国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

復(fù)式耕整機(jī)耕深與耕寬穩(wěn)定性分析與試驗(yàn)

2016-12-19 08:54:27丁為民方志超杜濤濤趙思琪
關(guān)鍵詞:耕深復(fù)式耕作

秦 寬,丁為民※,方志超,杜濤濤,趙思琪,王 朕

(1. 南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031; 2. 江蘇省智能化農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,南京 210031)

復(fù)式耕整機(jī)耕深與耕寬穩(wěn)定性分析與試驗(yàn)

秦 寬1,2,丁為民1,2※,方志超1,2,杜濤濤1,趙思琪1,王 朕1

(1. 南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031; 2. 江蘇省智能化農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,南京 210031)

針對(duì)設(shè)計(jì)的復(fù)式耕整機(jī)出現(xiàn)的耕作穩(wěn)定性問(wèn)題,結(jié)合復(fù)式耕整機(jī)整體結(jié)構(gòu)及工作原理,從牽引、水平面內(nèi)受力、機(jī)器振動(dòng)3個(gè)角度分析影響耕作穩(wěn)定性因素,確定影響耕作穩(wěn)定性關(guān)鍵因素為牽引角、犁體配置斜角、旋耕刀升角。以牽引角、犁體配置斜角、旋耕刀升角為試驗(yàn)因素,以工況耕深穩(wěn)定系數(shù)和工況耕寬穩(wěn)定系數(shù)為性能評(píng)價(jià)指標(biāo)進(jìn)行二次正交旋轉(zhuǎn)組合試驗(yàn)。正交試驗(yàn)結(jié)果表明:試驗(yàn)因素對(duì)評(píng)價(jià)指標(biāo)影響程度從高到低皆為:犁體配置斜角、牽引角、旋耕升角,當(dāng)各影響因素分別取值為17.3°、27.8°、72.6°時(shí),工況耕深穩(wěn)定系數(shù)和工況耕寬穩(wěn)定系數(shù)分別為91.8%、93.4%。以影響因素最優(yōu)參數(shù)組合為基礎(chǔ)進(jìn)行的驗(yàn)證試驗(yàn)結(jié)果表明:試驗(yàn)后工況耕深穩(wěn)定系數(shù)和工況耕寬穩(wěn)定系數(shù)為91.5%、93.1%,與軟件分析結(jié)果基本一致,且其他耕作指標(biāo)均達(dá)到農(nóng)藝要求。該研究可為復(fù)式整地機(jī)械的耕作穩(wěn)定性研究提供技術(shù)參考。

農(nóng)業(yè)機(jī)械;優(yōu)化;穩(wěn)定性;犁旋作業(yè);復(fù)式;耕深;耕寬

0 引言

農(nóng)作物秸稈機(jī)械化耕整還田既能減少秸稈露天焚燒現(xiàn)象,防止空氣污染,保護(hù)環(huán)境,又有利于增加土壤肥力,改善土壤結(jié)構(gòu),是發(fā)展生態(tài)農(nóng)業(yè)和實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展的重要措施[1-2]。目前,復(fù)式作業(yè)機(jī)械已成為農(nóng)業(yè)機(jī)械發(fā)展趨勢(shì),針對(duì)秸稈粉碎還田問(wèn)題,復(fù)式耕整機(jī)能夠?qū)崿F(xiàn)鏵式犁翻耕與旋耕機(jī)碎壟耕整作業(yè),推動(dòng)沙土及黏土地區(qū)秸稈還田步伐[3]。復(fù)式耕整機(jī)作為犁耕、旋耕復(fù)式作業(yè)機(jī)械,質(zhì)量大、結(jié)構(gòu)復(fù)雜、工作阻力大,因此機(jī)器作業(yè)過(guò)程中易出現(xiàn)側(cè)傾、旋轉(zhuǎn)現(xiàn)象或趨勢(shì),影響機(jī)器耕作穩(wěn)定性[4]。

復(fù)式耕整機(jī)作業(yè)后,要求耕后溝底與地表平整,耕深穩(wěn)定,耕作層膨松均勻,秸稈粉碎率高,入土均勻性好[5]。其中復(fù)式耕整機(jī)耕作穩(wěn)定性直接影響整地質(zhì)量,影響因素包括機(jī)組結(jié)構(gòu)布置、機(jī)具懸掛狀態(tài)、土壤物理特性、機(jī)器作業(yè)速度、耕前地表平整度等。因此,如何解決耕作穩(wěn)定性問(wèn)題成為眾多學(xué)者的長(zhǎng)期研究目標(biāo)。Ryan 等[6]研究了美國(guó)西北部小麥留茬地整地機(jī)器的作業(yè)平衡性問(wèn)題,提出耕作機(jī)械與牽引機(jī)械之間距離應(yīng)不小于1 200 mm。孫松林等[7]從入土過(guò)程和正常耕作兩部分對(duì)犁體進(jìn)行受力分析,確定了犁體支持面與地平面夾角對(duì)耕作穩(wěn)定性的作用關(guān)系。柳克令[8]對(duì)懸掛犁耕作穩(wěn)定性進(jìn)行力學(xué)、運(yùn)動(dòng)學(xué)分析,提出了瞬心位置對(duì)耕深穩(wěn)定性的影響和以此為基礎(chǔ)的調(diào)節(jié)原則。熊一兵[9]從牽引的角度闡述手扶拖拉機(jī)組縱向與橫向平衡重心對(duì)耕作穩(wěn)定性的影響。但國(guó)內(nèi)外對(duì)復(fù)式整地機(jī)械耕作穩(wěn)定性的研究較少。本文圍繞如何提高復(fù)式耕整機(jī)耕作穩(wěn)定性,重點(diǎn)研究影響耕作穩(wěn)定性的關(guān)鍵因素耕深與耕寬,以期得到提高耕作穩(wěn)定性的最優(yōu)參數(shù)組合,為優(yōu)化復(fù)式耕整機(jī)復(fù)式耕作質(zhì)量提供技術(shù)參考。

