趙 冬,許明祥,劉國彬,張蓉蓉,脫登峰
(1. 中國科學(xué)院水利部水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;2. 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌 712100;3. 西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100;4. 中國科學(xué)院大學(xué)資源與環(huán)境學(xué)院,北京 100049)
用顯微CT研究不同植被恢復(fù)模式的土壤團(tuán)聚體微結(jié)構(gòu)特征
趙 冬1,4,許明祥1,2,劉國彬1※,張蓉蓉2,脫登峰3
(1. 中國科學(xué)院水利部水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;2. 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌 712100;3. 西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100;4. 中國科學(xué)院大學(xué)資源與環(huán)境學(xué)院,北京 100049)
為了更好了解不同植被恢復(fù)模式對(duì)土壤團(tuán)聚體微結(jié)構(gòu)的影響,該研究采用顯微CT技術(shù)掃描3~5 mm土壤團(tuán)聚體,獲取了3.25 μm分辨率的二維圖像,并應(yīng)用數(shù)字圖像處理軟件對(duì)團(tuán)聚體孔隙結(jié)構(gòu)進(jìn)行三維重建,定量研究了黃土丘陵區(qū)不同植被恢復(fù)模式下(自然草地、人工灌木和坡耕地)土壤團(tuán)聚體微結(jié)構(gòu)特征。結(jié)果表明,兩種植被恢復(fù)模式均顯著提高了土壤有機(jī)碳含量和團(tuán)聚體水穩(wěn)性(P<0.05),降低了土壤容重。與坡耕地處理相比,自然草地土壤團(tuán)聚體總孔隙度、大孔隙度(>100 μm)、瘦長型孔隙度分別增加了20%、23%和24%,而分形維數(shù)和連通性指數(shù)歐拉特征值分別降低了2%和75%,且各指標(biāo)二者間差異均顯著(P<0.05)。人工灌木土壤團(tuán)聚體的上述各項(xiàng)孔隙參數(shù)均優(yōu)于自然草地(較坡耕地分別增加了70%、88%和43%以及降低了4%和92%),且除歐拉特征值外,差異均顯著(P<0.05)。分形維數(shù)和連通性對(duì)土壤結(jié)構(gòu)變化的響應(yīng)相當(dāng)敏感,可作為該地區(qū)植被恢復(fù)過程中土壤質(zhì)量評(píng)價(jià)的指標(biāo),研究結(jié)果可為黃土高原土壤質(zhì)量評(píng)價(jià)提供科學(xué)參考。
土壤;團(tuán)聚體;圖像處理;顯微CT;微結(jié)構(gòu);植被恢復(fù);黃土丘陵區(qū)
土壤結(jié)構(gòu)是維持土壤功能的基礎(chǔ)。作為土壤結(jié)構(gòu)重要組成單元的團(tuán)聚體,其大小分布和穩(wěn)定性影響著土壤的孔隙性、持水性、通透性和抗蝕性,是評(píng)價(jià)土壤肥力和土壤質(zhì)量的重要指標(biāo)之一[1-2]。在土壤結(jié)構(gòu)問題研究方面,盡管土壤團(tuán)聚體的數(shù)量和分布以及穩(wěn)定性等較為準(zhǔn)確地反映了土壤的結(jié)構(gòu)狀況[3-5],但這些土壤團(tuán)聚體指標(biāo)包涵的信息非常有限,尤其是忽略了團(tuán)聚體內(nèi)部結(jié)構(gòu)的差異,難以區(qū)分和判別各類土壤團(tuán)聚體性狀與特征[6]。土壤團(tuán)聚體微結(jié)構(gòu)決定著土壤水分運(yùn)移、養(yǎng)分循環(huán)和微生物活動(dòng),從而影響著土壤的生物地球化學(xué)反應(yīng)[7]。因此,為了模擬和預(yù)測土壤中各種物理、化學(xué)及生物過程,進(jìn)而更加準(zhǔn)確地評(píng)價(jià)土壤的質(zhì)量水平,有必要進(jìn)行團(tuán)聚體內(nèi)部微結(jié)構(gòu)的研究。
由于土壤組成的復(fù)雜性和結(jié)構(gòu)的易破碎性,以及研究方法的限制,無損地真實(shí)地獲得團(tuán)聚體內(nèi)部結(jié)構(gòu)非常困難[8]。近年來,以計(jì)算機(jī)斷層掃描(computed tomography,CT)為代表的無損探測技術(shù)為快速、準(zhǔn)確獲取土壤三維結(jié)構(gòu)提供了可行的技術(shù)手段。尤其是顯微CT具有掃描快速、成像對(duì)比度強(qiáng)及分辨率高的優(yōu)點(diǎn),使得土壤結(jié)構(gòu)的研究延伸到團(tuán)聚體微結(jié)構(gòu)[9-11]。Dal Ferro等[12]利用顯微CT,構(gòu)建了土壤團(tuán)聚體的三維結(jié)構(gòu),定量研究了土壤有機(jī)碳對(duì)團(tuán)聚體孔隙結(jié)構(gòu)的影響。周虎等[13]通過顯微CT分析了不同耕作年限水稻土團(tuán)聚體的三維微結(jié)構(gòu)特征,指出隨著種植年限的增加,團(tuán)聚體微結(jié)構(gòu)和土壤質(zhì)量明顯改善。通過CT掃描和數(shù)字圖像處理技術(shù),不僅可以直觀可視化研究土壤團(tuán)聚體的三維結(jié)構(gòu),還可以定量表征團(tuán)聚體內(nèi)部孔隙的連通性和復(fù)雜性[10,14],從而更好地了解土壤團(tuán)聚體形成機(jī)制及其與土壤性質(zhì)、環(huán)境等因素之間的關(guān)系。
植被恢復(fù)是黃土高原地區(qū)生態(tài)環(huán)境建設(shè)的重要措施,植被恢復(fù)的實(shí)施改變了不合理的土地利用方式,促進(jìn)了土壤肥力恢復(fù)和土壤質(zhì)量的改善[15]。目前多數(shù)研究主要集中在植被恢復(fù)對(duì)土壤容重、孔隙度以及團(tuán)聚體含量和穩(wěn)定性的影響等方面[16-18],而研究土壤團(tuán)聚體微結(jié)構(gòu)對(duì)植被恢復(fù)的響應(yīng)還相對(duì)較少。本文以黃土丘陵區(qū)不同植被恢復(fù)類型土壤為研究對(duì)象,利用同步輻射顯微CT和圖像分析技術(shù)研究了土壤團(tuán)聚體內(nèi)部微結(jié)構(gòu)特征,探討了植被恢復(fù)對(duì)團(tuán)聚體結(jié)構(gòu)的影響,以期為黃土高原土壤質(zhì)量評(píng)價(jià)提供科學(xué)依據(jù)。
1.1 研究區(qū)域概況
