何麗玲, 陳 輝, 劉安娜, 陳倩倩, 金仁村
(杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,浙江 杭州 310036)
?
厭氧膜生物反應(yīng)器在污水處理中的應(yīng)用
何麗玲, 陳 輝, 劉安娜, 陳倩倩, 金仁村
(杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,浙江 杭州 310036)
厭氧膜生物反應(yīng)器(AnMBRs)是一種高效新型的廢水生物處理技術(shù),但膜污染與高成本等問題嚴重限制了其工業(yè)化應(yīng)用.文章從性能、微生物、反應(yīng)器模型幾方面闡述了AnMBRs的研究進展與技術(shù)特點,并指出未來的研究方向應(yīng)集中于針對工程應(yīng)用中的難題進行技術(shù)突破以及降低膜成本等方面.
污水處理;厭氧膜生物反應(yīng)器;膜污染;性能;成本
水資源短缺是一個日益嚴重的全球性問題,可以通過合適的方法對污水進行處理再利用從而得以緩解.在諸多污水處理工藝中,厭氧工藝具有能降解市政污水和工業(yè)廢水中有機物并回收能源的優(yōu)點.但是,由于產(chǎn)生的甲烷(CH4)尚不能抵消加熱所需能量,厭氧工藝運用于市政污水仍受限.且該工藝僅適用于氣候溫暖的國家和地區(qū)[1-2].此外,厭氧工藝還受很多因素的影響,如污水的類型和不穩(wěn)定性、污水中有機污染物的種類以及污水pH值等[3].
早在20世紀90年代初,好氧膜生物反應(yīng)器(AMBRs)工藝即被廣泛工業(yè)化應(yīng)用.相比傳統(tǒng)的活性污泥(AS)處理工藝,它具有很多優(yōu)勢:反應(yīng)器啟動快[4],占地空間小,污染物去除率高,出水水質(zhì)良好.膜的高效截留作用,使微生物完全截留在生物反應(yīng)器內(nèi),實現(xiàn)了反應(yīng)器固體停留時間(SRT)和水力停留時間(HRT)完全分離,保持了較高的混合液懸浮固體濃度(MLSS)[5-7].如果在厭氧條件下運行,MBRs的優(yōu)點能夠得到強化[1].因此,這項技術(shù)得到了廣泛關(guān)注.
本文闡述了厭氧膜生物反應(yīng)器(AnMBRs)技術(shù)的現(xiàn)狀,特別強調(diào)了工業(yè)化規(guī)模應(yīng)用時的性能和瓶頸.
第一個工業(yè)的AnMBR由Dorr-Oliver建于20世紀80年代初,用來處理高濃度的乳制品加工廢水.此后,AnMBRs用于研究處理各種不同污染物負荷的市政污水和工業(yè)廢水,包括低濃度廢水[8-9]、中等濃度廢水[10]和高濃度廢水[11](表1,2,3).
表1 AnMBRs處理市政污水概況
COD:化學(xué)需氧量;HRT:水力停留時間;MLSS:混合液懸浮固體濃度;OLR:有機負荷率;SRT:污泥停留時間;UASB:升流式厭氧污泥床反應(yīng)器;VSS:揮發(fā)性懸浮固體.以下同.
表2 AnMBRs處理模擬廢水概況
表3 AnMBRs處理其它廢水概況
1.1 AnMBRs與其他污水處理技術(shù)比較
厭氧微生物具有較低的生長速率,因此微生物持留對高效厭氧污水處理是至關(guān)重要的.基于顆?;蜕锬さ募夹g(shù)代表了傳統(tǒng)的微生物持留方法,能使生物反應(yīng)器在高微生物濃度下運行,從而實現(xiàn)高有機負荷[7].但是,在高鹽度或高溫等特定條件下,生物膜和顆粒形成效果不佳,而AnMBRs可以在這種非常規(guī)條件下實現(xiàn)污泥持留[7].AnMBRs可以在較長SRT運行,這不僅意味著所有微生物能持留,更能提供微生物快速生長的機會,顯著提高厭氧處理效果.