1 總體結(jié)構(gòu)及工作原理

復(fù)式耕整機(jī)整體結(jié)構(gòu)如圖1所示,主要由前置犁耕機(jī)構(gòu)。后置旋耕機(jī)構(gòu)。傳動(dòng)機(jī)構(gòu)、旋耕機(jī)架、犁耕機(jī)架、懸掛機(jī)架等機(jī)構(gòu)組成。犁耕機(jī)構(gòu)犁鏵數(shù)為4個(gè),犁耕幅寬1 400 mm。旋耕機(jī)構(gòu)動(dòng)力來(lái)自于拖拉機(jī)尾部輸出,通過(guò)萬(wàn)向軸與減速箱相配合的傳動(dòng)系統(tǒng)傳輸于旋耕軸,旋耕機(jī)構(gòu)采用反轉(zhuǎn)作業(yè)方式,旋耕刀采用彎刀,彎刀按雙頭螺旋線排列,旋向相反,升角相同,刀軸旋轉(zhuǎn)一周內(nèi)總有一把旋耕刀入土,旋耕幅寬1 800 mm。本機(jī)器采用三點(diǎn)式懸掛機(jī)構(gòu),可通過(guò)調(diào)節(jié)拖拉機(jī)的三點(diǎn)懸掛機(jī)構(gòu)牽引角度與位置,實(shí)現(xiàn)耕深調(diào)節(jié)。機(jī)器主要參數(shù)為:外形尺寸1 650 mm×1 940 mm×1 140 mm、轉(zhuǎn)彎半徑≤1 700 mm、耕寬1 700~2 000 mm、耕深180~240 mm、拖拉機(jī)配套動(dòng)力≥75 kW。

工作時(shí),由拖拉機(jī)牽引復(fù)式耕整機(jī)進(jìn)行犁翻旋耕復(fù)式作業(yè),犁耕機(jī)構(gòu)在牽引力的作用下首先對(duì)土壤進(jìn)行翻耕作業(yè),旋耕機(jī)構(gòu)在驅(qū)動(dòng)力作用下進(jìn)而對(duì)土壤進(jìn)行反轉(zhuǎn)旋耕作業(yè)。復(fù)式耕整機(jī)一次性作業(yè)夠能完成秸稈粉碎、還田、碎土、覆土、平整地表等多道工序,從而減少作業(yè)次數(shù)、提高工作效率。

圖1 復(fù)式耕整機(jī)結(jié)構(gòu)圖Fig.1 Structure schematic of plowing and rotary tillage combined machine

2 影響耕作穩(wěn)定性關(guān)鍵部件設(shè)計(jì)

影響耕作穩(wěn)定性因素多樣而復(fù)雜[10],包括懸掛方式、牽引點(diǎn)位置、土壤阻力、機(jī)架振動(dòng)狀態(tài)、機(jī)具前進(jìn)速度等[11-14]。復(fù)式耕整機(jī)作為復(fù)式整地機(jī)械,機(jī)具質(zhì)量大,結(jié)構(gòu)復(fù)雜,受力項(xiàng)多,因此需要確定影響其耕作穩(wěn)定性的關(guān)鍵因素。

2.1 機(jī)器牽引角設(shè)計(jì)

2.1.1 機(jī)器質(zhì)心位置的確定

復(fù)式耕整機(jī)由前置犁耕機(jī)構(gòu)與后置旋耕機(jī)構(gòu)組成,旋耕機(jī)構(gòu)除了具有旋耕作業(yè)功能外,還具有平衡犁耕機(jī)構(gòu)配重作用[15],復(fù)式耕整機(jī)總質(zhì)量為1 050 kg,后置旋耕機(jī)構(gòu)質(zhì)量為700 kg,使機(jī)器重心置后,防止發(fā)生翹尾現(xiàn)象[16]。圖2為縱垂面牽引線調(diào)節(jié)示意圖,犁耕機(jī)架長(zhǎng)度L1為1 250 mm,旋耕機(jī)構(gòu)長(zhǎng)度L2為700 mm,犁耕機(jī)構(gòu)與旋耕機(jī)構(gòu)質(zhì)量均勻分布,因此按質(zhì)量分步推算,重心位置O應(yīng)與機(jī)架起始位置距離L3為1 287.5 mm。

圖2 縱垂面牽引線調(diào)節(jié)示意圖Fig.2 Schematic diagram of draft line adjustment in vertical

2.1.2 牽引角的確定

復(fù)式耕整機(jī)犁耕機(jī)構(gòu)在作業(yè)過(guò)程中所有阻力包括犁體曲面所受土壤阻力與犁側(cè)板與溝壁摩擦力[17],2種作用力在縱垂面內(nèi)分力之和用Rxz表示,如圖2所示,由于犁體在縱垂面內(nèi)從前往后依次等距排開(kāi),因此將力Rxz對(duì)犁體作用點(diǎn)簡(jiǎn)化至四犁體長(zhǎng)度幾何中點(diǎn)A點(diǎn);旋耕機(jī)構(gòu)在作業(yè)過(guò)程所受阻力為旋耕刀切削土壤阻力[18],此作用力在縱垂面內(nèi)分力用Pxz表示,Pxz對(duì)旋耕刀作用點(diǎn)簡(jiǎn)化至旋耕刀端點(diǎn)B。過(guò)A點(diǎn)與B點(diǎn)連線與過(guò)質(zhì)心垂線相交與點(diǎn)C,牽引線π1e一端通過(guò)機(jī)器縱垂面內(nèi)瞬心π1點(diǎn),另一端點(diǎn)e點(diǎn)希望與C點(diǎn)相接近,e點(diǎn)若相對(duì)于C點(diǎn)向上偏移距離過(guò)大,牽引線上移,牽引角α(牽引線與水平線夾角)減小,則可能造成犁耕深度加深,旋耕機(jī)構(gòu)上翹,整機(jī)動(dòng)力消耗增加[19];e點(diǎn)若相對(duì)于C點(diǎn)向下偏移距離過(guò)大,牽引線下移,牽引角α增大,則可能造成犁耕機(jī)構(gòu)前端上翹,致使犁耕機(jī)構(gòu)入土變淺,旋耕機(jī)構(gòu)入土過(guò)深[20]。因此,為保證機(jī)器在縱垂面內(nèi)的耕作穩(wěn)定性,牽引角α的取值范圍應(yīng)在15°~30°。

