScript RT reagent kit(RR047A)購自Takara公司(中國),AP(0486)、四甲基乙二胺(0761)、Tween-20(0777)購自Amresco公司(美國),F(xiàn)BS(SH30370.03)、0.05% EDTA胰酶(SH30042.01B)購自Hyclone公司(美國),DMEM高糖培養(yǎng)基(11965-118)、DMSO(D2650)購自Invitrogen公司(美國),SYBR? Premix Ex TaqTMⅡ(DRR081A)、4× SDS上樣緩沖液(P1016)、1× PBS緩沖液(P1022)、1 M Tris-Cl(T1020)、1.5 M Tris-Cl(T1010)購自Solarbio公司(中國),BCA蛋白定量試劑盒(CW0014)購自Cwbiotech公司(中國)。1.1.2 主要抗體
抗BMP-2兔多克隆抗體(ab82511)、抗BMP-4兔多克隆抗體(ab137743)、抗BMPR-IA兔多克隆抗體(ab38560)、抗BMP-6兔單克隆抗體(ab155963)、抗BMP-7兔單克隆抗體(ab129156)、抗LEF-1兔單克隆抗體(ab137872)、抗β-catenin兔單克隆抗體(ab32572)、抗GAPDH兔單克隆抗體(ab181602)購自Abcam公司(英國),HRP標(biāo)記山羊抗兔二抗(CW0103)為Cwbiotech公司(中國)。
1.2 實(shí)驗(yàn)方法
1.2.1 實(shí)時(shí)熒光定量PCR檢測Noggin基因沉默對BMP和Wnt信號通路的影響
首先設(shè)計(jì)兩個(gè)組別:shNoggin-1組和shMock組,前者為之前實(shí)驗(yàn)建立的Noggin基因沉默表達(dá)組,后者為對照組。根據(jù)GenBank中BMP-2、BMP-4、BMPR-IA、BMP-6、BMP-7、LEF-1、β-catenin和β-actin基因編碼區(qū)序列,通過Primer Premier 5.0軟件進(jìn)行引物的設(shè)計(jì),和NCBI中Blast序列比對功能,初步檢測引物的特異性。引物序列見表1。用EzgeneTMTissue RNA Kit試劑盒分別提取兩組樣本中總RNA,測定RNA濃度后,用PrimeScript RT reagent Kit試劑盒進(jìn)行反轉(zhuǎn)錄。按照SYBR? Premix Ex TaqTMII試劑說明書進(jìn)行擴(kuò)增。擴(kuò)增程序?yàn)?5℃ 180 s,(95℃ 7 s, 57℃ 10 s,72℃ 15 s)×40個(gè)循環(huán),每組樣本均設(shè)3次重復(fù)。通過溶解曲線確定反應(yīng)的特異性,并根據(jù)標(biāo)準(zhǔn)曲線和熒光曲線的Ct值進(jìn)行結(jié)果的定量計(jì)算。使用SAS統(tǒng)計(jì)軟件處理實(shí)驗(yàn)數(shù)據(jù),得到Noggin基因沉默對目的基因mRNA的影響效果。
表1 引物序列表
1.2.2 Western blot檢測Noggin基因沉默對BMP和Wnt信號通路的影響
向兩組收取的細(xì)胞沉淀中分別加入混合蛋白酶抑制劑的RIPA裂解液,充分吹打混勻,置于冰上裂解20 min,14 000 r/min 4℃離心10 min,吸取上清液。用BCA蛋白定量試劑盒測定蛋白濃度,加適量RIPA調(diào)整蛋白濃度,加4× SDS上樣緩沖液,煮沸10 min。待配制好的12% SDS-PAGE凝膠干后,每孔加入等質(zhì)量蛋白,最左側(cè)加入彩色預(yù)染蛋白marker,恒壓100 V電泳后,恒流250 mA轉(zhuǎn)膜。封閉1 h(封閉液用5%脫脂奶粉),按需要裁膜,目的蛋白膜分別加入1∶1000稀釋的抗BMP-2兔多克隆抗體、1∶500稀釋的抗BMP-4兔多克隆抗體、1∶1000稀釋的抗BMPR-IA兔多克隆抗體、1∶1000稀釋的抗BMP-6兔單克隆抗體、1∶1000稀釋的抗BMP-7兔單克隆抗體、1∶1000稀釋的抗LEF-1兔多克隆抗體、1∶5000稀釋的抗β-catenin兔多克隆抗體,內(nèi)參蛋白膜加入1∶10 000稀釋的抗GAPDH鼠單克隆抗體,4℃孵育過夜。用TBST洗膜三次,每次10 min。分別加入對應(yīng)的1∶10 000稀釋的二抗,室溫孵育40 min。同樣用TBST洗膜三次,每次8 min。將膜拼好后,逐滴加混合好的發(fā)光AB液,反應(yīng)1 min后去除即可顯影。
