張 軍, 李存杰, 鄭成航, 翁衛(wèi)國, 朱松強,王丁振, 高 翔, 岑可法
(1.浙江大學(xué) 能源清潔利用國家重點實驗室,浙江 杭州 310027; 2. 浙江能源集團有限公司,浙江 杭州310006)
?
篩板塔細(xì)顆粒物協(xié)同脫除特性實驗
張 軍1, 李存杰1, 鄭成航1, 翁衛(wèi)國1, 朱松強2,王丁振1, 高 翔1, 岑可法1
(1.浙江大學(xué) 能源清潔利用國家重點實驗室,浙江 杭州 310027; 2. 浙江能源集團有限公司,浙江 杭州310006)
針對常規(guī)噴淋空塔無法滿足顆粒物協(xié)同控制的難題,提出篩板塔強化傳質(zhì)實現(xiàn)協(xié)同脫除的方法.基于濕法煙氣脫硫中試試驗平臺,考察濕法煙氣脫硫關(guān)鍵工藝參數(shù),包括煙氣流速、漿液噴淋量、飛灰濃度、顆粒粒徑等對細(xì)顆粒物脫除效率的影響規(guī)律,并與噴淋空塔脫除特性進(jìn)行對比.結(jié)果表明,在實驗工況下,細(xì)顆粒物脫除效率大于90%,最高超過95%;脫除效率隨煙氣流速、顆粒物濃度及漿液噴淋量的增大而提高.顆粒物分級脫除效率曲線呈“V”形分布特性,在0.2~1.0 μm粒徑范圍內(nèi)脫除效率最低;在相同條件下,篩板塔細(xì)顆粒物脫除效果顯著優(yōu)于噴淋塔,在0.2~1.0 μm粒徑段的脫除效率與總脫除效率較噴淋塔分別提高11%和5%以上.
篩板塔;燃煤電廠;細(xì)顆粒物;協(xié)同控制;排放特性
近年來,大氣污染排放形勢日趨嚴(yán)峻,煤炭燃燒會產(chǎn)生大量的粉塵、SO2及NOx等污染物,會對人體健康及自然環(huán)境帶來巨大危害[1-2],是我國大氣污染的主要來源之一.目前,我國燃煤電站普遍在除塵系統(tǒng)后加裝濕法煙氣脫硫(wet flue gas desulfurization, WFGD)系統(tǒng),據(jù)統(tǒng)計,90%以上采用了石灰石-石膏濕法脫硫工藝,WFGD系統(tǒng)在高效脫硫的同時,由于脫硫漿液的洗滌作用,還能夠協(xié)同脫除一部分飛灰顆粒,但對PM2.5的捕集效率較低[3];另外,因為脫硫漿液霧化夾帶、石膏晶體析出,以及形成了可凝結(jié)顆粒物[4-5],脫硫塔出口Ca、S元素含量大幅增加[6],也在一定程度上制約了WFGD對細(xì)顆粒物的控制效果.
國內(nèi)外學(xué)者針對濕法脫硫塔協(xié)同控制細(xì)顆粒物開展了大量研究.鮑靜靜等[7-8]發(fā)現(xiàn)應(yīng)用蒸汽相變技術(shù)后WFGD內(nèi)細(xì)顆粒物數(shù)濃度顯著降低.熊桂龍等[9]采用蒸汽相變和撞擊流耦合的方法,實驗研究了撞擊流相變室中應(yīng)用蒸汽相變促進(jìn)細(xì)顆粒脫除的效果.趙汶等[10]的試驗結(jié)果表明化學(xué)團聚技術(shù)可使細(xì)顆粒物平均粒徑增大約4倍,數(shù)濃度降低40%以上.Kim等[11]電噴射系統(tǒng)引入濕法噴淋洗滌器中,實驗發(fā)現(xiàn)系統(tǒng)產(chǎn)生的帶電液滴能夠有效地捕集氣體中的細(xì)顆粒.除此之外,陳海林等[12]研制了一種中試規(guī)模的螺旋型垂直篩板布?xì)獾膰娚涔呐菝摿虺龎m裝置,除塵效率可達(dá)91%以上.Wang等[13]通過理論分析與實驗研究了浮閥塔板的飛灰脫除特性.通過WFGD實現(xiàn)高效脫硫同時實現(xiàn)低成本的顆粒物控制具有重要意義,篩板塔具有成本低、傳質(zhì)效果強[14-16]等優(yōu)點,在濕法煙氣脫硫領(lǐng)域已有部分工程應(yīng)用,但針對不同工況下篩板塔細(xì)顆粒物脫除效率的變化規(guī)律,篩板對細(xì)顆粒物強化脫除特性,以及篩板塔對顆粒物的協(xié)同控制作用等亟待解決的課題目前尚無研究.