2.2 犁體配置斜角設(shè)計(jì)

復(fù)式耕整機(jī)關(guān)鍵結(jié)構(gòu)直接影響機(jī)器受力平衡,從而影響機(jī)器耕作穩(wěn)定性。復(fù)式耕整機(jī)在作業(yè)時(shí),會(huì)受到拖拉機(jī)牽引力、土壤阻力及自身重力作用[21]。在牽引力滿足工作需求的前提下,機(jī)器在縱垂面內(nèi)受力基本可以達(dá)到平衡狀態(tài),而機(jī)器在水平面內(nèi)受力由于無(wú)土壤約束,自由度大,容易由于受力不均產(chǎn)生傾斜、旋轉(zhuǎn)現(xiàn)象,對(duì)耕作穩(wěn)定性造成影響[22],因此設(shè)計(jì)機(jī)具結(jié)構(gòu)時(shí)重點(diǎn)考慮水平面內(nèi)受力平衡。如圖3所示,為機(jī)器水平面受力投影,四犁體所受土壤阻力在水平面內(nèi)投影為Rxy,犁體所受土壤阻力以力場(chǎng)形式作用于犁體曲面[23],因此將犁體曲面所受土壤阻力簡(jiǎn)化至犁體曲面中心,垂直于犁體曲面中心切線且與滾垡方向相反;四犁體犁側(cè)板與溝壁摩擦力在水平面內(nèi)投影為Qxy,作用在犁側(cè)板中心點(diǎn)上,沿犁側(cè)板方向且與犁體前進(jìn)方向相反,由于四犁體所受土壤阻力、犁側(cè)板與溝壁板摩擦力基本相同,因此將Rxy、Qxy簡(jiǎn)化至犁體中心點(diǎn)連線的中點(diǎn)E。牽引力在水平面內(nèi)投影為Fxy,作用在犁耕機(jī)架前端中心點(diǎn)D。旋耕刀削土阻力在水平面內(nèi)投影為Pxz,由于旋耕刀左、右對(duì)稱排列,因此在y軸方向阻力基本可以相互抵消,旋耕刀削土阻力方向與x軸一致,作用在旋耕機(jī)架中心位置的旋耕刀端點(diǎn)M。根據(jù)平面力系平衡條件,在y軸上列平衡方程,得

對(duì)質(zhì)心位置取矩得

式中Fy為機(jī)具水平面內(nèi)y軸方向受力,N;Fxy為牽引力水平面內(nèi)投影,N;Rxy為犁體所受土壤阻力水平面內(nèi)投影,N;MO2為水平面內(nèi)質(zhì)心位置力矩,N·m;Qxy為犁側(cè)板與溝壁摩擦力在水平面內(nèi)投影,N;Pxy為旋耕刀削土阻力在水平面內(nèi)投影,N;x1為E點(diǎn)至y軸距離,mm;y1為E點(diǎn)至x軸距離,mm;y2為D點(diǎn)至x軸距離,mm;y3為M點(diǎn)至x軸距離,mm;β為犁體配置斜角,(°)。

由式(1)、式(2)可知,犁體配置斜角β的角度直接影響機(jī)器橫向受力與力偶平衡,從而影響機(jī)器的耕作穩(wěn)定性,因此為保證耕作穩(wěn)定性,β范圍應(yīng)在23°~30°。

圖3 機(jī)器水平面受力投影Fig.3 Force projection of machine in level surface

2.3 旋耕刀升角設(shè)計(jì)

復(fù)式作耕整作業(yè)時(shí)會(huì)受到外部載荷激勵(lì)與自身系統(tǒng)內(nèi)部激勵(lì)作用,使整機(jī)在作業(yè)過(guò)程中出現(xiàn)振動(dòng)現(xiàn)象,從而影響整個(gè)機(jī)器的耕作穩(wěn)定性。復(fù)式耕整機(jī)犁耕機(jī)構(gòu)與旋耕作業(yè)時(shí)都會(huì)產(chǎn)生振動(dòng)現(xiàn)象,犁耕機(jī)構(gòu)振動(dòng)主要由犁體所受土壤阻力引起,旋耕機(jī)構(gòu)振動(dòng)主要由旋耕刀所受土壤阻力與萬(wàn)向軸、主減速器、副減速器等傳動(dòng)機(jī)構(gòu)嚙合高速旋轉(zhuǎn)引起,此外復(fù)式耕整機(jī)振動(dòng)還受到拖拉機(jī)機(jī)體振動(dòng)的影晌[24]。在上述所有引起振動(dòng)的激勵(lì)因素中,旋耕刀所受土壤阻力是引起機(jī)器振動(dòng)的最主要激勵(lì)。

圖4為土壤對(duì)旋耕刀作用力示意圖,旋耕刀所受土壤阻力Q可用三分力表示,如式(3)所示。

式中Q為旋耕刀所受土壤阻力,N;i,j,k為單位矢量;Hs,Rv,Ph分別為旋耕刀所受土壤阻力的橫向水平分力(x軸)、縱向水平分力(y軸)和垂直水平分力(z軸)。復(fù)式耕整機(jī)旋耕刀安裝時(shí)繞刀輥以雙頭螺旋線形式左右彎刀交替排列,旋向相反,升角相同,此時(shí)旋耕刀作業(yè)瞬時(shí)橫向水平力

式中n1,n2分別為該瞬時(shí)同時(shí)工作的左、右彎刀片數(shù);Hsi為單個(gè)旋耕刀所受土壤阻力橫向水平分力。由于旋耕刀左、右彎刀對(duì)稱排列,因此橫向水平力總體可相互抵消,但旋耕刀片是沿螺旋線等角度(升角)間隔排列,各個(gè)瞬間交變負(fù)荷總是存在的,這種交變負(fù)荷是引起機(jī)組振動(dòng)的主要激勵(lì)[25]。當(dāng)升角過(guò)大,則單位工作周期內(nèi)旋耕刀入土次數(shù)少,容易對(duì)機(jī)器產(chǎn)生低頻激勵(lì),而帶有旋耕機(jī)構(gòu)的復(fù)式耕作機(jī)械對(duì)低頻激勵(lì)比較敏感,容易產(chǎn)生較大振動(dòng);升角過(guò)小,則作業(yè)時(shí)容易夾土堵塞[26],因此同一螺旋線上相鄰旋耕刀升角范圍為54°~85°。