2.1 實(shí)時(shí)熒光定量PCR檢測Noggin基因沉默對BMP和Wnt信號通路的影響
通過IQ5熒光定量PCR儀自帶軟件的數(shù)據(jù)以β-actin為內(nèi)參,用2-△△Ct的方法處理數(shù)據(jù)和GraphPad Prism 5軟件作圖,結(jié)合SAS 9.2分析軟件得到以下數(shù)據(jù)(圖1),表明同對照組相比,BMP-2(P<0.001)、BMP-4(P<0.01)、BMP-6(P<0.001)、BMP-7(P<0.001)表達(dá)量均升高,且差異具有顯著性;BMPR-IA(P<0.01)、LEF-1(P<0.001)、β-catenin(P<0.001)表達(dá)量均降低,且差異具有顯著性。
2.2 Western blot檢測Noggin基因沉默對BMP和Wnt信號通路的影響
為了確定干涉后蛋白表達(dá)變化是否與mRNA表達(dá)相似,選擇與目的蛋白相對應(yīng)的抗體,用Western blot的方法分析蛋白表達(dá)水平的變化(圖2 A),并通過Photoshop 7.0灰度分析軟件,結(jié)合SAS 9.2分析軟件得到以下數(shù)據(jù)(圖2 B)。Western blot結(jié)果顯示,BMP-2(P<0.05)、BMP-4(P<0.05)、BMP-6(P<0.05)和BMP-7(P<0.05)表達(dá)量升高,差異有顯著性;β-catenin(P<0.05)表達(dá)量降低,差異有顯著性;BMPR-IA(P<0.01)和LEF-1(P<0.001)表達(dá)量降低,差異有顯著性。與實(shí)時(shí)定量PCR的結(jié)果變化趨勢一致。
Wnt是HF誘導(dǎo)中的第一個(gè)重要信號。Wnt信號通路對HF發(fā)育的調(diào)控主要體現(xiàn)在對細(xì)胞的增殖、分化以及細(xì)胞周期的調(diào)節(jié)。β-catenin是Wnt信號激活的關(guān)鍵轉(zhuǎn)錄因子[13,14]。有力的遺傳證據(jù)表明,位于腸隱窩底部的祖細(xì)胞積聚形成核β-catenin標(biāo)志著Wnt信號的激活[15],從而在腸道表皮干細(xì)胞的調(diào)節(jié)中起到重要作用[16,17];類似的證據(jù)也在HF中被發(fā)現(xiàn)[18]。通過移除β-catenin來阻止Wnt信號的傳導(dǎo)會導(dǎo)致細(xì)胞增殖的完全消失[19]。β-catenin的缺乏會導(dǎo)致新生兒HF形態(tài)發(fā)育的不完全[20]和毛囊干細(xì)胞生態(tài)位的缺失[21]。β-catenin的伙伴LEF-1,不僅是毛胚早期誘導(dǎo)的需要[22,23],也是毛干分化所不可缺的。缺乏LEF-1的小鼠不能發(fā)育形成HF[22]。本實(shí)驗(yàn)選取Wnt信號通路中β-catenin和LEF-1兩個(gè)相關(guān)因子進(jìn)行檢測具有一定的代表性,并從其變化量中分析對Wnt信號通路可能的影響。
注:A:BMP-2分析結(jié)果;B:BMP-4分析結(jié)果;C:BMPR-IA分析結(jié)果;D:BMP-6分析結(jié)果;E:BMP-7分析結(jié)果;F:LEF-1分析結(jié)果;G:β-catenin分析結(jié)果;**:與shMock對照組相比P<0.01;***:表示與shMock對照組相比P<0.001。圖1 qPCR檢測Noggin基因沉默對BMP和Wnt信號通路的影響結(jié)果Note. A-G: Analysis of different genes ( A: BMP-2; B: BMP-4; C: BMPR-IA; D: BMP-6; E: BMP-7; F: LEF-1;G: β-catenin); **: Compared with the negative control, P<0.01; ***: Compared with the negative control, P<0.001.Fig.1 qPCR detection of the effect of Noggin silencing on BMP and Wnt signaling pathways