本文基于濕法煙氣脫硫中試試驗平臺,開展了篩板塔強化細(xì)顆粒物脫除特性的實驗研究.研究了濕法煙氣脫硫關(guān)鍵工藝參數(shù),包括煙氣流速、漿液噴淋量、飛灰濃度、顆粒粒徑等,對顆粒物脫除特性的影響,對脫除效率及分級脫除效率進(jìn)行分析,并與噴淋塔脫除特性對比,為進(jìn)一步降低WFGD系統(tǒng)細(xì)顆粒的排放提供技術(shù)支撐.
1.1 實驗系統(tǒng)
圖1 篩板塔中試實驗系統(tǒng)示意圖Fig.1 Schematic of sieve tray spray scrubber experimental system
實驗系統(tǒng)流程圖如圖1所示,從圖1可以看出系統(tǒng)主要由污染物發(fā)生系統(tǒng)、煙氣系統(tǒng)、吸收系統(tǒng)和測量系統(tǒng)組成.脫硫塔為噴淋塔結(jié)構(gòu),塔出口設(shè)置有2層折板式除霧器,下方設(shè)有4層噴淋層,在脫硫塔煙氣入口與最下層噴淋之間安裝有一層篩板,篩板塔主要設(shè)計參數(shù)qV-fluegas為煙氣流量;qV-spray為噴嘴流量;qV-slurry為漿液量;ρB-flyash為煙塵濃度;wslurry為洗滌漿液含固量;H為脫硫塔塔高;D為脫硫塔塔徑;d為篩板孔徑;O為篩板開孔率;Δ為篩板孔間距,如表1所示,表中:在實驗過程中,由熱風(fēng)爐燃燒產(chǎn)生熱煙氣,熱風(fēng)爐出口煙道處開有給料口,可變頻給料機以一定頻率向熱煙氣中送入電廠灰,飛灰與煙氣在進(jìn)入脫硫塔前充分混合,經(jīng)增壓風(fēng)機增壓進(jìn)入脫硫塔,煙氣經(jīng)過篩板、噴淋層,與漿液逆向接觸,至塔頂排出.
表1 篩板塔主要設(shè)計參數(shù)Tab.1 Main design parameters of sieve tray spray scrubber
1.2 試驗測試方法
圖2 DGI顆粒物采集系統(tǒng)圖Fig.2 DGI particle matter sampling system
采樣系統(tǒng)如圖2所示,系統(tǒng)連接完畢后,開啟保溫裝置(包括保溫套和采樣管伴熱帶),打開旁路并啟動真空泵,將采樣體積流量設(shè)置為70 L/min,在70 L/min的煙氣流速下,細(xì)顆粒物會被DGI切割成5個粒徑段:>2.5 μm、1.0~2.5 μm、0.5~1.0 μm、0.2~0.5 μm、<0.2 μm,大流量顆粒撞擊式采集器(dekati gravimetric impactor, DGI)的收集盤會采集前4個粒徑段的顆粒物;待保溫裝置溫度升高至150 ℃,關(guān)閉旁路開始采樣.入口與出口采樣時間分別為10和15 min.采樣后,將采樣儀拆解,每級將收集到的顆粒物稱重,計算其質(zhì)量濃度.