圖4 土壤對(duì)旋耕刀作用力示意圖Fig.4 Acting force diagram of soil to rotary blade

3 試驗(yàn)及結(jié)果分析

3.1 試驗(yàn)設(shè)備

試驗(yàn)機(jī)具為委托南通世創(chuàng)公司加工生產(chǎn)的1LFG-140型犁翻旋耕復(fù)式作業(yè)耕整機(jī)。試驗(yàn)器材包括:皮尺(1~100 m,0.001m)、直尺(1~600 mm,1 mm)、水平儀(上海鈺誠(chéng)電子有限公司,iLevel 5,精度:0.029°)、耕深尺(精度:0.01 mm)、土壤堅(jiān)實(shí)度儀(浙江托普儀器有限公司,TJSD-750,±0.5‰FS)、水分測(cè)試儀(上海婉源電子科技有限公司,SK-100,0.01%)。

3.2 試驗(yàn)方法

2015年6月14日在江蘇省常州市金壇區(qū)沙湖村對(duì)復(fù)式耕整機(jī)穩(wěn)定性進(jìn)行試驗(yàn),平均作業(yè)時(shí)速為1.43 m/s,配套動(dòng)力為久保田854。試驗(yàn)田塊特性參數(shù)如表1所示,試驗(yàn)現(xiàn)場(chǎng)如圖5所示。

表1 試驗(yàn)田塊特性參數(shù)Table 1 Characteristics of experimental field environment

圖5 試驗(yàn)現(xiàn)場(chǎng)Fig.5 Test of field

試驗(yàn)方法參照GB/T14225-2008《鏵式犁 試驗(yàn)方法》與GB/T5668-2008《旋耕機(jī)械 試驗(yàn)方法》。具體方案如下。

1)耕深及工況耕深穩(wěn)定系數(shù)試驗(yàn)方法。沿機(jī)組前進(jìn)方向每隔2 m左、右兩側(cè)各取一點(diǎn),每個(gè)行程測(cè)量20個(gè)點(diǎn),用耕深尺測(cè)量每個(gè)測(cè)量點(diǎn)耕深度,共測(cè)3個(gè)行程。耕深按照式(5)、式(6)計(jì)算;工況耕深穩(wěn)定系數(shù)按式(5)-式(10)計(jì)算,計(jì)算時(shí),一個(gè)行程中左右兩測(cè)量點(diǎn)各算一個(gè)單獨(dú)行程。

式中aj為第j個(gè)行程的耕深平均值,cm;aji為第j個(gè)行程中的第i個(gè)點(diǎn)的耕深值,cm;nj為第j個(gè)行程中的測(cè)定點(diǎn)數(shù);U為工況的耕深穩(wěn)定系數(shù),%;a為工況耕深平均值,cm;N為同一工況中的行程數(shù);Sj為第j個(gè)行程耕深標(biāo)準(zhǔn)差,cm;S為工況的耕深標(biāo)準(zhǔn)差,cm;V為工況的耕深變異系數(shù),%。

2)耕寬及工況耕寬穩(wěn)定系數(shù)試驗(yàn)方法。沿垂直機(jī)組運(yùn)動(dòng)方向測(cè)定2個(gè)相鄰行程溝墻之間的水平距離即為耕寬,在測(cè)定耕深的相應(yīng)處進(jìn)行測(cè)量耕寬,分別計(jì)算工況耕寬和工況耕寬穩(wěn)定性系數(shù),計(jì)算方法同耕深。

3)地表平整度試驗(yàn)方法。沿垂直于機(jī)組前進(jìn)方向,在地表最高點(diǎn)為基準(zhǔn)取一長(zhǎng)度為機(jī)器幅寬的水平基準(zhǔn)線,均分成10等分,測(cè)定各等分點(diǎn)至地表的距離,一個(gè)行程測(cè)3組,共測(cè)3個(gè)行程。按式(4)計(jì)算其標(biāo)準(zhǔn)差,并以標(biāo)準(zhǔn)差的平均值表示平整度。

4)碎土率試驗(yàn)方法。在已耕地上測(cè)定0.5 m×0.5 m面積內(nèi)的全耕層土壤,土塊大小按其最長(zhǎng)邊分為小于4 cm、4~8 cm和大于8 cm三級(jí)。并以小于4 cm的土塊質(zhì)量占總質(zhì)量的百分比為碎土率,每一行程測(cè)定一點(diǎn),共測(cè)3個(gè)行程。

5)植被覆蓋率試驗(yàn)方法。在測(cè)區(qū)內(nèi)對(duì)角線上取5點(diǎn),每點(diǎn)按1 m2面積貼地面剪下露出地表的植被,稱其質(zhì)量,并計(jì)算出5點(diǎn)的平均值,每個(gè)行程測(cè)量1點(diǎn),共測(cè)3個(gè)行程,按式(11)計(jì)算植被覆蓋率。式中Fb為植被覆蓋率,%;Wq為耕前植被平均值,g;Wh為耕后植被平均值,g。

3.3 試驗(yàn)設(shè)計(jì)

為探究復(fù)式耕整機(jī)關(guān)鍵參數(shù)對(duì)耕作穩(wěn)定性的影響,進(jìn)行三因素二水平二次正交旋轉(zhuǎn)組合試驗(yàn),試驗(yàn)因素為牽引角α、犁體配置斜角β、旋耕刀升角γ,復(fù)式耕整機(jī)作業(yè)后耕深穩(wěn)定性與耕寬穩(wěn)定性最能夠體現(xiàn)機(jī)器耕作穩(wěn)定性情況,因此選擇工況耕深穩(wěn)定系數(shù)R1與工況耕寬穩(wěn)定系數(shù)R2作為試驗(yàn)指標(biāo),試驗(yàn)后用Design-Expert軟件對(duì)數(shù)據(jù)進(jìn)行處理,建立回歸方程與優(yōu)化模型,得到試驗(yàn)因素對(duì)試驗(yàn)指標(biāo)影響的主次關(guān)系與最優(yōu)組合,設(shè)計(jì)因素水平編碼表如表2所示。