研究區(qū)位于陜西省安塞縣紙坊溝流域(36°43′11″-36°46′25″N,109°13′46″-109°16′33″E),屬典型黃土丘陵溝壑區(qū),流域面積8.27 km2。研究區(qū)屬暖溫帶半干旱氣候,年平均氣溫8.8℃,平均無霜期159 d。多年平均降雨量為505 mm,降雨年際變化大且年內(nèi)分配不均,其60%以上降雨集中在7-9月份,年蒸發(fā)量為1010~1400 mm。土壤為黃土母質(zhì)上發(fā)育的黃綿土,土壤抗沖抗蝕能力差,水土流失嚴(yán)重。受地形地貌和人類經(jīng)濟(jì)活動(dòng)的多重影響,特別是毀林開荒的加劇,導(dǎo)致生態(tài)系統(tǒng)嚴(yán)重退化[19]。經(jīng)過多年的綜合治理,尤其是“退耕還林工程”的實(shí)施,該區(qū)域生態(tài)系統(tǒng)得以逐步恢復(fù),并進(jìn)入良性循環(huán)的軌道[20]。
1.2 樣地選擇與樣品采樣
在研究區(qū)內(nèi),根據(jù)流域地貌特征、植被以及土地利用狀況,以典型性和代表性為原則,在流域內(nèi)選擇退耕前種植背景相同,坡度坡向相似,年限均為23 a的自然草地(natural grassland,GL)和人工灌木林(artificial shrubland,SL)。同時(shí)設(shè)置相應(yīng)的坡耕地(slope cropland,CK)作為對(duì)照。樣地的基本特征如表1。
表1 樣地基本地形及植被特征Table 1 Geographical features and vegetation characteristics of sampling sites
2014年8月,在各樣地選取3個(gè)20 m×20 m研究小區(qū),在每個(gè)小區(qū)內(nèi)布設(shè)5個(gè)點(diǎn),采集表層0~20 cm土樣。將各個(gè)小區(qū)的土樣混合,然后用四分法取出足夠樣品。樣品混合均勻后,分為兩部分。綜合考慮儀器分辨率、測樣時(shí)間和樣品大小,通常選取3~5 mm團(tuán)聚體作為團(tuán)聚體微結(jié)構(gòu)的研究對(duì)象[11,13]。一部分通過5 mm篩和3 mm篩,用于土壤團(tuán)聚體測定,另一部分挑出雜物,風(fēng)干,用于測定土壤理化性質(zhì)。團(tuán)聚體穩(wěn)定性采用Le Bissonnais 法[21],快速濕潤處理,篩分后計(jì)算平均質(zhì)量直徑(mean weight diameter,MWD)。土壤容重采用環(huán)刀法,顆粒組成采用英國馬爾文公司的MS2000型激光粒度儀測定;有機(jī)碳采用重鉻酸鉀氧化外加熱法。在CT掃描之前土壤團(tuán)聚體在40℃下烘干24 h,并置于冰箱中4℃下保存。
1.3 CT掃描和圖像重建
由于束流時(shí)間的限制,每個(gè)處理隨機(jī)選擇3個(gè)3~5 mm團(tuán)聚體樣品進(jìn)行CT掃描[13]。團(tuán)聚體樣品CT掃描在上海光源X射線成像及生物醫(yī)學(xué)應(yīng)用光束線/實(shí)驗(yàn)站(BL13W1)完成,光子能量設(shè)置為24 keV,分辨率3.25 μm。曝光時(shí)間為1.8 s,樣品臺(tái)與探測器距離為12 cm。將樣品固定在樣品臺(tái)上,樣品臺(tái)在水平方向從0到180°勻速旋轉(zhuǎn),共采集720幅投影圖像。然后利用上海光源PITRE軟件進(jìn)行圖像重建,采用背投影算法重建獲得約550張大小為1 024×1 024像素的32位tiff格式的灰度圖像,再將其轉(zhuǎn)存為8位tiff格式的灰度圖像,灰度值范圍為0~255。
1.4 圖像處理
重建后切片圖像的處理以及團(tuán)聚體三維結(jié)構(gòu)的可視化、定量化利用ImageJ1.48V軟件完成。為消除不同CT切片圖像間亮度差別,首先利用ImageJ軟件的Normalize命令對(duì)圖像進(jìn)行歸一化處理。為了避免邊界部分的影響,選取團(tuán)聚體中間部分500×500×500體元(即1.625 mm× 1.625 mm×1.625 mm)進(jìn)行圖像分析。對(duì)灰度圖像的二值分割是土壤結(jié)構(gòu)定量分析的關(guān)鍵,不同分割方法對(duì)土壤結(jié)構(gòu)特征分析結(jié)果影響很大[13]。二值分割是指灰度圖像通過閾值化被分割為二部分(黑色和白色兩種顏色來表征):土壤基質(zhì)和孔隙。本研究采用全局閾值法,結(jié)合實(shí)際的土壤孔隙度反復(fù)調(diào)試確定每個(gè)圖像的分割閾值。圖像二值化后,團(tuán)聚體的三維結(jié)構(gòu)的可視化通過ImageJ 3D viewer插件實(shí)現(xiàn)(見圖1)。
同時(shí),對(duì)于分割后的二值圖像,利用ImageJ插件分別獲取孔隙度、孔隙大小分布[22]、分形維數(shù)[12]和孔隙連通性[23]等。按孔隙當(dāng)量直徑將孔隙分為4個(gè)等級(jí):<30 μm,≥30~75 μm,>75~100 μm和>100 μm[22]。然后通過公式(1)來計(jì)算孔隙形狀系數(shù)(F)[24]。
式中Ae為孔隙等體積球體的表面積,而A為孔隙的實(shí)測表面積。按孔隙形狀系數(shù)將孔隙分為三類:規(guī)則型(F≥0.5),不規(guī)則型(0.2 1.5 統(tǒng)計(jì)分析 采用SPSS20.0統(tǒng)計(jì)分析軟件對(duì)不同植被恢復(fù)土壤團(tuán)聚體微結(jié)構(gòu)參數(shù)的差異性進(jìn)行單因素方差分析(ANOVA)和多重比較(LSD法,P=0.05)。 2.1 不同植被恢復(fù)模式土壤理化性質(zhì) 退耕地植被恢復(fù)后,土壤部分理化性質(zhì)發(fā)生了顯著的變化(表2)。經(jīng)過23 a的植被恢復(fù),與坡耕地(CK)相比,天然草地(GL)和人工灌木(SL)顯著提高了土壤有機(jī)碳的含量,且兩種植被恢復(fù)處理間差異顯著。植被恢復(fù)后,土壤容重降低,而土壤團(tuán)聚體平均質(zhì)量直徑(MWD)顯著增加,但兩種植被恢復(fù)處理間差異并不顯著(P>0.05)。然而在植被恢復(fù)過程中土壤質(zhì)地并沒有發(fā)生顯著變化(P>0.05)。 表2 不同植被類型下土壤理化性質(zhì)Table 2 Soil physical and chemical properties under different vegetation types 圖1 不同植被恢復(fù)類型土壤團(tuán)聚體二維和三維結(jié)構(gòu)Fig.1 2D and 3D visualizations of soil aggregate structures of soil aggregates under different vegetation types 2.2 土壤團(tuán)聚體孔隙度及孔隙大小分布 由于本試驗(yàn)顯微CT圖像分辨率為3.25 μm,所以本文僅討論大于3.25 μm的孔隙。