Cornelissen等曾預(yù)測AnMBRs將是一種非常有前景的工藝[45].現(xiàn)階段MBRs廣泛應(yīng)用于污水處理系統(tǒng)[20],而AnMBRs仍處于開發(fā)階段.其發(fā)展和應(yīng)用受限的主要原因在于厭氧消化(AD)是一個復(fù)雜的過程[21].過去AD通常被排斥,因為厭氧細菌增長緩慢,倍增時間可以長達12 h到一周[33].AnMBRs有效解決了這個問題,讓所有微生物完全持留在反應(yīng)器內(nèi),但是膜污染問題似乎比AMBRs更嚴重[21].此外,污水中的毒性也是AD應(yīng)用不普遍的主要原因之一,產(chǎn)甲烷菌很容易受毒性物質(zhì)的抑制[46].好氧系統(tǒng)與厭氧系統(tǒng)相比建立更容易、更快速,因為好氧系統(tǒng)在較短的SRT能靈活地自我調(diào)節(jié)凈細菌增長速率,而且在較低的溫度下也可以有效運行[47-48].
1.2 能源回收
AnMBRs在能源回收方面有重要作用,可以將進水中98%的COD轉(zhuǎn)化成沼氣[49],而且由于厭氧微生物的低生長速率,系統(tǒng)中剩余污泥產(chǎn)率低[11].一般來說,AnMBRs可以產(chǎn)生優(yōu)質(zhì)燃料沼氣,其中CH4高達80%甚至90%[34-35],這些沼氣可以直接燃燒發(fā)電,所產(chǎn)能量可補償所有膜過濾能耗,甚至實現(xiàn)污水處理廠產(chǎn)能[11]. Zyl等的研究表明,模擬污水處理過程中產(chǎn)電率為2.02 kWh/kgCOD去除,產(chǎn)生的電量大約是系統(tǒng)運行所需電耗的7倍[11].CH4產(chǎn)生量的差異在于所降解有機物的不同導(dǎo)致CO2/CH4比例變化幅度較大.富含碳水化合物的有機污染物(如谷物青貯飼料)能提高沼氣產(chǎn)量和CH4比重[50].此外,沼氣的成分與反應(yīng)器運行條件有關(guān).相比傳統(tǒng)的厭氧處理工藝,AnMBRs能在較短的HRT借助膜實現(xiàn)固液分離,產(chǎn)生的CH4含量高.根據(jù)亨利定律,CO2的溶解度比CH4高約10倍,這使更多的CO2隨著水的流出被排出.
1.3 處理污水類型
2006年以來,只有很少一部分研究[12,36]涉及中試規(guī)模的AnMBRs,尚無研究涉及工業(yè)化規(guī)模的試驗,幾乎所有的研究者從事實驗室規(guī)模的裝置的研究[13,22-23].AnMBRs可用于處理各種類型的污水,如生活污水[12-13,51]、制漿造紙廠廢水[37]、石油化工污水[11]等(表1,2,3).特別是對市政污水,傳統(tǒng)的MBRs和AnMBRs都可以在類似條件下操作最終獲得相近的溶解性COD去除率,然而AnMBRs減少了曝氣的費用[51].但是,當污水成分發(fā)生較大波動或當進水中存在有毒物質(zhì)時,AnMBRs中的微生物可能無法適應(yīng)這種變化,此時系統(tǒng)很難達到穩(wěn)態(tài)[24].毒性一般關(guān)注毒性水平,而不是毒性物質(zhì),任何物質(zhì)在其濃度高過一定水平后均有可能是有毒的.然而,毒性影響可以通過一些措施得到緩解,例如增大SRT.一般而言,當污水中化合物濃度超出毒性濃度,使用AMBRs可能更可??;但是,可以采用一些控制方法,如稀釋污水至毒性濃度以下[46],或在厭氧處理之前去除有毒的化合物[34],保證AnMBRs的穩(wěn)定運行.
此外,如果污水有機物含量較低,建議在接近常溫下操作,因為CH4產(chǎn)量低可能無法補償加熱成本.盡管在常溫下操作技術(shù)上似乎可行,但需要增大SRT.另一方面,AnMBRs可以在高濃度MLSS下穩(wěn)定運行,如49 g/L的豬糞[38]和50 g/L的城市垃圾[14].