表2 因素水平編碼表Table 2 Coding with factors and levels

3.4 多因素試驗(yàn)結(jié)果與分析

根據(jù)二次正交旋轉(zhuǎn)組合試驗(yàn)進(jìn)行試驗(yàn),以α,β,γ取值為試驗(yàn)因素,以單幅寬左右耕深差R1、工況耕深穩(wěn)定系數(shù)R2為相應(yīng)試驗(yàn)指標(biāo),試驗(yàn)結(jié)果如表3所示。

表3 試驗(yàn)方案和試驗(yàn)結(jié)果Table 3 Protocols and results

3.4.1 方差分析

對(duì)回歸模型中各項(xiàng)回歸系數(shù)進(jìn)行F檢驗(yàn)和方差分析,工況耕深穩(wěn)定系數(shù)R1與工況耕寬穩(wěn)定系數(shù)R2方差分析結(jié)果如表4所示。

表4 工況耕深穩(wěn)定系數(shù)與工況耕寬穩(wěn)定系數(shù)的二次項(xiàng)模型方差分析Table 4 Anova of quadratic model for working condition tillage depth stability factor and working condition tillage width stability factor

對(duì)表4中的數(shù)據(jù)進(jìn)行二次多元回歸擬合,選用二次項(xiàng)模型建立工況耕深穩(wěn)定系數(shù)R1、工況耕寬穩(wěn)定系數(shù)R2與各個(gè)影響因素之間的回歸模型,去除其中不顯著項(xiàng)后,得到R1、R2對(duì)牽引角、犁體配置斜角、旋耕刀升角的二次多元回歸方程為式(12)、式(13)。

式中R1為工況耕深穩(wěn)定系數(shù),%;R2為工況耕寬穩(wěn)定系數(shù),%;α為牽引角,(°);β為犁體配置斜角,(°);γ為旋耕刀升角,(°)。

由表4可知,目標(biāo)函數(shù)R1、R2的模型失擬項(xiàng)P值分別為0.4619、0.512,均大于0.05,說(shuō)明無(wú)失擬因素存在,可以用上述回歸方程代替試驗(yàn)真實(shí)點(diǎn)對(duì)試驗(yàn)結(jié)果進(jìn)行分析。

由表4方差分析可知,工況耕深穩(wěn)定系數(shù)R1、工況耕寬穩(wěn)定系數(shù)R2模型顯著性P值分別為0.0092與0.0083,均小于0.05,說(shuō)明該模型具有統(tǒng)計(jì)學(xué)意義。對(duì)于目標(biāo)函數(shù)R1,因素β、γ、αβ、β2、γ2非常顯著,因素βγ顯著;對(duì)于目標(biāo)函數(shù)R2,因素β、γ、βγ非常顯著,因素α、αβ、β2、γ2顯著。表中F值表示各個(gè)影響因素對(duì)試驗(yàn)指標(biāo)的影響,F(xiàn)值越大對(duì)試驗(yàn)指標(biāo)影響越大,由表4可知,各個(gè)試驗(yàn)因素對(duì)工況耕深穩(wěn)定系數(shù)R1、工況耕寬穩(wěn)定系數(shù)R2的影響程度從大到小皆依次是:犁體配置斜角β、牽引角α、旋耕刀升角γ。

3.4.2 響應(yīng)曲面分析

固定對(duì)試驗(yàn)指標(biāo)影響最小的旋耕刀升角γ為零水平,令其值為69.5°,考察牽引角α、犁體配置斜角β兩因素對(duì)工況耕深穩(wěn)定系數(shù)與工況耕寬穩(wěn)定系數(shù)的影響規(guī)律,得到對(duì)應(yīng)的響應(yīng)曲面,如圖6所示。當(dāng)旋耕刀升角γ為69.5°,牽引角α為23.7°,犁體配置斜角β為26.8°時(shí)工況耕深穩(wěn)定系數(shù)存在一個(gè)最優(yōu)值,為91.7%;當(dāng)旋耕刀升角γ為69.5°,牽引角α為25.2°,犁體配置斜角β為27.3°時(shí)工況耕寬穩(wěn)定系數(shù)存在一個(gè)最優(yōu)值,為93.2%。

3.4.3 最佳參數(shù)組合的確定

通過(guò)二次正交旋轉(zhuǎn)組合試驗(yàn),需要確定影響耕作穩(wěn)定性因素參數(shù)的最優(yōu)組合,從而提高工況耕深穩(wěn)定系數(shù)、工況耕寬穩(wěn)定系數(shù)等耕作穩(wěn)定性指標(biāo),達(dá)到提高耕作穩(wěn)定性的目的。根據(jù)農(nóng)藝要求,保證工況耕寬穩(wěn)定系數(shù)在90%以上,工況耕深穩(wěn)定系數(shù)越大越好。因此確定目標(biāo)函數(shù)為式(14),約束函數(shù)為式(15)。

式中F(α,β,γ)為目標(biāo)函數(shù);s.t.G(α,β,γ)為約束函數(shù)。

根據(jù)目標(biāo)函數(shù)與約束函數(shù)模型,利用Design-Expert軟件對(duì)回歸方程式(12)、式(13)進(jìn)行優(yōu)化,得到影響復(fù)式耕整機(jī)工況耕深穩(wěn)定系數(shù)、工況耕寬穩(wěn)定系數(shù)因素的最優(yōu)參數(shù)組合。當(dāng)影響因素參數(shù)組合為牽引角α為17.3°、犁體配置角β為27.8°、旋耕升角γ為72.6°,此時(shí)工況耕深穩(wěn)定系數(shù)為91.8%,工況耕寬穩(wěn)定系數(shù)為93.4%,此組為最優(yōu)參數(shù)組合。

圖6 牽引角和犁體配置斜角對(duì)工況耕深穩(wěn)定系數(shù)與工況耕寬穩(wěn)定系數(shù)的響應(yīng)曲面Fig.6 Response surface showing effects of angle of traction between installing bevel angle of plough to working condition tillage depth stability factor and working condition tillage width stability factor