注:A:BMP-2;B:BMP-4;C:BMPR-IA;D:BMP-6;E:BMP-7;F:LEF-1;G:β-catenin;M:為shMock對照組;N:為shNoggin-1處理組即Noggin基因沉默表達(dá)組;*:與shMock對照組相比P<0.05;**:與shMock對照組相比P<0.01;***:表示與shMock對照組相比P<0.001。圖2 Western Blot檢測Noggin基因沉默對BMP和Wnt信號通路的影響結(jié)果Note. A-G: Results and analysis of different proteins (A: BMP-2; B: BMP-4; C: BMPR-IA; D: BMP-6;E: BMP-7; F: LEF-1; G: β-catenin); M: Negative control; N: Noggin silencing expression group.*: Compared with the negative control, P<0.05; **: Compared with the negative control, P<0.01; ***: Compared with the negative control, P<0.001.Fig.2 Western blot detection of the effect of Noggin silencing on BMP and Wnt signaling pathways
BMP信號通路在HF形態(tài)發(fā)生、發(fā)生后再生和HF循環(huán)的控制中起重要作用[24]。BMP是屬于TGF-β超家族的分泌信號分子,并通過與特定的BMP受體相互作用發(fā)揮其生物活性[25-28]。BMP充當(dāng)脊椎動物發(fā)育的多功能調(diào)節(jié)劑,能夠控制包括皮膚在內(nèi)的多種器官的細(xì)胞增殖、分化和凋亡[24,29,30]。BMP通過其受體BMPR-IA發(fā)揮作用,這是之前很長時(shí)間一致認(rèn)定的唯一BMP受體[31]。BMPR-IA是內(nèi)根鞘和毛干祖細(xì)胞分化所必不可少的。在成體HF中敲除BMP受體BMPR-IA導(dǎo)致毛囊干細(xì)胞被過早激活[32]。Noggin是BMP信號的一種蛋白抑制劑,它是由間質(zhì)表達(dá)的,而已有研究資料表明Noggin基因在毛囊的發(fā)育過程中發(fā)揮了重要作用[12]。Noggin敲除小鼠HF誘導(dǎo)出現(xiàn)明顯的延遲。Botchkarev等[31]在1999年研究發(fā)現(xiàn)BMP-4異位過表達(dá)以及BMP抑制劑Noggin的靶向干擾會擾亂HF誘導(dǎo)并引起脫發(fā)。能夠有助于對抗BMP引起的β-catenin抑制。本研究在先前構(gòu)建的小鼠Noggin基因沉默表達(dá)載體[33]的基礎(chǔ)上,研究Noggin基因?qū)γ倚螒B(tài)發(fā)育的Wnt和BMP兩條信號通路的影響,分析其在毛囊發(fā)育和調(diào)控中的作用和機(jī)理提供依據(jù)。
作為一個(gè)刺激HF誘導(dǎo)的關(guān)鍵信號分子,Noggin發(fā)揮功能主要通過兩種途徑,一是通過與BMP-4拮抗相互作用,二是通過75×103神經(jīng)營養(yǎng)因子受體的下調(diào)。前者會導(dǎo)致LEF-1以及細(xì)胞粘附因子NCAM上調(diào)。Noggin誘導(dǎo)胚胎HF的形態(tài)發(fā)生并且促進(jìn)新HF的增長(即生長期)[31,34]。我們的研究發(fā)現(xiàn),在Noggin基因沉默的MC3T3-E1穩(wěn)轉(zhuǎn)細(xì)胞系中不僅對BMP-4的拮抗作用減弱,對BMP家族中BMP-2、BMP-6和BMP-7的拮抗作用也明顯減弱。而BMP受體BMPR-IA的表達(dá)是受到抑制的,進(jìn)一步表明Noggin對BMP信號的抑制作用減弱,逐漸恢復(fù)BMP受體的原有功能,從而證實(shí)了Noggin對BMP信號通路的反饋性抑制作用。
