李學(xué)增,黃炎和,林金石,蔣芳市,郝福星,關(guān)家椿,許煌基,楊丹丹,王振紅
(福建農(nóng)林大學(xué)資源與環(huán)境學(xué)院,福州 350002)
不同寬度沖刷槽對(duì)崩崗崩積體產(chǎn)流產(chǎn)沙的影響
李學(xué)增,黃炎和※,林金石,蔣芳市,郝福星,關(guān)家椿,許煌基,楊丹丹,王振紅
(福建農(nóng)林大學(xué)資源與環(huán)境學(xué)院,福州 350002)
為了解不同寬度沖刷槽對(duì)坡面沖刷侵蝕過(guò)程中產(chǎn)流產(chǎn)沙的影響,該研究以崩崗崩積體為對(duì)象,通過(guò)不同沖刷槽寬度(10、20、30、40、50 cm)和不同單寬流量(1.2×10-2、2.4×10-2、3.6×10-2、4.8×10-2m2/min)相結(jié)合的室內(nèi)模擬沖刷試驗(yàn),研究不同寬度沖刷槽對(duì)崩積體產(chǎn)流產(chǎn)沙的影響。結(jié)果表明:1)單寬流量為1.2×10-2,2.4×10-2,3.6×10-2m2/min時(shí),不同沖刷槽寬度之間徑流率、產(chǎn)沙率存在顯著差異(P<0.05);單寬流量為4.8×10-2m2/min時(shí),不同沖刷槽寬度之間徑流率、產(chǎn)沙率差異不顯著。2)單寬流量一定,不同沖刷槽寬度下徑流率隨時(shí)間變化趨勢(shì)相同;單寬流量為1.2×10-2m2/min時(shí),不同沖刷槽寬度條件下產(chǎn)沙率和含沙量隨時(shí)間變化趨勢(shì)不同,其他單寬流量下產(chǎn)沙率和含沙量隨時(shí)間變化趨勢(shì)相同。3)單寬流量相同,不同沖刷槽寬度下累積徑流量差異不顯著;單寬流量為1.2×10-2,2.4×10-2,3.6×10-2m2/min條件下,不同沖刷槽寬度下累積產(chǎn)沙量和平均含沙量差異顯著(P<0.05)。該研究揭示了沖刷槽寬度對(duì)崩積體產(chǎn)流產(chǎn)沙的影響,為今后試驗(yàn)沖刷槽寬度的選擇提供參考。
沖刷;沙;徑流;崩崗;崩積體;沖刷槽寬度;單寬流量
崩崗是中國(guó)南方紅壤區(qū)典型且嚴(yán)重的水土流失類(lèi)型[1-2],爆發(fā)性強(qiáng)、侵蝕量大、危害嚴(yán)重[3-4]。崩積體是由原山體坡面、崩壁物質(zhì)在水力和重力的作用下崩塌滑落而堆積在崩壁下方的物質(zhì)[5-7],是崩崗侵蝕泥沙的重要來(lái)源,具有土質(zhì)疏松、結(jié)構(gòu)性差,易侵蝕等特點(diǎn)[5]。坡面土壤侵蝕的發(fā)生是降雨、植被、土壤、地形等各因素相互影響和作用的綜合結(jié)果[8],研究坡面土壤侵蝕過(guò)程中各要素對(duì)侵蝕產(chǎn)流產(chǎn)沙的影響對(duì)揭示坡面侵蝕機(jī)理具有重要意義。濕周是計(jì)算坡面徑流水力學(xué)參數(shù)的重要指標(biāo),被證明對(duì)水分入滲和產(chǎn)流產(chǎn)沙具有重要指示作用,而沖刷槽寬度對(duì)濕周有重要影響,但當(dāng)前有關(guān)沖刷槽寬度對(duì)坡面侵蝕的影響研究較少。