3.5 驗(yàn)證試驗(yàn)

根據(jù)優(yōu)化分析得到的最優(yōu)參數(shù)組合,于2015年6月16日在江蘇省常州市金壇區(qū)沙湖村進(jìn)行驗(yàn)證試驗(yàn)。根據(jù)二次正交旋轉(zhuǎn)組合試驗(yàn)后的優(yōu)化結(jié)果,對(duì)機(jī)器選取牽引角α為17.3°、犁體配置角β為27.8°、旋耕升角γ為72.6°的最優(yōu)參數(shù)組合,進(jìn)行驗(yàn)證試驗(yàn)。試驗(yàn)指標(biāo)除工況耕深穩(wěn)定系數(shù)與工況耕寬穩(wěn)定系數(shù)外,同時(shí)考察耕深、耕寬、地表平整度、碎土率、秸稈覆蓋率5項(xiàng)耕作指標(biāo),以檢驗(yàn)分析所得最優(yōu)參數(shù)組合對(duì)機(jī)器耕作穩(wěn)定性的全面影響。共進(jìn)行5次重復(fù)試驗(yàn),試驗(yàn)后取平均值,試驗(yàn)結(jié)構(gòu)計(jì)算方法見(jiàn)3.2節(jié)。對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行處理與分析,驗(yàn)證試驗(yàn)結(jié)果如表5所示。

表5 驗(yàn)證試驗(yàn)結(jié)果Table 5 Test result of verification

驗(yàn)證試驗(yàn)得到工況耕深穩(wěn)定系數(shù)為91.5%,工況耕寬穩(wěn)定性系數(shù)為93.1%,與軟件分析得到的工況耕深穩(wěn)定系數(shù)91.8%,工況耕寬穩(wěn)定系數(shù)93.4%,相差較小,說(shuō)明軟件優(yōu)化參數(shù)具有準(zhǔn)確性與可行性。復(fù)式耕整機(jī)其他耕作指標(biāo)均達(dá)到農(nóng)藝要求,說(shuō)明最優(yōu)參數(shù)組合下機(jī)器的耕作質(zhì)量可以達(dá)到播種前整地的農(nóng)業(yè)標(biāo)準(zhǔn)。

4 結(jié)論與討論

1)本文對(duì)復(fù)式耕整機(jī)耕作穩(wěn)定性關(guān)鍵部件進(jìn)行研究,從牽引、水平面內(nèi)受力、機(jī)組振動(dòng)3個(gè)角度分析出影響耕作穩(wěn)定性的3個(gè)關(guān)鍵因素為牽引角、犁體配置斜角、旋耕刀升角。

2)通過(guò)三因素二水平二次正交旋轉(zhuǎn)組合試驗(yàn),得出各影響因素對(duì)工況耕深穩(wěn)定系數(shù)和工況耕寬穩(wěn)定系數(shù)影響程度從高到低皆為:犁體配置斜角、牽引角、旋耕刀升角。優(yōu)化分析得出牽引角為17.3°、犁體配置角為27.8°、旋耕升角為72.6°為最優(yōu)參數(shù)組合,此時(shí),工況耕深穩(wěn)定系數(shù)為91.8%,工況耕寬穩(wěn)定系數(shù)為93.4%。

3)驗(yàn)證試驗(yàn)表明,試驗(yàn)后工況耕深穩(wěn)定系數(shù)和工況耕寬穩(wěn)定系數(shù)分別為91.5%與93.1%,與軟件分析結(jié)果基本一致,且復(fù)式耕整機(jī)其他耕作標(biāo)均達(dá)到農(nóng)藝要求。

本文從牽引、機(jī)器水平面內(nèi)受力、振動(dòng)3個(gè)關(guān)鍵方向研究復(fù)式耕整機(jī)耕作穩(wěn)定性,而實(shí)際作業(yè)過(guò)程中,機(jī)器前進(jìn)速度、機(jī)器縱垂面內(nèi)受力,土壤環(huán)境等其他多種因素均會(huì)對(duì)耕作穩(wěn)定性產(chǎn)生影響,因此對(duì)于復(fù)式耕整機(jī)耕作穩(wěn)定性更全面的研究,有待于進(jìn)一步展開(kāi)。

[1] 趙亞麗,薛志偉,郭海斌,等. 耕作方式與秸稈還田對(duì)土壤呼吸的影響及機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(19):155-165. Zhao Yali, Xue Zhiwei, Guo Haibin, et al. Effects of tillage and crop residue management on soil respiration and its mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 155-165. (in Chinese with English abstract)

[2] 劉世平,聶新濤,張洪程,等. 稻麥兩熟條件下不同土壤耕作方式與秸稈還田效用分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(7):48-51. Liu Shiping, Nie Xintao, Zhang Hongcheng, et al. Effects of tillage and straw returning on soil fertility and grain yield in a wheat-rice double cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 48-51. (in Chinese with English abstract)

[3] 沈丹波,繆明,丁煒. 稻麥秸稈犁翻旋耕復(fù)式作業(yè)耕整機(jī)的研制[J]. 農(nóng)業(yè)裝備技術(shù),2014,40(4):14-16.

[4] 張青松,汲文峰,廖宜濤,等. 油菜直播機(jī)鏵式開(kāi)畦溝前犁曲面分析與阻力特性試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):130-135. Zhang Qingsong, Ji Wenfeng, Liao Yitao, et al. Surface analysis and resistance characteristics experiment on ditch Plow ahead of direct rapeseed seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 130-135. (in Chinese with English abstract)

[5] 汲文峰,賈洪雷,佟金. 旋耕-碎茬仿生刀片田間作業(yè)性能的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(12):24-30. Ji Wenfeng, Jia Honglei, Tong Jin. Experiment on working performance of bionic blade for soil-rototilling and stubble-breaking[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 24-30. (in Chinese with English abstract)

[6] Ryan W H, Stephen S J, Arron H C. Wheat cultivar performance and stability between no-till and conventional tillage systems in the pacific Northwest of the United States[J]. Sustainability, 2013, 5: 882-895.

[7] 孫松林,吳明亮,謝方平,等. 水田耕整機(jī)犁耕作業(yè)穩(wěn)定性分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(12):217-221.