BMP介導(dǎo)的信號通路以及Wnt通路均對HF發(fā)育起到一定的調(diào)控作用,并且兩條信號通路間可能存在交互作用。有研究表明,在發(fā)生Noggin缺失突變時(shí),LEF-1/β-catenin介導(dǎo)的轉(zhuǎn)錄也隨著失效了;相反的,在BMPR-IA缺失或者過量表達(dá)Noggin時(shí),轉(zhuǎn)錄提高了[4,34]。LEF-1的直接靶點(diǎn)Dlx3位于Wnt的下游,對其進(jìn)行直接的抑制會導(dǎo)致BMP信號的丟失[35]。反過來BMP信號通路可通過其受體BMPR-ⅠA作用,增強(qiáng)PTEN活性,進(jìn)而抑制β-catenin的活性,達(dá)到抑制Wnt信號的目的[36]。Noggin抑制細(xì)胞中的BMP信號,引起LEF-1的表達(dá)從而恢復(fù)Wnt信號。我們研究結(jié)果顯示,在Noggin基因沉默的MC3T3-E1穩(wěn)轉(zhuǎn)細(xì)胞系中,在BMP信號均明顯上升的同時(shí),LEF-1、β-catenin兩者的mRNA水平和蛋白水平均有明顯的下降,這為Noggin對Wnt信號通路的正反饋調(diào)節(jié)提供了依據(jù)。提示Noggin對Wnt通路之調(diào)控很有可能是通過BMP通路發(fā)揮作用的。
調(diào)控HF發(fā)育的幾條信號通路間均存在一定的交互聯(lián)系。刺猬因子(Sonic Hedgehog,Shh)是在HF基板產(chǎn)生的一種至關(guān)重要的HF誘導(dǎo)信號[37,38]。Wnt和BMP兩條信號通路均對其表達(dá)有一定的影響。Wnt信號通路通過LEF-1介導(dǎo)上皮細(xì)胞鈣粘蛋白的下調(diào),進(jìn)而提高Shh信號的表達(dá)水平[39]。BMP信號通路則是通過其抑制劑Noggin介導(dǎo)的BMP表達(dá)的抑制作用引起Shh信號的表達(dá)[40]。Notch信號通路有助于隆起部分濾泡結(jié)構(gòu)的維持[8]。Wnt信號誘導(dǎo)對Notch通路產(chǎn)生正向作用,同時(shí)有證據(jù)表明Notch對Wnt信號具有對抗作用[41,42]。另一條信號通路mTOR可以作為BMP信號的上游調(diào)節(jié)劑對BMP信號產(chǎn)生反向調(diào)節(jié)作用[7],同時(shí)能夠激活Notch信號[43],并能夠被Wnt信號通路的拮抗劑GCK-3激活[44]。本實(shí)驗(yàn)中沉默Noggin基因體現(xiàn)出來的對BMP的反饋性抑制作用和對Wnt的反饋性激活作用是否同其它相關(guān)信號通路有關(guān)聯(lián),以及Noggin基因在體內(nèi)又是如何對BMP和Wnt信號通路發(fā)揮功能進(jìn)行調(diào)控從而影響HF發(fā)育的,相關(guān)分子機(jī)制仍需進(jìn)一步實(shí)驗(yàn)證明。
[1] Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis [J]. Bioessays, 2005, 27: 247-261.
[2] Lien WH, Polak L, Lin M, et al. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators [J]. Nat Cell Biol, 2014, 16(2): 179-190.
[3] Andl T, Reddy ST, Gaddapara T, et al. WNT signals are required for the initiation of hair follicle development [J]. Dev Cell, 2002, 2(5): 643-653.
[4] Kobielak K, Pasolli HA, Alonso L, et al. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA [J]. J Cell Biol, 2003, 163(3): 609-623.
[5] Kulessa H, Turk G, Hogan BL. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle [J]. EMBO J, 2000, 19(24): 6664-6674.
[6] Genander M, Cook PJ, Ramsk?ld D, et al. BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages [J]. Cell Stem Cell, 2014, 15(5): 619-633.
[7] Jiang J, Hui CC. Hedgehog signaling in development and cancer [J]. Dev. Cell. 2008, 15: 801-812.