分級細(xì)顆粒物脫除效率(簡稱“分級效率”)計算公式如下:
(1)
式中:ηi為第i級細(xì)顆粒脫除效率,ρin,i,ρout,i分別為脫硫塔入口與出口第i級細(xì)顆粒物質(zhì)量濃度(mg/m3).
1.3 試驗飛灰
中試試驗所用的飛灰取自浙江省某電廠電除塵器第4級電場.如圖3所示為使用Mastersizer 2000測得電廠飛灰的累積粒徑分布,w為累積質(zhì)量分?jǐn)?shù).從圖3中可看出,飛灰顆粒粒徑d在0.339 5~389.973 μm之間,以粗顆粒為主.PM2.5所占質(zhì)量比重小于6%,PM10質(zhì)量分?jǐn)?shù)約為20%.飛灰顆粒質(zhì)量分?jǐn)?shù)中位粒徑為38.0 μm.可吸入顆粒物(PM10)占飛灰顆粒總質(zhì)量的21%,PM2.5占PM10總質(zhì)量的30%.
圖3 實驗飛灰累積粒徑分布Fig.3 Cumulative particle size distribution of coal-fired fly-ash particles
2.1 煙氣流速對脫除效率的影響
圖4 煙氣流速對飛灰顆粒脫除效率的影響Fig.4 Effect of gas flow rate on removal efficiency of fly-ash particle
如圖4所示為篩板塔顆粒物總脫除效率η隨塔內(nèi)煙氣流速v的變化曲線,其中ρout為出口飛灰濃度.實驗采用2層噴淋,入口飛灰濃度ρin=25±3 mg/m3.從圖3中可看出,當(dāng)v<2.45 m/s時,隨著煙氣流速的增加,系統(tǒng)對細(xì)顆粒物的脫除效率顯著增加;當(dāng)v=2.45 m/s時,脫除效率可達(dá)90%以上;當(dāng)2.45 m/s 2.2 漿液噴淋量對脫除效率的影響 圖5 漿液噴淋量對飛灰顆粒脫除效率的影響Fig.5 Effect of liquid flow rate on removal efficiency of fly-ash particle 在v=2.45 m/s時,ρin=22±2 mg/m3的工況條件下,考察了漿液噴淋量對顆粒物脫除的影響規(guī)律,如圖5所示為漿液噴淋量對飛灰顆粒脫除效率的影響.從圖5中可看出,顆粒物脫除效率隨著漿液噴淋量的增加逐漸增大.其主要原因是漿液噴淋量增加使得氣液接觸界面增大[20];此外,在具有足夠大的接觸界面時,細(xì)顆粒分割粒徑主要取決于單個氣泡的液膜捕集效率[21],增大漿液噴淋量雖不能增加氣泡數(shù)量但提高了單個氣泡的脫除效率[22]. 2.3 粉塵濃度對脫除效率的影響 如圖6所示為細(xì)顆粒物總脫除效率與入口飛灰濃度關(guān)系的測試結(jié)果.實驗采用三層噴淋,煙氣流速為2.45 m/s.從圖6中可看出,隨著入口飛灰濃度的增加,脫除效率先增大后趨于穩(wěn)定.這是因為增加入口飛灰顆粒物濃度提高了細(xì)顆粒物間碰撞概率[23],強化了顆粒的間團聚,形成了部分大顆粒[19],進(jìn)而顯著提高了細(xì)顆粒的脫除效率;在入口飛灰顆粒濃度較高的情況下,液滴表面會形成不穩(wěn)定的小尺度的團聚體,這些新形成的團聚體容易從液滴表面脫落[24],難以在洗滌塔內(nèi)有效的脫除. 圖6 入口飛灰濃度對顆粒脫除效率的影響Fig.6 Effect of fly-ash loading on removal efficiency of fly-ash particle 圖7 粒徑對顆粒脫除效率的影響Fig.7 Effect of particle size on removal efficiency of fly-ash particle 2.4 顆粒物粒徑對脫除效率的影響 如圖7所示為細(xì)顆粒物分級脫除效率變化曲線.煙氣流速為2.45 m/s,3層噴淋,ρ為飛灰濃度.從圖7中可看出,隨著飛灰顆粒粒徑減小,脫除效率先迅速降低隨后再次回升,最低脫除效率出現(xiàn)在0.2~1.0 μm粒徑區(qū)間,脫除效率呈“V”型分布.這是因為對于0.2 μm 以下的顆粒主要通過擴散作用捕集,隨粒徑的減小,擴散作用加劇,脫除效率提高;對于大于 1.0 μm 以上的顆粒,慣性碰撞機理起主要作用,隨粒徑的增加,捕集效率提高[25].而0.2~1.0 μm粒徑段處于擴散作用與慣性碰撞作用的交叉區(qū)域[26],顆粒不能有效擴散,同時不具備足夠的慣性脫離氣流[27],因此該段顆粒脫除效率相對較低. 2.5 篩板塔與噴淋塔細(xì)顆粒物控制效果對比 如圖8所示為篩板塔與噴淋塔的分級脫除效率與總脫除效率.實驗采用2層噴淋,入口顆粒物濃度為26±2 mg/m3.從圖8中可看出,篩板塔細(xì)顆粒物分級脫除效率與總脫除效率均高于噴淋塔,尤其是對0.2~1.0 μm粒徑段顆粒的脫除效率較噴淋塔有大幅提升.筆者認(rèn)為,這是因為在同一工況下,相對于噴淋空塔,篩板噴淋塔由于形成了持液層而具有更大的氣液接觸面積;另外,篩板持液層近似鼓泡,氣液擾動強烈,促進(jìn)了部分顆粒的團聚長大,強化了細(xì)顆粒的脫除. 圖8 加裝篩板前后顆粒物脫除效果對比Fig.8 Removal efficiency of different scrubbers (1)篩板塔煙氣流速、漿液噴淋量、入口飛灰濃度對細(xì)顆粒物的脫除效果存在較大影響,脫除效率隨漿液噴淋量的增大而提高,在一定范圍內(nèi),隨煙氣流速、入口飛灰濃度的增加先增大后趨于穩(wěn)定. (2)篩板塔細(xì)顆粒脫除效率隨粒徑增加先降低后升高,分級脫除效率曲線呈“V”形分布,0.2~1.0 μm粒徑段的脫除效率最低. (3)相對噴淋塔,篩板塔具有更強的細(xì)顆粒物脫除能力,對粒徑在0.2~1.0 μm左右細(xì)顆粒的脫除效率比噴淋塔高11%以上,而總脫除效率相對增加了5%左右. [1] GILMOUR P S, BROWN D M, LINDSAY T G, et al. Adverse health effects of PM10particles: involvement of iron in generation of hydroxyl radical [J]. Occupational and Environmental Medicine, 1996, 53(12): 817-822. [2] 高翔鵬,徐明厚,姚洪,等. 