植被恢復(fù)后,GL和SL處理顯著地提高了土壤團(tuán)聚體總孔隙度,分別較CK處理提高了20%和70%(表3)。而GL和SL處理土壤團(tuán)聚體孔隙數(shù)量卻顯著減少,分別減少了68%和62%(表3)。圖2為經(jīng)過圖像分析得到的不同植被土壤團(tuán)聚體孔隙大小分布狀況。當(dāng)量孔徑>100 μm的孔隙度占到總孔隙度的83%以上,且GL和SL處理較CK處理分別提高了23% 和88%。這與團(tuán)聚體的二維和三維結(jié)構(gòu)圖所示一致(圖1)。對(duì)于當(dāng)量孔徑<30 μm和≥30~75 μm的各級(jí)孔隙,兩種植被恢復(fù)處理均顯著小于坡耕地,其中SL處理減少程度大于GL處理。雖然兩種植被恢復(fù)模式當(dāng)量孔徑>75~100 μm的孔隙度均大于CK處理,但是差異不顯著。 圖2 不同植被類型團(tuán)聚體孔隙大小分布Fig.2 Pore size distributions of soil aggregates under different vegetation types 2.3 土壤團(tuán)聚體孔隙形狀特征 土壤孔隙形狀影響著土壤的水力特性[26],尤其是瘦長型孔隙由于其較大的孔壁表面積,更有利于水分和氣體的存儲(chǔ),從而滿足植物生長的需要。不同植被恢復(fù)類型土壤團(tuán)聚體孔隙形狀特征如圖3所示,植被恢復(fù)顯著改變了團(tuán)聚體孔隙形狀分布。瘦長型孔隙為土壤團(tuán)聚體孔隙的主要形態(tài),其所占孔隙度大約為81%,且GL和SL處理較CK處理分別提高了24%和43%。而規(guī)則型和不規(guī)則孔隙所占孔隙度呈現(xiàn)出相反的趨勢。這與圖1中觀察到的現(xiàn)象一致,隨著植被的恢復(fù),土壤團(tuán)聚體中產(chǎn)生了更多的細(xì)長的不規(guī)則的孔隙,呈現(xiàn)明顯的復(fù)雜多孔結(jié)構(gòu)。 圖3 不同植被類型土壤團(tuán)聚體孔隙形狀分布Fig.3 Pore shape distribution of soil aggregates under different vegetation types 2.4 孔隙結(jié)構(gòu)的分形維數(shù)和連通性 為了更好地表征團(tuán)聚體孔隙結(jié)構(gòu)的復(fù)雜度和連通性,本文引入了孔隙形態(tài)參數(shù):分形維數(shù)和歐拉特征數(shù)。由表3可知,團(tuán)聚體孔隙結(jié)構(gòu)的分形維數(shù)在2.77~2.89之間,GL和SL處理較CK處理分別降低了2%和4%,可見植被恢復(fù)顯著地改善了土壤團(tuán)聚體微結(jié)構(gòu),使其結(jié)構(gòu)更加復(fù)雜和穩(wěn)定。GL和SL處理的歐拉特征顯著低于CK處理(P<0.05),分別減少了75%和92%,說明植被恢復(fù)促進(jìn)了團(tuán)聚體孔隙連通性的提高,更利于水分和氣體的流通。此外,最大孔隙所占孔隙度達(dá)到了82%以上,且隨植被恢復(fù)其比例不斷增大(表3),一方面表明團(tuán)聚體的孔隙網(wǎng)絡(luò)是高度連通的,另一方面進(jìn)一步證明植被恢復(fù)對(duì)團(tuán)聚體孔隙結(jié)構(gòu)的改善作用。 表3 不同植被土壤團(tuán)聚體孔隙基本結(jié)構(gòu)參數(shù)Table 3 General properties of soil pore network of aggregates under different vegetation types 植被恢復(fù)促進(jìn)了土壤質(zhì)量的提升,而土壤質(zhì)量改善的基礎(chǔ)是土壤結(jié)構(gòu)的恢復(fù)。只有良好的土壤結(jié)構(gòu)才能有利于土壤各項(xiàng)基本功能的實(shí)現(xiàn)。坡耕地退耕還林還草后,大量的凋落物返回到土壤中,提高了土壤有機(jī)碳的含量,并且促進(jìn)土壤團(tuán)聚體的形成及其穩(wěn)定性的提高[3],從而增強(qiáng)土壤抗蝕性,防止土壤退化。同時(shí)由于植被地下根系的增多,使得根在土壤中的穿透和扎伸能力增強(qiáng),造成土壤容重下降,土壤結(jié)構(gòu)相對(duì)松散、通透性好[27]。平均質(zhì)量直徑(MWD)值越大,說明團(tuán)聚體穩(wěn)定性越好。天然草地和人工灌木均提高了土壤團(tuán)聚體穩(wěn)定性(表2),但這兩種植被恢復(fù)之間并沒有顯著差異(P>0.05),可見盡管通過土壤團(tuán)聚體穩(wěn)定性能夠反映出土壤團(tuán)聚體的綜合變化,然而不同植被土壤團(tuán)聚體內(nèi)部結(jié)構(gòu)的異同以及結(jié)構(gòu)發(fā)育的程度卻無法得知,因此本文開展的團(tuán)聚體微結(jié)構(gòu)的研究顯得更加重要。 通過對(duì)土壤團(tuán)聚體二維和三維形態(tài)的觀察,并結(jié)合圖像分析,本研究發(fā)現(xiàn),植被恢復(fù)顯著地改善了土壤團(tuán)聚體孔隙結(jié)構(gòu)狀況。相較于坡耕地,植被恢復(fù)顯著提高了團(tuán)聚體總孔隙度、孔徑>100 μm的孔隙度、瘦長型孔隙度,這與Zhou等的研究結(jié)果接近,其指出植被恢復(fù)顯著增加了團(tuán)聚體孔隙度,尤其是大孔隙所占孔隙度。一般將當(dāng)量直徑>100 μm定義為大孔隙(通氣孔隙或非毛管孔隙)[28],因此大孔隙的增多,增加了土壤通氣性,提高導(dǎo)水率,從而土壤結(jié)構(gòu)也就更好。此外,利用分形維數(shù)和孔隙連通性指標(biāo)歐拉特征值,來量化表征團(tuán)聚體微結(jié)構(gòu)的形態(tài)特征,也發(fā)現(xiàn)植被恢復(fù)土壤團(tuán)聚體孔隙結(jié)構(gòu)更加復(fù)雜(較大的分形維數(shù))且連通性更高(較低的歐拉值)??梢娊?jīng)過23a植被恢復(fù),土壤團(tuán)聚體內(nèi)部微結(jié)構(gòu)從緊密的細(xì)孔結(jié)構(gòu)發(fā)育到疏松的復(fù)雜多孔結(jié)構(gòu)[25],有利于水肥保持與供應(yīng),從而提高了土壤肥力和質(zhì)量。 由于不同植被的凋落物成分不同,以及根系的大小、分布等差異,造成不同植被土壤的團(tuán)聚體微結(jié)構(gòu)不同[15]。通過對(duì)孔隙系統(tǒng)(總孔隙度,大孔隙度,瘦長型孔隙度,分形維數(shù)和連通性)的定量分析,發(fā)現(xiàn)相較于天然草地,人工灌木土壤團(tuán)聚體具有更加連通的穩(wěn)定結(jié)構(gòu)。Zhao等[17]利用CT技術(shù)研究黃土高原植被演替下土壤孔隙特征,也得到類似的結(jié)果,即灌木的土壤孔隙結(jié)構(gòu)優(yōu)于草本。