1.4 操作條件
迄今為止,已經(jīng)報道了許多不同組合工藝.HRT可以從2 h[2]到20 d[15],SRT可以從18[51]到300 d[16]甚至更長時間,這說明在MBR運行期間幾乎沒有剩余污泥產(chǎn)生[25].需要強調(diào)的是,絕大多數(shù)研究中的SRT都保持在150 d以上.通常情況下AnMBRs在較大SRT運行可以產(chǎn)生更多沼氣,如果減小SRT,反應(yīng)程度也將下降[50].所以,較小的SRT不足以實現(xiàn)穩(wěn)定的消化過程[52].例如,Huang等曾報道AnBMR在SRT為30和60 d時,CH4的產(chǎn)率分別為0.023和0.028 L CH4/(gMLVSS·d)[9].
絕大多數(shù)AnMBRs的操作溫度在35 ℃左右的中溫范圍[26,39],或者55 ℃的高溫范圍[27-28,39],甚至20 ℃的低溫[40].混合液的溫度直接影響COD去除率,溫度越高,COD去除率也越高.例如,運行溫度為25和15 ℃的兩個AnMBRs,其COD的去除率分別是95%和85%[47].此外,AnMBRs在高溫下運行可以比中溫運行時達到更高的容積負荷.Jeison等發(fā)現(xiàn)高溫條件下AnMBRs的容積負荷維持在14 g COD/(L·d),中溫運行時則低于10 g COD/(L·d)[26].一般來說,當有機負荷增加,由于揮發(fā)性脂肪酸(VFAs)積累,可能會增加反應(yīng)器性能惡化的風險,而且由于微生物活性受抑制,COD去除率也會降低[29,36,41].
1.5 去除效率
AnMBRs最主要的目標是在污水最終排放或重復(fù)利用前減少有機物含量.為有效評估這個目標,大多數(shù)研究者測定了反應(yīng)器進出水有機物濃度來計算整體去除效率.就受試污水水質(zhì)而言,反應(yīng)器進水COD范圍從162[17]到10 000 mg/L[39],甚至在高濃度石油化工廢水達到18 000 mg/L(主要是C2到C6的短鏈脂肪酸)[11],去除率為76%~99%(表1,2,3).此外,有報道稱BOD去除率高于99%[39].需要說明的是,與混合溶液中懸浮微生物相比,附著在膜上的微生物對有機物去除的貢獻可以忽略[23].
文獻報道了很高的總懸浮固體(TSS)去除率,甚至高于99%[13].另外,病原體(如大腸桿菌和腸球菌)可以完全去除.所以,絕大多數(shù)經(jīng)過處理的污水可以無限制地使用于農(nóng)作物灌溉[12].
需要強調(diào)的是,pH沖擊會對COD去除造成嚴重的、長期的負面影響[3].Gao等進行了一個pH沖擊試驗,結(jié)果導(dǎo)致沼氣產(chǎn)量和膜過濾性能的變化[3].其中,pH8.0的沖擊對COD去除率影響最小,pH9.1和pH10的沖擊有明顯的負面影響.pH9.1的沖擊下,COD的去除率從90%急劇下降到75%,pH10的沖擊下,COD的去除率更是從90%下降到30%.
1.6 能源消耗和費用
迄今有關(guān)AnMBRs過程能耗問題的研究不是很多,但是AnMBRs過程是一種能量可持續(xù)的工藝.筆者認為進一步研究AnMBRs的能耗是非常有益的.Kim等在AnMBRs之前設(shè)置了一個傳統(tǒng)的厭氧流化床反應(yīng)器,結(jié)果發(fā)現(xiàn),兩個反應(yīng)器運行一共消耗能量0.058 kWh/m3,其中AnMBRs消耗的能量為0.028 kWh/m3,產(chǎn)生的CH4中30%用于提供消耗所需的能量[2].而Jeison等認為,膜成本遠遠高于AnMBRs的能耗成本,處理1 m3污水其成本分別為0.5和0.046歐元[30].因此,盡管膜費用逐漸地降低了,但仍然是限制AnMBRs廣泛應(yīng)用的一個重要因素.