[8] 熊一兵. 手扶拖拉機(jī)耕深穩(wěn)定性分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1966,9(3):244-247.

[9] 柳克令. 懸掛犁耕深穩(wěn)定性研究的初步評(píng)述[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1966,9(3):275-281.

[10] 張欣悅,趙大勇,許春林,等. 1GMMZ-280/4型壟作組合式滅茬旋耕整地機(jī)[J]. 農(nóng)機(jī)化研究,2012,34(6):23-26. Zhang Xinyue, Zhao Dayong, Xu Chunlin, et al. The development of 1GMMZ-280/4 type ridge culture combined-type stubble ploughing, spin tillage soil preparation machine[J]. Journal of Agricultural Mechanization Research, 2012, 34(6): 23-26. (in Chinese with English abstract)

[11] 張居敏,周勇,夏俊芳,等. 旋耕埋草機(jī)螺旋橫刀的數(shù)學(xué)建模與參數(shù)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(1):18-25. Zhang Jumin, Zhou Yong, Xia Junfang, et al. Mathematical modeling and analysis of helical blade for stubble burying rotary tiller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 18-25. (in Chinese with English abstract)

[12] Onwualu A P,Watts K C. Draught and vertical forces obtained from dynamic soil cutting by plane tillage tools[J]. Soil & Tillage Research, 1998, 48(4): 239-253.

[13] 張居敏,賀小偉,夏俊芳,等. 高茬秸稈還田耕整機(jī)功耗檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):38-46. Zhang Jumin, He Xiaowei, Xia Junfang, et al. Design and field experiment of power consumption measurement system for high stubble returning and tillage machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 38-46. (in Chinese with English abstract)

[14] 趙大勇,李連豪,許春林,等. 1ZQHF-350/5型前后分置懸掛式聯(lián)合整地機(jī)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):91-96. Zhao Dayong, Li Lianhao, Xu Chunlin, et al. 1ZQHF-350/5 hang combined cultivating machine with front-stubblebreaking, post-subsoil and rotary-tilling equipment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 91-96. (in Chinese with English abstract)

[15] 張秀梅,張居敏,夏俊芳,等. 水旱兩用秸稈還田耕整機(jī)關(guān)鍵部件設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):10-16. Zhang Xiumei, Zhang Jumin, Xia Junfang, et al. Design and experiment on critical component of cultivator for straw returning in paddy field and dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 10-16. (in Chinese with English abstract)

[16] 車剛,張偉,萬(wàn)霖,等. 基于滅茬圓盤驅(qū)動(dòng)旋耕刀多功能耕整機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):34-40. Che Gang, Zhang Wei, Wan Lin, et al. Design and experiment of multifunctional tillage machine with driven bent blade by stubble ploughing disk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 34-40. (in Chinese with English abstract)

[17] 車剛,張偉,梁遠(yuǎn),等. 3ZFC-7 型全方位復(fù)式中耕機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1):130-135. Che Gang, Zhang Wei, Liang Yuan, et al. Design and experiment of the 3ZFC-7 omni-bearing duplex type cultivator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 130-135. (in Chinese with English abstract)

[18] 羅金海,孫佳民,楊莉,等. 9BQS-3.0型氣吹式松土播種復(fù)式作業(yè)機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊1):52-66. Luo Jinhai, Sun Jiamin, Yang Li, et al. Design and experiment of type 9BQS-3.0 pneumatic scarifying and sowing compound operation machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp.1): 52-66. (in Chinese with English abstract)

[19] 蔣金琳,龔麗農(nóng),王東偉,等. 免耕播種機(jī)雙刀盤有支撐切茬破茬裝置的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):17-22. Jiang Jinlin, Gong Linong, Wang Dongwei, et al. Development and experiment for driving double coulters anti-blockage device of no-till planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 17-22. (in Chinese with English abstract)

[20] 謝斌,李皓,朱忠祥,等. 基于傾角傳感器的拖拉機(jī)懸掛機(jī)組耕深自動(dòng)測(cè)量方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(4):15-21. Xie Bin, Li Hao, Zhu Zhongxiang, et al. Measuring tillage depth for tractor implement automatic using inclinometer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 15-21. (in Chinese with English abstract)

[21] 邱進(jìn),吳明亮,官春云,等. 動(dòng)定刀同軸水稻秸稈切碎還田裝置結(jié)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):11-19. Qiu Jin, Wu Mingliang, Guan Chunyun, et al. Design and experiment of chopping device with dynamic fixed knife coaxial for rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 11-19. (in Chinese with English abstract)

[22] 陳玉侖,丁為民,方志超,等. 全喂入式聯(lián)合收割機(jī)碎草脫粒裝置的改進(jìn)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(24):11-16. Chen Yulun, Ding Weimin, Fang Zhichao, et al. Improved design of straw-cutting type threshing mechanism of full-feeding combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 11-16. (in Chinese with English abstract)

[23] Radite P, Hermawan W, Mulyana F, et al. Experimental investigation on the application of vibration to reduce draft requirement of subsoiler[J]. International Agricultural Engineering Journal, 2010, 19(1): 31-38.

[24] 賈洪雷,陳忠亮,郭紅,等. 旋耕碎茬工作機(jī)理研究和通用刀輥的設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2000,31(4):29-32. Jia Honglei, Chen Zhongliang, Guo Hong, et al. Study on working principle of rotary tillage and stubble cutting and design of universal knife roller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(4): 29-32. (in Chinese with English abstract)

[25] Siemens M C, Wilkins D E, Correa R F. Development and evaluation of a residue management wheel for hoe-type no-till drills[J]. Transactions of the ASAE, 2004, 47(2): 397-404.