究其原因,一方面是灌木具有更加發(fā)達(dá)更加強(qiáng)壯的根系系統(tǒng),且根系壽命更長以及較長的生長季節(jié)[29],有利于更多孔隙的形成,使土壤結(jié)構(gòu)更加疏松。另一方面由于灌木土壤含有更多有機(jī)質(zhì),而有機(jī)質(zhì)作為該地區(qū)土壤團(tuán)聚體形成最主要的膠結(jié)物質(zhì)[17],促使更多微團(tuán)聚體形成或微團(tuán)聚體膠結(jié)成大團(tuán)聚體,改善了土壤孔隙狀況,土壤結(jié)構(gòu)得到改善。 本研究發(fā)現(xiàn)孔隙形態(tài)參數(shù)(分形維數(shù)和連通性)能夠量化不同處理團(tuán)聚體微結(jié)構(gòu)的差異,很好地反映孔隙網(wǎng)絡(luò)狀況。通過對(duì)土壤團(tuán)聚體總孔隙度與分形維數(shù)、孔隙連通性指標(biāo)歐拉特征值進(jìn)行相關(guān)性分析(圖4),發(fā)現(xiàn)團(tuán)聚體總孔隙度與分形維數(shù)呈顯著的非線性正相關(guān)性(R2=0.97),而與歐拉特征值呈非線性負(fù)相關(guān)性(R2=0.91)。De Gryze等[30]研究有機(jī)殘?jiān)鼘?duì)土壤團(tuán)聚體孔隙度和孔隙形態(tài)的影響,指出孔隙度與分形維數(shù)存在非線性相關(guān)性。相關(guān)研究表明,連通性不但可以反映不同管理措施對(duì)土壤孔隙特征的影響,而且能夠應(yīng)用在不同尺度上(土塊尺度和團(tuán)聚體尺度)[12]??梢姺中尉S數(shù)和歐拉特征值對(duì)團(tuán)聚體孔隙變化的響應(yīng)是相當(dāng)敏感的,因此在一定程度上可以作為評(píng)價(jià)土壤團(tuán)聚體內(nèi)部復(fù)雜結(jié)構(gòu)的理想指標(biāo)。 盡管CT技術(shù)大大促進(jìn)了土壤結(jié)構(gòu)的研究,然而還存在很多問題急需解決,尤其是圖像處理中閾值的選取仍然還是難點(diǎn),缺乏被廣泛接受的閾值分割方法[31]。因此,未來隨著CT技術(shù)的進(jìn)一步發(fā)展,更高分辨率、更高對(duì)比度和更低噪圖像的獲取,將有利于準(zhǔn)確進(jìn)行二值分割,制定出更加適合的閾值方法,進(jìn)而將該技術(shù)應(yīng)用到更多環(huán)境條件下、更多的土壤類型下的土壤結(jié)構(gòu)研究中。 圖4 土壤團(tuán)聚體總孔隙度與分形維數(shù)及歐拉值的關(guān)系Fig.4 Relationships of total porosity of soil aggregates with fractal dimension and with Euler number 本文利用顯微CT技術(shù)獲得土壤團(tuán)聚體二維圖像,通過計(jì)算機(jī)圖像處理技術(shù),構(gòu)建出團(tuán)聚體的三維立體結(jié)構(gòu),實(shí)現(xiàn)了孔隙網(wǎng)絡(luò)結(jié)構(gòu)的可視化,彌補(bǔ)了傳統(tǒng)方法難以真實(shí)獲得團(tuán)聚體內(nèi)部結(jié)構(gòu)的缺陷。結(jié)果表明,植被恢復(fù)顯著提高了土壤有機(jī)碳含量和團(tuán)聚體水穩(wěn)性(P<0.05),降低了土壤容重。與坡耕地處理相比,自然草地和人工灌木土壤團(tuán)聚體總孔隙度、大孔隙度(>100 μm)、瘦長型孔隙度分別增加了20%、23%、24%和70%、88%、43%,而分形維數(shù)和連通性指數(shù)歐拉特征值分別降低了2%、4% 和75%、92%,說明植被恢復(fù)能促進(jìn)團(tuán)聚體微結(jié)構(gòu)的改善,從而提高了土壤質(zhì)量。人工灌木土壤團(tuán)聚體孔隙結(jié)構(gòu)優(yōu)于自然草地,主要是由于其有較高的有機(jī)碳含量和更發(fā)達(dá)的根系系統(tǒng)。分形維數(shù)和連通性能很好反映團(tuán)聚體形態(tài)結(jié)構(gòu)的變化,可作為黃土丘陵區(qū)植被恢復(fù)過程中土壤質(zhì)量評(píng)價(jià)的指標(biāo)。 [1] 盧金偉,李占斌. 土壤團(tuán)聚體研究進(jìn)展[J]. 水土保持研究,2002,9(1):81-85. Lu Jinwei, Li Zhanbin. Advance in soil aggregate study[J]. Research of Soil and Water Conservation, 2002, 9(1): 81-85. (in Chinese with English abstract) [2] 安韶山,黃懿梅,李壁成,等. 黃土丘陵區(qū)植被恢復(fù)中土壤團(tuán)聚體演變及其與土壤性質(zhì)的關(guān)系[J]. 土壤通報(bào),2006,37(1):45-50. An Shaoshan, Huang Yimei, Li Bicheng, et al. Characteristics of soil water stable aggregates and relationship with soil properties during vegetation rehablitation in a Loess hilly region[J]. Chinese Journal of Soil Scienc, 2006, 37(1): 45-50. (in Chinese with English abstract) [3] 彭新華,張斌,趙其國. 紅壤侵蝕裸地植被恢復(fù)及土壤有機(jī)碳對(duì)團(tuán)聚體穩(wěn)定性的影響[J]. 生態(tài)學(xué)報(bào),2003,23(10):2176-2183. Peng Xinhua, Zhang Bin, Zhao Qiguo. Effect of soil organic carbon on aggregate stability after vegetative restoration on severely eroded red soil[J]. Acta Ecologica Sinica, 2003, 23(10): 2176-2183. (in Chinese with English abstract) [4] 謝錦升,楊玉盛,陳光水,等. 植被恢復(fù)對(duì)退化紅壤團(tuán)聚體穩(wěn)定性及碳分布的影響[J]. 生態(tài)學(xué)報(bào),2008,28(2):702-709. Xie Jinsheng, Yang Yusheng, Chen Guangshui, et al. Effects of vegetation restoration on water stability and organic carbon distribution in aggregates of degraded red soil in subtropics of China[J]. Acta Ecologica Sinica, 2008, 28(2): 702-709. (in Chinese with English abstract) [5] 于寒青,李勇,金發(fā)會(huì),等. 