燃煤鍋爐可吸入顆粒物排放特性及其形成機理的試驗研究[J]. 中國電機工程學(xué)報,2007,27(17): 11-17. GAO Xiang-peng, XU Ming-hou, YAO Hong, et al. Experimental study on emission characteristics and formation mechanisms of PM10from a coal-fired boiler [J]. Proceedings of the CSEE, 2007,27(17): 11-17. [3] 王琿,宋薔,姚強,等. 電廠濕法脫硫系統(tǒng)對煙氣中細(xì)顆粒物脫除作用的實驗研究[J]. 中國電機工程學(xué)報,2008,28(05): 1-7. WANG Hui, SONG Qiang, YAO Qiang, et al. Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant[J]. Proceedings of the CSEE, 2008,28(05): 1-7. [4] BRACHERT L, KOCHENBURGER T, SCHABER K. Facing the sulfuric acid aerosol problem in flue gas cleaning: pilot plant experiments and simulation [J]. Aerosol Science and Technology, 2013, 47(10): 1083-1091. [5] SRIVASTAVA R K, MILLER C A, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants [J]. Journal of the Air & Waste Management Association, 2004, 54(6): 750-762. [6] MEIJ R, TE WINKEL B. The emissions and environmental impact of PM10and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD [J].Fuel Processing Technology, 2004, 85(6): 641-656. [7] BAO Jing-jing, YANG Lin-jun, YAN Jin-pei, et al. Experimental study of fine particles removal in the desulfurated scrubbed flue gas [J]. Fuel, 2013, 108(11): 73-79. [8] 鮑靜靜,楊林軍,顏金培,等. 濕法煙氣脫硫系統(tǒng)對細(xì)顆粒脫除性能的實驗研究[J]. 化工學(xué)報,2009,60(05): 126-1267. BAO Jing-jing, YANG Lin-jun, YAN Jin-pei, et al. Performance of removal of fine particles by WFGD system [J]. CIESC Journal, 2009,60(05): 1260-1267. [9] 熊桂龍,楊林軍,顏金培,等.蒸汽相變與撞擊流耦合促進(jìn)細(xì)顆粒物脫除[J]. 東南大學(xué)學(xué)報:自然科學(xué)版,2011,41(4): 761-766. XIONG Gui-long, YANG Lin-jun, YAN Jin-pei, et al. Improving removal of fine particles by coupling heterogeneous condensation with impinging streams [J]. Journal of southeast university :Natural Science Edition, 2011,41(4): 761-766. [10] 趙汶,劉勇,鮑靜靜,等. 化學(xué)團聚促進(jìn)燃煤細(xì)顆粒物脫除的試驗研究[J]. 中國電機工程學(xué)報,2013,33(20): 52-58+11. ZHAO Wen, LIU Yong, BAO Jing-jing, et al. Experimental research on fine particles removal from flue gas by chemical agglomeration [J]. Proceedings of the CSEE, 2013,33(20): 52-58+11. [11] KIM H G, KIM H J, LEE M H, et al. Experimental study on the enhancement of particle removal efficiency in spray tower scrubber using electrospray [J]. Asian Journal of Atmospheric Environment, 2014, 8(2): 89-95. [12] 陳海林,楊春平,甘海明,等. 