值得一提的是,AnMBRs操作的靈活性使它有望與其他技術(shù)相結(jié)合.AnMBRs可與水解反應(yīng)器連接形成組合工藝[16],進而水解污水中的有機物;可以和氫輸送系統(tǒng)[18]組合進行反硝化處理市政污水;也可以與產(chǎn)酸體系串聯(lián),采用組合工藝的方法進行優(yōu)化[15],提高CH4的產(chǎn)量.
AnMBRs是適合培養(yǎng)生長速率較小的微生物的系統(tǒng)[53].微生物量隨時間逐漸增加,它們可以是懸浮的,也可以粘附在膜上,其中懸浮的微生物在有機物去除過程中發(fā)揮著最重要的作用[23],其產(chǎn)甲烷活性更高,且活性隨溫度的升高而增強.Ho等發(fā)現(xiàn)運行溫度25 ℃條件下比15 ℃條件下的產(chǎn)甲烷率高[54].此外,較長的SRT和較短的HRT對產(chǎn)甲烷菌的活性也有促進作用,具體表現(xiàn)在沼氣的產(chǎn)量增加[25].然而相對AMBRs,AnMBRs中SRT增加可能導(dǎo)致惰性固體物質(zhì)積累[55-56].Padmasiri等發(fā)現(xiàn)橫向流速增加會使AD性能降低,VFAs積累,反應(yīng)器內(nèi)和出水的溶解性COD都升高了,沼氣的產(chǎn)量也隨之降低[42].
在AnMBRs中,濾餅層和主體反應(yīng)器內(nèi)部的微生物群落之間有顯著的差異,并且濾餅層會隨著深度而逐漸變緊密.研究發(fā)現(xiàn)其中最主要的細菌種類屬于厚壁菌門(Firmicutes),占42.3%,α蛋白細菌(Alpha-proteo-bacteria)所占比例30.8%,而古菌則大多屬于產(chǎn)甲烷八疊球菌科(Methano sarcinales)和產(chǎn)甲烷螺菌科(Methano spirillaceae)[42].文獻報道Sphingomonadaceae和產(chǎn)甲烷古菌(Methanogenicarchaea)是生物膜中的主要微生物,化學(xué)清洗后也是如此[19].
關(guān)于超聲波的應(yīng)用對微生物活性的影響,存在一些分歧.Sui等發(fā)現(xiàn)超聲波可能對厭氧細菌活性有較弱的抑制作用,但沒有導(dǎo)致COD去除率的明顯下降[31].但Xu等發(fā)現(xiàn)超聲不僅不會影響厭氧微生物,還能夠提高其消化性能[14].
盡管學(xué)者付出諸多努力,關(guān)于AnMBRs系統(tǒng)中數(shù)學(xué)模型的信息仍比較缺乏.Arros-alileche等嘗試通過評估膜對溶質(zhì)的可控停留的潛力構(gòu)建AnMBRs模型[57],發(fā)現(xiàn)MF膜或UF膜需要較大的HRT保證良好的出水水質(zhì),而納濾膜(NF)或反滲透膜(RO)則需要較小HRT.Jeong等研究了優(yōu)化工藝和浸沒式AnMBRs耦合的可行性,用來處理高濃度有機廢水,確保良好滲透性能的同時保證了CH4的產(chǎn)量[15].
迄今為止,絕大部分學(xué)者只對實驗室規(guī)模的AnMBRs的性能進行研究,中試規(guī)模的研究較為有限,尚無工程應(yīng)用的報道.總的來說,AnMBRs能有效處理各種高濃度污水,處理后的污水水質(zhì)良好,此外,AnMBRs能產(chǎn)生高質(zhì)量燃料級別的沼氣.但是膜污染和膜對有毒物質(zhì)的敏感性等仍是技術(shù)瓶頸.因此,還應(yīng)開展更多關(guān)于AnMBRs運行能耗方面的研究.AnMBRs產(chǎn)生沼氣達到什么程度才能夠?qū)崿F(xiàn)能源的可持續(xù)性運行也需要進一步分析.現(xiàn)階段有關(guān)AnMBRs運行模型的研究還比較少,亟需強化.此外,膜的高成本仍然是阻礙MBRs工業(yè)化的重要因素.