黃土高原植被恢復(fù)提高大于0.25 mm粒級(jí)水穩(wěn)性團(tuán)聚體在土壤增碳中的作用[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2012,18(4):877-884. Yu Hanqing, Li Yong, Jin Fahui, et al. The role of increasing soil water-stable aggregates with diameter >0.25 mm by vegetation restoration in enhancement of soil organic carbon in the Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 877-884. (in Chinese with English abstract) [6] 祁迎春,王益權(quán),劉軍,等. 不同土地利用方式土壤團(tuán)聚體組成及幾種團(tuán)聚體穩(wěn)定性指標(biāo)的比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1):340-347. Qi Yingchun, Wang Yiquan, Liu Jun, et al. Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 340-347. (in Chinese with English abstract) [7] Peth S, Horn R, Beckmann F, et al. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography[J]. Soil Science Society of America Journal, 2008, 72(4): 897-907. [8] 周虎,李文昭,張中彬,等. 利用X射線CT研究多尺度土壤結(jié)構(gòu)[J]. 土壤學(xué)報(bào),2013,50(6):159-163. Zhou Hu, Li Wenzhao, Zhang Zhongbin, et al. Characterization of multi-scale soil structure with X-ray computed tomography[J]. Acta Pedologica Sinica, 2013, 50(6): 159-163. (in Chinese with English abstract) [9] Deurer M, Grinev D, Young I, et al. The impact of soil carbon management on soil macropore structure: a comparison of two apple orchard systems in New Zealand[J]. European Journal of Soil Science, 2009, 60(6): 945-955. [10] Dal Ferro N, Delmas P, Duwig C, et al. Coupling X-ray microtomography and mercury intrusion porosimetry to quantify aggregate structures of a cambisol under different fertilisation treatments[J]. Soil and Tillage Research, 2012, 119: 13-21. [11] 李文昭,周虎,陳效民,等. 基于同步輻射顯微CT研究不同施肥措施下水稻土團(tuán)聚體微結(jié)構(gòu)特征[J]. 土壤學(xué)報(bào),2014,51(1):67-74. Li Wenzhao, Zhou Hu, Chen Xiaomin, et al. Characterization of aggregate microstructures of paddy soils under different patterns of fertilization with synchrotron radiation micro-CT[J]. Acta Pedologica Sinica, 2014, 51(1): 67-74. (in Chinese with English abstract) [12] Dal Ferro N, Charrier P, Morari F. Dual-scale micro-CT assessment of soil structure in a long-term fertilization experiment[J]. Geoderma, 2013, 204: 84-93. [13] 周虎,彭新華,張中彬,等. 基于同步輻射微CT研究不同利用年限水稻土團(tuán)聚體微結(jié)構(gòu)特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):343-347. Zhou Hu, Peng Xinhua, Zhang Zhongbin, et al. Characterization of aggregate microstructure of paddy soils cultivated for different years with synchrotron based micro-CT[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 343-347. (in Chinese with English abstract) [14] Garbout A, Munkholm L J, Hansen S B. Tillage effects on topsoil structural quality assessed using X-ray CT, soil cores and visual soil evaluation[J]. Soil and Tillage Research, 2013, 128: 104-109. [15] 張超,劉國彬,薛萐,等. 黃土丘陵區(qū)不同植被類型根際土壤微團(tuán)聚體及顆粒分形特征[J]. 中國農(nóng)業(yè)科學(xué),2011,44(3):507-515. Zhang Chao, Liu Guobin, Xue Sha, et al. Fractal features of rhizosphere soil microaggregate and particle-size distribution under different vegetation types in the hilly-gully region of Loess Plateau [J]. Scientia Agricultura Sinica, 2011, 44(3): 507-515. (in Chinese with English abstract) [16] 馬祥華,焦菊英,白文娟. 