[26] 余水生. 水田高茬秸稈還田耕整機(jī)的研制[D]. 武漢:華中農(nóng)業(yè)大學(xué),2012. Yu Shuisheng. Research and Trial-manufacture of Straw Returning and Tillage Machine for High Stubble Paddy Field[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese with English abstract)

Analysis and experiment of tillage depth and width stability for plowing and rotary tillage combined machine

Qin Kuan1,2, Ding Weimin1,2※, Fang Zhichao1,2, Du Taotao1, Zhao Siqi1, Wang Zhen1
(1. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China; 2. Jiangsu Key Laboratory for Intelligent Agricultural Equipment, Nanjing 210031, China)

The plowing and rotary tillage combined machine developed in this study is a duplex-operation scarification machine designed with the combination of plough mechanism and rotary tillage mechanism in the front. Such a design allows the cultivator to accomplish multiple tasks simultaneously, such as plow tillage, rotary tillage, straw chopping for mulching, soil pulverization, soil covering, and surface leveling. To investigate the stability of the plowing and rotary tillage combined machine, the factors such as cultivator tillage stability were examined from 3 different aspects: traction, force analysis in the horizontal plane, and vibration analysis. The center of mass of the machine could be determined on the longitudinal vertical plane of the machine, where the traction line passing through the instantaneous center of rotation intersected with the vertical line passing through the center of mass. The traction angle (15°-30°), i.e., the angle between traction line and horizontal line , was a crucial factor affecting tillage stability. The forces acting on the machine on the horizontal plane during operation were analyzed to obtain the plow tilt angle (23°-30°) from the equilibrium equations of the plough, rotary blade, and traction forces on the horizontal plane; the plow tilt angle affected tillage stability by directly impacting the force balance on the horizontal plane. From an analysis of the vibrational excitation during machine operation, it was determined that alternating load in rotary blade operations was the main source of machine vibration excitation. The lift angle of the rotary blade (54°-85°) affected the alternating load, therefore influencing tillage stability. The traction angle, plow tilt angle, and lift angle of the rotary blade were used as the experimental variables, and the stability coefficient under tillage depth-based working conditions and the stability coefficient under tillage width-based working conditions were used as the experimental indicators in a 3-factor/2-level quadratic orthogonal rotating combinatorial test to determine the optimal parameter combination of the influencing factors. Subsequently, the regression equations with the stability coefficient as the objective functions as well as the response surface for the stability coefficient could be obtained by analyzing the test results using the Design-Expert software. The variance analysis showed that among the 3 variables in the test, the plow tilt angle had the greatest influence on the tillage depth and tillage width stability coefficients, while the lift angle of the rotary blade had the least influence on the coefficients. The response surface analysis showed that with a fixed lift angle of the rotary blade of 69.5°, an optimal tillage depth stability coefficient of 91.7% could be obtained with traction angle and plow tilt angle of 23.7° and 26.8°, respectively. An optimal tillage width stability coefficient of 93.2% could be achieved with traction angle and plow tilt angle of 25.2° and 27.3°, respectively. The optimal parameter combination was traction angle of 17.3°, plow tilt angle of 27.8°, and rotary blade’s lift angle of 72.6°. This optimal combination could achieve the working condition tillage depth stability coefficient of 91.8% and the tillage width stability coefficient of 93.4%, respectively. The validation experiments showed that with the optimal parameter combination of the influencing factors, the working condition tillage depth stability coefficient and the tillage width stability coefficient were 91.5% and 93.1%, respectively; these results were consistent with the ones obtained via software analysis. Other tillage performance indicators of the machine, such as tillage depth, tillage width, surface leveling degree, pulverization rate, and straw coverage rate which were respectively 1.87, 1.98, 21.20, 90.30% and 90.70%, all met the agronomic requirements.

agricultural machinery; optimization; stability; plough and rotary tillage; recombination; tilling depth; tilling width

10.11975/j.issn.1002-6819.2016.09.001

S222.4

A

1002-6819(2016)-09-0001-08

秦 寬,丁為民,方志超,杜濤濤,趙思琪,王 朕.復(fù)式耕整機(jī)耕深與耕寬穩(wěn)定性分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):1-8.

10.11975/j.issn.1002-6819.2016.09.001 http://www.tcsae.org

Qin Kuan, Ding Weimin, Fang Zhichao, Du Taotao, Zhao Siqi, Wang Zhen. Analysis and experiment of tillage depth and width stability for plowing and rotary tillage combined machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 1-8. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.001 http://www.tcsae.org

2015-10-25

2016-03-05

國(guó)家科技支撐計(jì)劃項(xiàng)目資助(2013BAD08B04)

秦 寬,男,安徽蚌埠人,博士生,主要研究方向?yàn)檗r(nóng)業(yè)機(jī)械化裝備研究。南京 南京農(nóng)業(yè)大學(xué)工學(xué)院,210031。Email:qinkuan_njau@163.com

※通信作者:丁為民,男,安徽合肥人,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械化裝備研究。南京 南京農(nóng)業(yè)大學(xué)工學(xué)院,20031。Email:wmding@njau.edu.cn

猜你喜歡
耕深復(fù)式耕作
拖拉機(jī)多重模糊PID變論域耕深調(diào)節(jié)研究
各式各樣的復(fù)式條形統(tǒng)計(jì)圖
基于卡爾曼濾波融合算法的深松耕深檢測(cè)裝置研究
略談“垂直互動(dòng)”復(fù)式教學(xué)的作用
甘肅教育(2020年4期)2020-09-11 07:42:04
懸掛式深松機(jī)耕深監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與試驗(yàn)
澳門復(fù)式住宅
線性擬合與Kalman預(yù)測(cè)法修正耕深測(cè)量誤差
耕作深度對(duì)紫色土坡地旋耕機(jī)耕作侵蝕的影響
玉米保護(hù)性耕作的技術(shù)要領(lǐng)
草地耕作技術(shù)在澳大利亞的應(yīng)用
土壤與作物(2015年3期)2015-12-08 00:46:58
永城市| 平罗县| 兴国县| 乳山市| 肇州县| 吴旗县| 麻城市| 房产| 儋州市| 乳山市| 泸定县| 潞城市| 苍溪县| 泸西县| 社会| 翼城县| 孝感市| 瑞金市| 碌曲县| 镇原县| 运城市| 庄河市| 太谷县| 堆龙德庆县| 乌海市| 西和县| 西充县| 莱西市| 建宁县| 湘西| 宜丰县| 芷江| 铁力市| 宜城市| 内江市| 噶尔县| 长兴县| 荆门市| 瑞昌市| 图们市| 乌鲁木齐县|