[1] LIAO B Q, KRAEMER J T, BAGLEY D M. Anaerobic membrane bioreactors: applications and research directions[J]. Crit Rev Env Sci Tec,2006,36(6):489-530.
[2] KIM J, KIM K, YE H, et al. Anaerobic fluidizedbed membrane bioreactor for wastewater treatment[J]. Environ Sci Technol,2011,45(2):576-581.
[3] 張玨,陳輝,姬玉欣,等.厭氧氨氧化脫氮工藝研究進展[J].化工進展,2014,33(6):1589-1595.
[4] BELLA G D, DURANTE F, TORREGROSSA M, et al. Start-up with or without inoculum? Analysis of an SMBR pilot plant[J]. Desalination,2010,260(1/2/3):79-90.
[5] MENG F G, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material[J]. Water Research,2009,43(6):1489-1512.
[6] DOMINGUEZ L, CASES V, BIREK C, et al. Influence of organic loading rate on the performance of ultrafiltration and microfiltration membrane bioreactors at high sludge retention time[J]. Chem Eng J,2012,181:132-143.
[7] JEISON D, DIAZ I, VAN LIER J B. Anaerobic membrane bioreactors:are membranes really necessary?[J]. Electron J Biotechn,2008,11(4):1-7.
[8] AQUINO S F, HU A Y, AKRAM A, et al. Characterization of dissolved compounds in submerged anaerobic membrane bioreactors (SAMBRs)[J]. J Chem Technol Biot,2006,81(12):1894-1904.
[9] HUANG Z, ONG S L, NG H Y. Feasibility of submerged anaerobic membrane bioreactor (SAMBR) for treatment of low-strength wastewater[J]. Water Sci Technol,2008,58(10):1925-1931.
[10] AKRAM A, STUCKEY D C. Biomass acclimatisation and adaptation during start-up of a submerged anaerobic membrane bioreactor (SAMBR)[J]. Environ Technol,2008,29(10):1053-1065.
[11] VAN ZYL P J, WENTZEL M C, EKAMA G A, et al. Design and start-up of a high rate anaerobic membrane bioreactor for the treatment of a low pH, high strength, dissolved organic waste water[J]. Water Sci Technol,2008,57(2):291-295.
[12] SADDOUD A, ELLOUZE M, DHOUIB A, et al. A comparative study on the anaerobic membrane bioreactor performance during the treatment of domestic wastewaters of various origins[J]. Environ Technol,2006,27(9):991-999.
[13] KOCADAGISTAN E, TOPCUB N. Treatment investigation of the Erzurum city municipal wastewaters with anaerobic membrane bioreactors[J]. Desalination,2007,216(1/2/3):367-376.
[14] XU M L, WEN X H, YU Z Y, et al. A hybrid anaerobic membrane bioreactor coupled with online ultrasonic equipment for digestion of waste activated sludge[J]. Bioresource Technol,2011,102(10):5617-5625.
[15] JEONG E, KIM H W, NAM J Y, et al. Enhancement of bioenergy production and effluent quality by integrating optimized acidification with submerged anaerobic membrane bioreactor[J]. Bioresource Technol,2010,101(S1):7-12.
[16] TRZCINSKI A P, STUCKEY D C. Anaerobic digestion of the organic fraction of municipal solid waste in a two-stage membrane process[J]. Water Sci Technol,2009,60(8):1965-1978.
[17] AN Y, WANG Z W, WU Z C, et al. Characterization of membrane foulants in an anaerobic non-woven fabric membrane bioreactor for municipal wastewater treatment[J]. Chem Eng J,2009,155(3):709-715.
[18] REZANIA B, OLESZKIEWICZ J A, CICEK N. Hydrogen-driven denitrification of wastewater in an anaerobic submerged membrane bioreactor: potential for water reuse[J]. Water Sci Technol,2006,54(11/12):207-214.
[20] GAO D W, ZHANG T, TANG C Y Y, et al. Membrane fouling in an anaerobic membrane bioreactor: differences in relative abundance of bacterial species in the membrane foulant layer and in suspension[J]. J Membrane Sci,2010,364(1/2):331-338.