黃土丘陵溝壑區(qū)退耕植被恢復(fù)地土壤水穩(wěn)性團(tuán)聚體的變化特征[J]. 干旱地區(qū)農(nóng)業(yè)研究,2005,23(3):69-74. Ma Xianghua, Jiao Juying, Bai Wenjuan. The changes of soil water-stable aggregates in abandoned lands during vegetation restoration in hilly and gully regions on the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2005, 23(3): 69-74. (in Chinese with English abstract) [17] Zhao Shiwei, Zhao Yonggang, Wu Jinshui. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau[J]. Science China Earth Sciences, 2010, 53: 617-625. [18] An Shaoshan, Darboux F, Cheng Man. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China)[J]. Geoderma, 2013, 209: 75-85. [19] 薛萐,劉國彬,張超,等. 黃土高原丘陵區(qū)坡改梯后的土壤質(zhì)量效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(4):310-316. Xue Sha, Liu Guobin, Zhang Chao, et al. Effects of terracing slope cropland on soil quality in Hilly Region of Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 310-316. (in Chinese with English abstract) [20] 李鑫,曾全超,安韶山,等. 黃土高原紙坊溝流域不同植物葉片及枯落物的生態(tài)化學(xué)計(jì)量學(xué)特征研究[J]. 環(huán)境科學(xué),2015,36(3):1084-1091. Li Xin, Zeng Quanchao, An Shaoshan, et al. Ecological stoichimetric characteristics in leaf and litter under different vegetation types of Zhifanggou Watershed on the Loess Plateau, China[J]. Environmental Science, 2015, 36(3): 1084-1091. (in Chinese with English abstract) [21] Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology[J]. European Journal 0f Soil Science, 1996, 47: 425-437. [22] Ma Renming, Cai Chongfa, Li Zhaoxia, et al. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography[J]. Soil and Tillage Research. 2015, 149: 1-11. [23] Doube M, K?osowski MM, Arganda-Carreras I, et al. BoneJ: Free and extensible bone image analysis in Image J[J]. Bone, 2010, 47(6): 1076-1079. [24] Wadell H. Volume, shape, and roundness of rock particles[J]. The Journal of Geology, 1932: 443-451. [25] Zhou Hu, Peng Xinhua, Peth S, et al. Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron-based micro-computed tomography[J]. Soil and Tillage Research, 2012, 124: 17-23. [26] Lebron I, Suarez D, Schaap M. Soil pore size and geometry as a result of aggregate-size distribution and chemical composition[J]. Soil Science, 2002, 167(3): 165-172. [27] 劉金福,洪偉. 不同起源格式栲林地的土壤分形特征[J].山地學(xué)報(bào),2001,19(6):565-570. Liu Jinfu, Hong Wei. Study on fractal feature of soil fertility under different original Castanopsis Kanakamii stands[J]. Journal of Mountain Research, 2001, 19(6): 565-570. (in Chinese with English abstract) [28] 柳云龍,施振香,尹駿,等. 旱地紅壤與紅壤性水稻土水分特性分析[J]. 水土保持學(xué)報(bào),2009,2(23):232-235. Liu Yunlong, Shi Zhenxiang, Yi Jun, et al. Analysis of soil water characters between upland red soil and paddy soil [J]. Journal of Soil and Water Conservation, 2009, 2(23): 232-235. (in Chinese with English abstract) [29] Udawatta R P, Anderson S H. CT-measured pore characteristics of surface and subsurface soils influenced by agroforestry and grass buffers [J]. Geoderma, 2008, 145(3): 381-389. [30] De Gryze S, Jassogne L, Six J, et al. Pore structure changes during decomposition of fresh residue: X-ray tomography analyses [J]. Geoderma, 2006, 134(1): 82-96. [31] Zhou Hu, Peng Xinhua, Perfect E, et al. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography[J]. Geoderma, 2013(195/196): 23-30. Characterization of soil aggregate microstructure under different revegetation types using micro-computed tomography Zhao Dong1,4, Xu Mingxiang1,2, Liu Guobin1※, Zhang Rongrong2, Tuo Dengfeng3 Soil aggregate microstructure is a crucial factor that affects various soil physiochemical and biological processes. Vegetation restoration is expected to improve soil microstructure, yet little is known about the extent of changes in soil aggregate microstructure. X-ray micro-computed tomography (micro-CT), in combination with image analysis techniques, can provide three-dimensional (3D) data of porosity and pore size distribution, and is therefore useful to better investigate the 3D microstructure of soil aggregates. The objective of this study was to evaluate the impacts of different revegetation types (artificial shrubland, natural grassland and slope cropland) on the aggregate microstructure on the Loess Plateau using X-ray micro-CT measurements. The sampling sites were all located close to the top of the loess mounds with little difference in terms of aspect, slope gradient, elevation, and previous farming practices. An area of 100 m ×100 m was randomly selected for each site and within this area 3 20 m × 20 m plots were selected for sampling. Three samples of soil aggregate (3-5 mm) within 0.20 m soil profiles selected from each site were scanned at 3.25 μm voxel resolution with SSRF (Shanghai Synchrotron Radiation Facility). Segmentation of the grayscale slices was performed using automatic Otsu thresholding algorithm, and the threshold values were carefully chosen based on visual observation. To avoid edge effects, the sub-volume of 500 × 500 × 500 voxel (1.625 mm × 1.625 mm × 1.625 mm) was extracted for further analyses, representing an inscribed cube of the aggregate. The 3D pore structure was constructed and quantified using the digital image analysis software ImageJ. Aggregate water stability and other soil properties were also evaluated. Results showed that soil organic carbon and aggregate water stability were significantly increased, while soil bulk density was significantly decreased under both revegetation types (artificial shrubland and natural grassland). The surface soil texture showed no significant difference for different revegetation types. The total porosity of the aggregates was increased by approximately 60% and 20%, but the pore number was decreased by about 62% and 68% respectively in the artificial shrubland and the natural grassland compared to the slope cropland. Vegetation restoration affected the pore distribution of soil aggregates, which on the one hand promoted the proportion of >100 μm large pores and on the other hand decreased that of the pore size classes