螺旋型垂直篩板布?xì)獾膰娚涔呐菝摿虺龎m塔的研制和性能[J]. 環(huán)境科學(xué)學(xué)報,2010,30(2): 294-301. CHEN Hai-lin, YANG Chun-ping, GAN Hai-ming, et al. Development and evaluation of a jet bubble reactor using vertical sieves in a spiral housing as a gas in jet device for dust removal and desulfurization [J]. Acta Scientiae Circumstantiae, 2010, 30(2): 294-301. [13] WANG Q, CHEN X, GONG X. Theoretical and experimental investigation on the characteristics of fly‐ash scrubbing in a fixed valve tray column [J]. AIChE Journal, 2013, 59(6): 2168-2178. [14] GARCIA J A, FAIR J R. Distillation sieve trays without downcomers: prediction of performance characteristics [J]. Industrial & Engineering Chemistry Research, 2002, 41(6): 1632-1640. [15] KRISHNA R, VAN BATEN J M. Modelling sieve tray hydraulics using computational fluid dynamics [J]. Chemical Engineering Research and Design, 2003, 81(1): 27-38.[16] VAN BATEN J M, KRISHNA R. Modelling sieve tray hydraulics using computational fluid dynamics [J]. Chemical Engineering Journal, 2000, 77(3): 143-151. [17] WANG Q, CHEN X, GONG X. The particle removing characteristics in a fixed valve tray column [J]. Industrial & Engineering Chemistry Research, 2013, 52(9): 3441-3452. [18] LEE B K, MOHAN B R, BYEON S H, et al. Evaluating the performance of a turbulent wet scrubber for scrubbing particulate matter [J]. Journal of the Air & Waste Management Association, 2013, 63(5): 499-506. [19] MEIKAP B C, BISWAS M N. Fly-ash removal efficiency in a modified multi-stage bubble column scrubber [J]. Separation and Purification Technology, 2004, 36(3): 177-190. [20] MEIKAP B C, KUNDU G, BISWAS M N. Prediction of the interfacial area of contact in a variable-area multistage bubble column [J]. Industrial & Engineering Chemistry Research, 2001, 40(26): 6194-6200. [21] COUGHLIN, ROBERT W. Recent advances in air pollution control [M]. American Institute of Chemical Engineers。 [S.l.]. [s.n.]. 1974. [22] DW C. Theoretical comparison of efficiency and power for single-stage and multiple-stage particulate scrubbing [J] Atmos Environ, 1967, 10 (11): 1001-1004. [23] MOO-JOUNG M, FARQUHAR G J. Waste treatment and utilization: theory and practice of waste management[M]. Aids, 2015, 29(9): 1119-1120. [24] CHYLEK P, VIDEEN G, NGO D, et al. Effect of black carbon on the optical properties and climate forcing of sulfate aerosols [J]. Journal of Geophysical