[21] SPAGNI A, CASU S, CRISPINO N A, et al. Filterability in a submerged anaerobic membrane bioreactor[J]. Desalination,2010,250(2):787-792.
[22] WANG T, ZHANG H M, YANG F L, et al. Start-up of the anammox process from the conventional activated sludge in a membrane bioreactor[J]. Bioresource Technol,2009,100(9):2501-2506.
[23] HO J, SUNG S. Methanogenic activities in anaerobic membrane bioreactors (AnMBRs) treating synthetic municipal wastewater[J]. Bioresource Technol,2010,101(7):2191-2196.
[24] SADDOUD A, ABDELKAFI S, SAYADI S. Effects of domestic wastewater toxicity on anaerobic membrane-bioreactor (MBR) performances[J]. Environ Technol,2009,30(13):1361-1369.
[25] HUANG Z, ONG S L, NG H Y. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling[J]. Water Res,2011,45(2):705-713.
[26] JEISON D, VAN BETUW W, VAN LIER J B. Feasibility of anaerobic membrane bioreactors for the treatment of wastewaters with particulate organic matter[J]. Sep Sci Technol,2008,43(13):3417-3431.
[28] JEISON D, VAN LIER J B. Cake formation and consolidation: main factors governing the applicable flux in anaerobic submerged membrane bioreactors (AnSMBRs) treating acidified wastewaters[J].Sep Purif Technol,2007,56(1):71-78.
[29] WIJEKOON K C, VISVANATHAN C, ABEYNAYAKA A. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor[J]. Bioresource Technol,2011,102(9):5353-5360.
[30] JEISON D, VAN LIER J B. Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: factors affecting long-term operational flux[J]. Water Res,2007,41(17):3868-3879.
[31] SUI P Z, WEN X H, HUANG X. Feasibility of employing ultrasound for on-line membrane fouling control in an anaerobic membrane bioreactor[J]. Desalination,2008,219(1/2/3):203-213.
[32] PEVERE A, GUIBAUD G, VAN HULLEBUSCH E, et al. Identification of rheological parameters describing the physico-chemical properties of anaerobic sulphidogenic sludge suspensions[J]. Enzyme Microb Tech,2007,40(4):547-554.
[33] ZAYEN A, MNIF S, ALOUI F, et al. Anaerobic membrane bioreactor for the treatment of leachates from Jebel Chakir discharge in Tunisia[J]. J Hazard Mater,2010,177(1/2/3):918-923.
[34] LIAO B Q, XIE K, LIN H J, et al. Treatment of kraft evaporator condensate using a thermophilic submerged anaerobic membrane bioreactor[J]. Water Sci Technol,2010,61(9):2177-2183.
[35] XIE K, LIN H J, MAHENDRAN B, et al. Performance and fouling characteristics of a submerged anaerobic membrane bioreactor for kraft evaporator condensate treatment[J]. Environ Technol,2010,31(5):511-521.
[36] WONG K, XAGORARAKI I, WALLACE J, et al. Removal of viruses and indicators by anaerobic membrane bioreactor treating animal waste[J]. J Environ Qual,2009,38(4):1694-1699.
[37] LIN H J, LIAO B Q, CHEN J R, et al. New insights into membrane fouling in a submerged anaerobic membrane bioreactor based on characterization of cake sludge and bulk sludge[J]. Bioresource Technol,2011,102(3):2373-2379.
[38] ZHANG J, PADMASIRI S I, FITCH M, et al. Influence of cleaning frequency and membrane history on fouling in an anaerobic membrane bioreactor[J]. Desalination,2007,207(1/2/3):153-166.
[39] LIN H J, XIE K, MAHENDRAN B, et al. Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs)[J]. Water Res,2009,43(15):3827-3837.
[40] TRZCINSKI A P, STUCKEY D C. Treatment of municipal solid waste leachate using a submerged anaerobic membrane bioreactor at mesophilic and psychrophilic temperatures: analysis of recalcitrants in the permeate using GC-MS[J]. Water Res,2010,44(3):671-680.
[41] BOHDZIEWICZ J, NECZAJ E, KWARCIAK A. Landfill leachate treatment by means of anaerobic membrane bioreactor[J]. Desalination,2008,221(1/2/3):559-565.