研究坡面侵蝕過(guò)程可分為室外和室內(nèi)兩種,通常根據(jù)試驗(yàn)條件選擇不同的沖刷槽寬度。在野外試驗(yàn)方面,要求能夠完整地反映地形地貌特征,設(shè)置小區(qū)寬度在1~3 m之間。郭軍權(quán)等[9]在研究上方來(lái)水對(duì)淺溝侵蝕產(chǎn)沙的野外放水沖刷試驗(yàn)時(shí)采用寬度為1 m的沖刷槽,結(jié)果表明,淺溝徑流率和產(chǎn)沙率均隨流量的增大而增大;汪邦穩(wěn)等[10]在研究南方紅壤區(qū)不同利用土地產(chǎn)流產(chǎn)沙特征時(shí)采用3 m寬徑流小區(qū)。在室內(nèi)模擬沖刷方面,沖刷槽的寬度多在0.1~0.5 m之間。Wang等[11]在研究土壤表面不同結(jié)構(gòu)對(duì)沖刷過(guò)程中土壤分離速率的影響中采用0.1 m寬的沖刷槽;王軍光等[12]在定量研究坡面沖刷過(guò)程中紅壤分離速率時(shí)采用寬度為0.2 m寬的沖刷槽進(jìn)行模擬沖刷;Dong等[13]提出一種測(cè)量細(xì)溝流速的新方法,其研究中采用的沖刷槽寬度為0.2 m;趙純清等[14]在設(shè)計(jì)進(jìn)行土壤侵蝕模擬試驗(yàn)的小型水槽時(shí),設(shè)計(jì)水槽寬度為0.3 m,并通過(guò)研究坡面薄層水流的水力特性等試驗(yàn)驗(yàn)證了裝置的可靠性和實(shí)用性;Zhang等[15]在研究陡坡條件下泥沙輸移能力時(shí)采用的沖刷槽寬度為0.4 m;Zhang等[16]用沖刷試驗(yàn)量化細(xì)溝侵蝕和淺溝侵蝕分離速率時(shí)采用0.5 m寬的沖刷槽。這些研究分別利用不同寬度的沖刷槽進(jìn)行研究,但對(duì)于沖刷槽寬度的選擇并沒(méi)有明確的規(guī)定,且實(shí)際試驗(yàn)中沖刷槽寬度是否會(huì)影響濕周的大小和細(xì)溝的發(fā)育,進(jìn)而對(duì)坡面侵蝕產(chǎn)生影響,還未見(jiàn)研究報(bào)道。此外,穩(wěn)態(tài)條件下單寬流量的大小也會(huì)影響細(xì)溝的發(fā)育,不同沖刷槽寬度是否會(huì)因流量的不同對(duì)細(xì)溝形態(tài)產(chǎn)生影響也缺乏理論支持。鑒于以上現(xiàn)狀,本文將崩崗崩積體與不同寬度沖刷槽對(duì)坡面侵蝕的影響研究結(jié)合起來(lái),通過(guò)室內(nèi)模擬沖刷,分析不同沖刷槽寬度和單寬流量條件下崩積體侵蝕產(chǎn)流產(chǎn)沙特征,為坡面土壤侵蝕機(jī)理研究提供一定依據(jù)。
1.1 試驗(yàn)材料
試驗(yàn)所用土壤2014年10月采集于福建省安溪縣龍門(mén)鎮(zhèn)洋坑村(24°57′N(xiāo),118°03′E)。該位置地處南亞熱帶氣候區(qū),雨量充沛,氣候溫和,年平均氣溫18℃,年降水量1 800 mm。采集土體為花崗巖發(fā)育的崩崗崩積土,自然狀態(tài)下土壤平均容重為1.35 g/cm3,土壤含水率在25.22%~28.55%之間,平均含水率為26.50%。將采集土壤混勻分析后得出采集土壤理化性質(zhì)如下:土壤pH值為5.24;有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為2.09 g/kg;砂粒含量高,可達(dá)到50.25%;黏粒含量低,石礫、粉粒和黏粒所占百分比分別為36.32%、12.00%和1.43%。土壤質(zhì)地疏松,結(jié)構(gòu)性差。
1.2 試驗(yàn)裝置