Research: Atmospheres, 1995, 1001(D8): 16325-16332. [25] PARK S H, JUNG C H, JUNG K R, et al. Wet scrubbing of polydisperse aerosols by freely falling droplets [J]. Journal of Aerosol Science, 2005, 36(12): 1444-1458. [26] KALDOR T G, PHILLIPS C R. Aerosol scrubbing by foam [J]. Industrial & Engineering Chemistry Process Design and Development, 1976, 15(1): 199-206. [27] KIM H T, JUNG C H, OH S N, et al. Particle removal efficiency of gravitational wet scrubber considering diffusion, interception, and impaction [J]. Environmental Engineering Science, 2001, 18(2): 125-136. Experimental of enhancement of simultaneous removing fine particle by sieve tray spray scrubber ZHANG Jun1, LI Cun-jie1, ZHENG Cheng-hang1, WENG Wei-guo1, ZHU Song-qiang2,WANG Ding-zhen1, GAO Xiang1, CEN Ke-fa1 (1.StateKeyLaboratoryofCleanEnergyUtilization,ZhejiangUniversity,Hangzhou310027,China;2.ZhejiangProvincialEnergyGroupCompanyCo.,Ltd.Hangzhou310006,China) A new sieve stray spray scrubber, which can promote the mass transfer of gas-liquid-solid system, was proposed in order to improve the fine particle removal efficiency in wet flue gas desulfurization (FGD) system.A pilot-scale wet FGD system was developed to study the removal characteristics of fine particles.The effects of flue gas flow rate, liquid flow rate, fly-ash loading and particle size on the fine particle removal efficiency were investigated.Results show that the fine particle removal efficiency is higher than 90% under typical working condition, of which the maximum exceeds 95%. The removal efficiency increases with the increase of flue gas flow rate, liquid flow rate and the concentration of particles.The fractional removal efficiency is a V-shaped curve with a minimum at 0.2 to 1.0 μm. The sieve tray spray scrubber has a better performance than the ordinary spray scrubber under the same conditions; the total removal efficiency and removal efficiency at 0.2-1.0 μm can be improved more than 5% and 11%, respectively. sieve tray scrubber; coal-fired power plant; fine particle; synergetic control; emission characteristics 2015-11-05. 浙江省重大科技專項計劃資助項目(2014C03018); 國家杰出青年科學(xué)基金資助項目(51125025). 張軍(1990—), 男, 博士生, 從事燃煤電廠大氣污染物控制技術(shù)等研究. ORCID: 0000-0001-7096-0064. E-mail: stenpher@zju.edu.cn 高翔,男,教授.ORCID: 0000-0002-1732-2132. E-mail: xgao1@zju.edu.cn 10.3785/j.issn.1008-973X.2016.08.013 X 511 A 1008-973X(2016)08-1516-05 浙江大學(xué)學(xué)報(工學(xué)版)網(wǎng)址: www.journals.zju.edu.cn/eng3 結(jié) 論