[8] Pan Y, Lin MH, Tian X, et al. Gamma-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis [J]. Dev Cell, 2004, 7: 731-743.
[9] Deng ZL, Lei XH, Zhang XD, et al. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration [J]. J Mol Cell Biol, 2015, 7(1): 62-72.
[10] Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling [J]. Semin Cell Dev Biol, 2012, 23: 917-927.
[11] Rishikaysh P, Dev K, Diaz D, et al. Signaling involved in hair follicle morphogenesis and development[J]. Int J Mol Sci, 2014, 15(1): 1647-1670.
[12] Song K, Krause C, Shi S, et al. Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to noggin inhibition allows for engineered BMPs with superior agonist activity[J]. J Biol Chem, 2010, 285(16): 12169-12180.
[13] Nusse R, Samos CH, Brink M, et al. Cell culture and whole animal approaches to understanding signaling by Wnt proteins in Drosophila [J]. Cold Spring Harb Symp Quant Biol, 1997, 62: 185-190.
[14] Povelones M, Nusse R. Wnt signalling sees spots [J]. Nat Cell Biol, 2002, 4: E249-E250.
[15] Van de Wetering M, Sancho E, Verweij C, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells [J]. Cell, 2002, 111: 241-250.
[16] Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell [J]. Nature, 2006, 439: 84-88.
[17] Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 [J]. Nat Genet, 1998, 19: 379-383.
[18] Blanpain C, Fuchs E. Epidermal stem cells of the skin[J]. Annu Rev Cell Dev Biol, 2006, 22: 339-373.
[19] Pinto D, Gregorieff A, Begthel H, et al. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium [J]. Genes Dev, 2003, 17: 1709-1713.
[20] Huelsken J, Vogel R, Erdmann B, et al. Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin [J]. Cell, 2001, 105: 533-545.
[21] Lowry WE, Blanpain C, Nowak JA, et al. Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells [J]. Genes Dev, 2005, 19: 1596-1611.
[22] Van GC, Okamura RM, Farinas I, et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice [J]. Genes Dev, 1994, 8: 2691-2703.
[23] Zhou P, Byrne C, Jacobs J, et al. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate [J]. Genes Dev, 1995, 9: 700-713.
[24] Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling [J]. J Investig Dermatol Symp Proc, 2003, 8: 46-55.
[25] Massague J, Chen YG. Controlling TGF-beta signaling [J]. Genes Dev, 2000, 14: 627-644.
[26] Miyazawa K, Shinozaki M, Hara T, et al. Two major Smad pathways in TGF-beta superfamily signaling [J]. Genes Cells, 2002, 7: 1191-1204.
[27] Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling [J]. Nature, 2003, 425: 577-584.
[28] Ten DP, Hill CS. New insights into TGF-beta-Smad signaling [J]. Trends Biochem Sci, 2004, 29: 265-273.
[29] Li AG, Koster MI, Wang XJ. Roles of TGF beta signaling in epidermal/appendage development [J]. Cytokine Growth Factor Rev, 2003, 14: 99-111.
[30] Hogan BL. Bone morphogenetic proteins: Multifunctional regulators of vertebrate development [J]. Genes Dev, 1996, 10: 1580-1594.
[31] Botchkarev VA, Botchkareva NV, Roth W, et al. Noggin is a mesenchymally derived stimulator of hair-follicle induction [J]. Nat Cell Biol, 1999, 1: 158-164.
[32] Kobielak K, Stokes N, de la Cruz J, et al. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling [J]. Proc Natl Acad Sci U S A, 2007, 104: 10063-10068.
[33] 馬雨楠, 游穎, 孫兆增, 等. Noggin基因沉默表達(dá)載體的構(gòu)建及篩選 [J]. 中國實(shí)驗(yàn)動物學(xué)報(bào), 2016, 24(1): 38-42.
[34] Jamora C, DasGupta R, Kocieniewski P, et al. Links between signal transduction, transcription and adhesion in epithelial bud development [J]. Nature, 2003, 422(6929): 317-322.
[35] Hwang J, Mehrani T, Millar SE, et al. Dlx3 is a crucial regulator of hair follicle differentiation and cycling [J]. Development, 2008, 135: 3149-3159.