試驗(yàn)所用土槽為固定式變坡鋼槽,設(shè)計(jì)為5個(gè)不同寬度的沖刷槽,寬度分別為10,20,30,40,50 cm,長(zhǎng)3 m,深1 m。試驗(yàn)土槽上方分別放置相應(yīng)寬度溢流槽,用于保證試驗(yàn)用水均勻平穩(wěn)溢出。采用河北保定蘭格恒流泵有限公司生產(chǎn)的WT600-4F-C型蠕動(dòng)泵控制流量,可調(diào)整誤差小于20 mL/min。模擬沖刷試驗(yàn)于2015年7-10月在福建農(nóng)林大學(xué)金山水土保持科教園人工降雨大廳內(nèi)進(jìn)行。
1.3 試驗(yàn)設(shè)計(jì)和試驗(yàn)過(guò)程
本試驗(yàn)采用雙因素試驗(yàn)設(shè)計(jì)。通過(guò)野外調(diào)查,選定崩崗崩積體沖刷試驗(yàn)坡度為15°,沖刷槽寬度分別為10,20,30,40,50 cm。結(jié)合研究區(qū)常年的降雨數(shù)據(jù),經(jīng)多次室內(nèi)沖刷試驗(yàn)對(duì)單寬流量進(jìn)行標(biāo)定后,設(shè)定單寬流量分別為1.2×10-2,2.4×10-2,3.6×10-2,4.8×10-2m2/min,每個(gè)試驗(yàn)均設(shè)置3個(gè)重復(fù),共計(jì)60場(chǎng)次。試驗(yàn)前將采集土壤自然風(fēng)干后過(guò)10 mm篩,去除根系、石塊等雜物。填土?xí)r先在土槽底部填入60 cm厚沙石,并鋪設(shè)透水紗布,保證試驗(yàn)過(guò)程中水分可以自由下滲。然后在紗布上裝填30 cm厚的試驗(yàn)用土,為求土體盡可能接近野外崩積體,嚴(yán)格控制容重在1.30~1.40 g/cm3,平均容重1.35 g/cm3,并采取分層裝填、壓實(shí)的方法,每次填土厚度為10 cm。試驗(yàn)前采用30 mm/h的雨強(qiáng)降雨,使供試土壤達(dá)到充分飽和,用塑料布覆蓋后放置18 h,使水分自由運(yùn)動(dòng)滲透,保證試驗(yàn)時(shí)土壤含水量保持一致并盡可能接近自然狀態(tài)下土壤水分分布狀況。試驗(yàn)開(kāi)始前,用蠕動(dòng)泵自帶校正功能校正流量至誤差小于20 mL/min,試驗(yàn)開(kāi)始后,水流經(jīng)蠕動(dòng)泵進(jìn)入溢流槽,穩(wěn)流后流經(jīng)防滲布,使水流在坡面上完全分散。用秒表記錄初始產(chǎn)流時(shí)間,并在產(chǎn)流后每分鐘接取一次徑流和泥沙混合樣,單場(chǎng)次試驗(yàn)持續(xù)沖刷20 min。試驗(yàn)后用量筒測(cè)量采集樣品體積,泥沙經(jīng)105℃烘干后稱(chēng)其質(zhì)量,并通過(guò)計(jì)算得出每分鐘含沙量數(shù)據(jù)。
圖1 沖刷試驗(yàn)設(shè)備示意圖Fig.1 Scouring test equipment
1.4 數(shù)據(jù)分析與處理
試驗(yàn)數(shù)據(jù)采用Excel2007和SPSS18.0進(jìn)行處理和分析,繪圖和方差分析通過(guò)Excel2007進(jìn)行,多重比較分析通過(guò)SPSS18.0進(jìn)行。
2.1 坡面產(chǎn)流特征