[42] PADMASIRI S I, ZHANG J Z, FITCH M, et al. Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions[J]. Water Res,2007,41(1):134-144.
[43] SADDOUD A, SAYADI S. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughter house wastewater treatment[J]. J Hazard Mater,2007,149(3):700-706.
[44] LIN H J, XIE K, MAHENDRAN B, et al. Factors affecting sludge cake formation in a submerged anaerobic membrane bioreactor[J]. J Membrane Sci,2010,361(1/2):126-134.
[45] CORNELISSEN E R, VAN BUGGENHOUT S, VAN ERMEN S, et al. Anaerobic treatment of brewery wastewater with an internal membrane bioreactor[J]. Meded Rijksuniv Gent. Fak Landbouwk Toegep Biol Wet,2001,66(3a):135-138.
[46] DE LEMOS CHEMICHARO C A. Biological wastewater treatment series, anaerobic reactors:vol.4[M]. London:IWA Publishing,2007.
[47] SANTOS A, MA W, JUDD S J. Membrane bioreactors: two decades of research and implementation[J]. Desalination,2011,273(1):148-154.
[48] CHANG S. Application of submerged hollow fiber membrane in membrane bioreactors: filtration principles, operation, and membrane fouling[J]. Desalination,2011,283(S):31-39.
[49] SUTTON P M, MELCER H, SCHRAA O J, et al. Treating municipal wastewater with the goal of resource recovery[J]. Water Sci Technol,2011,63(1):25-31.
[50] ZHOU H D, LI H, WANG F F. Anaerobic digestion of different organic wastes for biogas production and its operational control performed by the modified ADM1[J]. J Environ Sci Heal A,2012,47(1):84-92.
[51] BAEK S H, PAGILLA K R. Aerobic and anaerobic membrane bioreactors for municipal wastewater treatment[J]. Water Environ Res,2006,78(2):133-140.
[52] APPELS L, BAEYENS J, DEGREVE J, et al. Principles and potential of the anaerobic digestion of waste-activated sludge[J]. Prog Energ Combust,2008,34(6):755-781.
[53] MEULEPAS R J, JAGERSMA C G, GIETELING J A, et al. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors[J]. Biotechnol Bioeng,2009,104(3):458-470.
[54] HO J, SUNG S. Methanogenic activities in anaerobic membrane bioreactors (AnMBRs) treating synthetic municipal wastewater[J]. Bioresour Technol,2010,101:2191-2196.
[55] LAERA G, POLLICE A, SATURNO D, et al. Zero net growth in a membrane bioreactor with complete sludge retention[J]. Water Res,2005,39(20):5241-5249.
[56] CASU S, CRISPINO N A, FARINA R, et al. Wastewater treatment in a submerged anaerobic membrane bioreactor[J]. J Environ Sci Heal A,2012,47(2):204-209.
[57] ARROS-ALILECHE S, MERIN U, DAUFIN G, et al. The membrane role in an anaerobic membrane bioreactor for purification of dairy wastewaters: a numerical simulation[J]. Bioresource Technol,2008,99(17):8237-8244.
Anaerobic Membrane Bioreactors for Wastewater Treatment
HE Liling, CHEN Hui, LIU Anna, CHEN Qianqian, JIN Rencun
(College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China)
Anaerobic membrane bioreactor (AnMBRs) is a novel and efficient biotechnology for wastewater treatment. However, membrane fouling and high cost severely limits its industrial application. This review summarizes the research progress and technical properties of AnMBRs from the performance of AnMBRs, microbiological issues and AnMBRs modeling. It also addresses that certain efforts should be made to break the technical bottleneck during engineering practice and reduce the cost of the membranes.
wastewater treatment; anaerobic membrane bioreactor; membrane fouling; performance; cost
2015-07-30
國家自然科學(xué)基金項目(51278162);國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(201410346017).
金仁村(1979—),男,教授,博士,主要從事環(huán)境生物技術(shù)和水污染控制工程研究.E-mail:jrczju@aliyun.com
10.3969/j.issn.1674-232X.2016.06.009
X703
A
1674-232X(2016)06-0606-07