of <30 and 30-75 μm. Revegetation significantly changed the pore shape of soil aggregates, with a shift from regular and irregular pores to elongated pores. The fraction of elongated pores was dominant in all soil samples (on average 81%), and the order was artificial shrubland > natural grassland > cropland. The 3D fractal dimension and connectivity of soil aggregates showed a higher value in both revegetation types, suggesting pore system was improved after vegetation restoration. The total porosity, macro-porosity (>100 μm), fraction of elongated pores, fractal dimension and pore connectivity were significantly higher in the artificial shrubland aggregates compared to the natural grassland aggregates, indicating that the soil structure of the artificial shrubland was more developed than that of the natural grassland. That may be due to a higher organic carbon content and more developed root system under the artificial shrubland. The 3D fractal dimension of soil aggregates showed a curvilinear positive correlation with total porosity, however, Euler number showed a curvilinear negative correlation with total porosity. The fractal dimension and connectivity showed a high sensitivity to the change of soil structure, and thus could be used for evaluating the soil quality during the revegetation in this region. These results from this study can help understand the soil processes and may be used to quantify the effects of management on environment. With the development of computed tomography, it should be widely used to investigate the soil microstructure in more regions; and moreover the process mechanisms of soil aggregates also require further investigation. soils; aggregates; image processing; micro-CT; microstructure; revegetation; hilly-gully region of Loess Plateau 10.11975/j.issn.1002-6819.2016.09.017 S152.4 A 1002-6819(2016)-09-0123-07 趙 冬,許明祥,劉國彬,張蓉蓉,脫登峰.用顯微CT研究不同植被恢復(fù)模式的土壤團(tuán)聚體微結(jié)構(gòu)特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):123-129. 10.11975/j.issn.1002-6819.2016.09.017 http://www.tcsae.org Zhao Dong, Xu Mingxiang, Liu Guobin, Zhang Rongrong, Tuo Dengfeng. Characterization of soil aggregate microstructure under different revegetation types using micro-computed tomography[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 123-129. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.017 http://www.tcsae.org 2015-12-24 2016-03-07 國家自然科學(xué)基金項(xiàng)目(41171422);科技基礎(chǔ)性工作專項(xiàng)(2014FY210100);中科院重點(diǎn)部署項(xiàng)目(KJZD-EW-TZ-G10) 趙 冬,男,河南三門峽人,博士生,主要從事流域生態(tài)及土壤微結(jié)構(gòu)研究。楊凌 中國科學(xué)院水利部水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,712100。Email:zd518pp@163.com ※通信作者:劉國彬,男,陜西榆林人,研究員,博士生導(dǎo)師,研究方向?yàn)榱饔蛏鷳B(tài)學(xué)。楊凌 中國科學(xué)院水利部水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,712100。Email:gbliu@ms.iswc.ac.cn2 結(jié)果與分析
3 討論
4 結(jié)論
(1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; 2. College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China; 3. Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; 4. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)