圖2為不同沖刷槽寬度和單寬流量條件下徑流率隨時(shí)間變化過(guò)程。當(dāng)單寬流量為1.2×10-2m2/min時(shí),整個(gè)沖刷過(guò)程中不同沖刷槽寬度條件下徑流率均逐漸增大,當(dāng)單寬流量為2.4×10-2和3.6×10-2m2/min時(shí),不同沖刷槽寬度徑流率隨時(shí)間的延長(zhǎng)均先增加后趨于穩(wěn)定,可能是因?yàn)樵诖肆髁繒r(shí),各個(gè)沖刷槽寬度下水分入滲一段時(shí)間后,徑流率達(dá)到設(shè)定值,此后徑流率基本穩(wěn)定,入滲進(jìn)入穩(wěn)滲階段[17-18]。當(dāng)單寬流量達(dá)到4.8×10-2m2/min時(shí),隨著時(shí)間的延長(zhǎng),各個(gè)沖刷槽寬度下徑流率逐漸增大至設(shè)定徑流率后緩慢減小,原因可能是在此單寬流量下,徑流的強(qiáng)烈沖刷作用導(dǎo)致坡面土壤質(zhì)地發(fā)生變化,細(xì)顆粒被搬運(yùn),粗顆粒富集,坡面粗糙度增大,而土壤質(zhì)地對(duì)水分入滲影響顯著,土壤質(zhì)地越輕,土壤入滲能力越強(qiáng),徑流率減小[19]。
對(duì)不同單寬流量和沖刷槽寬度下徑流率進(jìn)行方差分析結(jié)果表明,單寬流量為1.2×10-2,2.4×10-2和3.6×10-2m2/min時(shí),不同沖刷槽寬度下徑流率差異達(dá)到顯著水平(P<0.05);單寬流量為4.8×10-2m2/min時(shí),不同沖刷槽寬度下徑流率差異不顯著。進(jìn)一步進(jìn)行多重比較分析可知,單寬流量為1.2×10-2m2/min時(shí),沖刷槽寬度10 cm時(shí)的徑流率與30,40 cm時(shí)的徑流率差異顯著(P<0.05),50 cm的徑流率與20 cm時(shí)的徑流率差異顯著(P<0.05),與30,40 cm情況下徑流率差異極顯著(P<0.01);單寬流量為2.4×10-2m2/min時(shí),沖刷槽10 cm寬度下的徑流率與20,50 cm情況下徑流率差異顯著(P<0.05),與30 cm情況下徑流率差異極顯著(P<0.01),30與40 cm情況下的徑流率差異顯著(P<0.05);單寬流量為3.6×10-2m2/min時(shí),沖刷槽10 cm寬度時(shí)徑流率與30 cm情況下徑流率差異顯著(P<0.05),與40 cm情況下徑流率差異極顯著(P<0.01);單寬流量為4.8×10-2m2/min時(shí),不同沖刷槽寬度下徑流率差異都不顯著。原因可能是當(dāng)單寬流量為1.2×10-2,2.4×10-2和3.6×10-2m2/min時(shí),細(xì)溝發(fā)育較緩,片蝕和溝蝕并存,由于不同沖刷槽寬度下細(xì)溝發(fā)育程度不同而導(dǎo)致徑流率存在差異;當(dāng)單寬流量為4.8×10-2m2/min時(shí),流量較大,細(xì)溝發(fā)育迅速,很快進(jìn)入溝蝕階段,不同沖刷槽寬度下入滲速率相近。
圖2 不同沖刷槽寬度和單寬流量條件下徑流率變化過(guò)程Fig.2 Changes in runoff rate under different width of scouring flumes and discharge per unit width conditions
2.2 坡面產(chǎn)沙特征