[36] Zhang J, He XC, Tong WG, et al. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion [J]. Stem Cells, 2006, 24(12): 2826-2839.
[37] Millar SE. Molecular mechanisms regulating hair follicle development [J]. J Investig Dermatol, 2002, 118: 216-225.
[38] Fuchs E, Horsley V. More than one way to skin … [J]. Genes Dev, 2008, 22: 976-985.
[39] St-Jacques B, Dassule H R, Karavanova I, et al. Sonic hedgehog signaling is essential for hair development [J]. Curr Biol, 1998, 8: 1058-1068.
[40] Gao J, DeRouen MC, Chen CH, et al. Laminin-511 is an epithelial message promoting dermal papilla development and function during early hair morphogenesis [J]. Genes Dev, 2008, 22: 2111-2124.
[41] Proweller A, Tu L, Lepore JJ, et al. Impaired notch signaling promotes de novo squamous cell carcinoma formation [J]. Cancer Res, 2006, 66: 7438-7444.
[42] Hayward P, Brennan K, Sanders P, et al. Notch modulates Wnt signaling by associating with Armadillo/beta-catenin and regulating its transcriptional activity [J]. Development, 2005, 132: 1819-1830.
[43] Demitrack ES, Gifford GB, Keeley TM, et al. Notch signaling regulates gastric antral LGR5 stem cell function [J]. EMBO J, 2015, 34(20): 2522-2536.
[44] Alexander JV, Peter SK. GSK-3 and Wnt signaling in neurogenesis and bipolar disorder[J]. Front Mol Neurosci, 2012, 5(1): 1-13.
Effect ofNogginsilencing on the BMP and Wnt signaling pathways
MA Yu-nan, YOU Ying, SHEN Huan-huan, SUN Zhao-zeng,ZENG Lin*, FA Yun-zhi*
(Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China)
Objective To analyze the effect ofNogginsilencing on the BMP and Wnt signaling pathways in hair follicle development. Methods The expression of BMP-2, BMP-4, BMPR-IA, BMP-6, BMP-7, LEF-1 and β-catenin inNogginsilencing MC3T3-E1 stable cell line was detected by RT-PCR and western blot. Results RT-PCR results showed that the expressions of five genes in BMP signaling pathway were all significantly influenced byNogginsilencing, the expressions of BMP-2 (P<0.001), BMP-4 (P<0.01), BMP-6 (P<0.001) and BMP-7 (P<0.001) were all increased and the expression of BMPR-IA (P<0.01) was decreased. While the expressions of the two genes LEF-1 (P<0.001) and β-catenin (P<0.001) in Wnt signaling pathway were significantly decreased. Western blot results showed that the expressions of these proteins in the two signaling pathways were also affected. The expressions of BMP-2 (P<0.05), BMP-4 (P<0.05), BMP-6 (P<0.05) and BMP-7 (P<0.05) were all increased, while the expressions of BMPR-IA (P<0.05), LEF-1 (P<0.01) and β-catenin (P<0.001) were decreased. Conclusions There may be a negative feedback regulation ofNogginon the BMP signaling pathway in vitro, but a positive feedback regulation on the Wnt signaling pathway in vitro. It provides certain evidence for studies on the effect ofNoggingene on BMP and Wnt signaling pathways in vivo. There may be an interaction between hair follicle development-related signaling pathways, which still needs further experiments to prove.
Noggin; BMP signaling pathway; Wnt signaling pathway; Hair follicle
ZENG Lin, E-mail: zenglin1965@126.com; FA Yun-zhi, fyzc2004@126.com
國家自然科學(xué)基金重點(diǎn)項(xiàng)目(31030058);“十二五”科技重大專項(xiàng)(2012ZX10004-502)。
馬雨楠(1989-),女,碩士研究生,研究方向:實(shí)驗(yàn)動物學(xué)。E-mail: mynrr324@126.com
曾林(1965-),男,研究員,研究方向:實(shí)驗(yàn)動物科學(xué),E-mail: zenglin1965@126.com;法云智(1974-),男,副研究員,研究方向:實(shí)驗(yàn)動物學(xué),E-mail: fyzc2004@126.com
研究報(bào)告
Q95-33
A
1005-4847(2016)05-0475-06
10.3969/j.issn.1005-4847.2016.05.007
2016-04-15