不同沖刷槽寬度和單寬流量條件下產(chǎn)沙率變化過(guò)程如圖3所示。不同沖刷槽寬度和單寬流量條件下含沙量變化趨勢(shì)與產(chǎn)沙量變化趨勢(shì)一致。當(dāng)單寬流量為1.2×10-2m2/min,沖刷槽寬度為10、20和30 cm時(shí),產(chǎn)沙率和含沙量呈先增大后穩(wěn)定波動(dòng)變化,而當(dāng)沖刷槽寬度為40和50 cm時(shí),整個(gè)過(guò)程產(chǎn)沙率和含沙量都是逐步遞增的,未到達(dá)平穩(wěn)波動(dòng)階段,這與細(xì)溝的發(fā)育狀況有關(guān),沖刷槽寬度為10、20和30 cm時(shí),細(xì)溝發(fā)育明顯,而沖刷槽寬度為40和50 cm時(shí),細(xì)溝數(shù)量、寬度、長(zhǎng)度和深度都較小,徑流分散,片蝕為主要侵蝕方式,產(chǎn)沙率和含沙量較小,當(dāng)侵蝕方式以片蝕為主轉(zhuǎn)變到細(xì)溝侵蝕為主時(shí),產(chǎn)沙量增大[17]。進(jìn)一步分析可知,單寬流量為1.2×10-2m2/min時(shí),沖刷槽寬度可能會(huì)影響徑流的動(dòng)能和匯集,導(dǎo)致細(xì)溝發(fā)育狀況和溝床粗糙度的差異,不同沖刷槽寬度下產(chǎn)沙量和含沙量因此產(chǎn)生差異。單寬流量為2.4×10-2,3.6×10-2,4.8×10-2m2/min時(shí),不同沖刷槽寬度條件下產(chǎn)沙率和含沙量隨時(shí)間呈現(xiàn)出相同的變化趨勢(shì),大致分為3個(gè)階段,分別是逐步遞增階段、平穩(wěn)波動(dòng)階段和遞減階段。首先,徑流沖刷破壞土體表面,逐漸產(chǎn)生細(xì)溝,產(chǎn)流初期產(chǎn)沙率和含沙量不斷增加,在第二分鐘時(shí)產(chǎn)沙率有所減小,主要是因?yàn)闆_刷第一分鐘時(shí),徑流搬運(yùn)土體表面的松散物質(zhì);其次,在細(xì)溝發(fā)育過(guò)程中,產(chǎn)沙率呈平穩(wěn)波動(dòng),這主要因?yàn)榇藭r(shí)徑流率達(dá)到設(shè)定值;最后,隨著沖刷時(shí)間的延長(zhǎng),細(xì)溝逐漸發(fā)育穩(wěn)定,土壤細(xì)顆粒被搬運(yùn),土體表面粗顆粒富集,這時(shí)徑流搬運(yùn)粗顆粒能力較弱,含沙量和產(chǎn)沙率下降。彭怡等[20]研究表明,土壤中粉粒和黏粒等細(xì)顆粒物質(zhì)容易被優(yōu)先搬運(yùn),而粒徑較大的顆粒不易被搬運(yùn)。在整個(gè)過(guò)程中,由于徑流對(duì)溝壁的沖刷作用,加之溝壁水分長(zhǎng)期處于飽和狀態(tài),會(huì)產(chǎn)生崩塌,因此會(huì)呈現(xiàn)出波動(dòng)變化[21]。與趙淦等[22]的研究相比,本研究多了產(chǎn)沙量遞減階段,可能是由于坡度和沖刷槽寬度不同導(dǎo)致的,趙淦等[22]是在坡度為20°~40°,沖刷槽寬度為1 m的條件下進(jìn)行,而本研究是在坡度為15°的情況下進(jìn)行的,坡度較小,徑流動(dòng)能也較小,加之沖刷槽寬度較小,導(dǎo)致單寬流量相同條件下匯入細(xì)溝的徑流較少,沖刷試驗(yàn)后期徑流難以搬運(yùn)粗顆粒,因此產(chǎn)沙率遞減。
圖3 不同沖刷槽寬度和單寬流量條件下產(chǎn)沙率變化過(guò)程Fig.3 Changes in sediment yield rate under different width of scouring flumes and discharge per unit width conditions
對(duì)不同沖刷槽寬度和單寬流量條件下產(chǎn)沙率進(jìn)行多重比較分析,結(jié)果發(fā)現(xiàn),單寬流量為1.2×10-2m2/min時(shí),沖刷槽寬度30 cm情況下產(chǎn)沙率與20 cm下產(chǎn)沙率差異顯著(P<0.05),與10,40,50 cm下產(chǎn)沙率差異達(dá)到極顯著水平(P<0.01)。通過(guò)對(duì)單寬流量1.2×10-2m2/min時(shí)的細(xì)溝發(fā)育狀況統(tǒng)計(jì)發(fā)現(xiàn),沖刷槽寬度為30 cm時(shí),細(xì)溝平均溝寬和平均溝深均明顯較其他寬度下大,因而產(chǎn)沙率較大。張科利等[23]研究發(fā)現(xiàn),當(dāng)坡面進(jìn)入細(xì)溝侵蝕階段后,產(chǎn)沙量會(huì)增加幾倍到幾十倍,因此細(xì)溝的發(fā)育狀況對(duì)產(chǎn)沙量有極其明顯的影響。單寬流量為2.4×10-2m2/min時(shí),沖刷槽寬度10 cm情況下產(chǎn)沙率與其他沖刷槽寬度下產(chǎn)沙率差異均達(dá)到極顯著水平(P<0.01)。單寬流量為3.6×10-2m2/min時(shí),沖刷槽寬度10 cm情況下產(chǎn)沙率與50 cm下產(chǎn)沙率差異顯著(P<0.05),與沖刷槽寬度30,40 cm下產(chǎn)沙率差異極顯著(P<0.01)。單寬流量為4.8×10-2m2/min時(shí),不同沖刷槽寬度下產(chǎn)沙率差異均不顯著。原因是單寬流量為2.4×10-2,3.6×10-2m2/min,沖刷槽寬度為10 cm時(shí),由于沖刷槽寬度較小,能夠匯入細(xì)溝中的徑流有限,細(xì)溝發(fā)育不明顯,因此產(chǎn)沙率較小[23];當(dāng)單寬流量為4.8×10-2m2/min時(shí),徑流量大,攜沙能力強(qiáng),徑流對(duì)土體的沖刷作用掩蓋了不同沖刷槽寬度對(duì)產(chǎn)沙率的影響,因此不同沖刷槽寬度條件下產(chǎn)沙率差異不顯著。尤其體現(xiàn)在細(xì)溝開(kāi)始發(fā)育階段,不同沖刷槽寬度之間特征曲線(xiàn)重合度較高。
2.3 累積徑流量和累積產(chǎn)沙量特征
對(duì)不同沖刷槽寬度條件下累積徑流量、累積產(chǎn)沙量和平均含沙量進(jìn)行多重比較分析,結(jié)果表明,單寬流量相同時(shí),不同沖刷槽寬度之間累積徑流量沒(méi)有顯著差異,3次重復(fù)試驗(yàn)數(shù)據(jù)標(biāo)準(zhǔn)差也較小,表明沖刷槽寬度對(duì)累積徑流量影響不顯著。從圖4a和圖4b可以看出,單寬流量為1.2×10-2m2/min時(shí),沖刷槽寬度30 cm下累積產(chǎn)沙量和平均含沙量顯著高于沖刷槽寬度10,50 cm下累積產(chǎn)沙量和平均含沙量(P<0.05),其他沖刷槽寬度下累積產(chǎn)沙量和平均含沙量差異不顯著。沖刷槽寬度為30和50 cm時(shí)差異達(dá)到最大,累積產(chǎn)沙量分別為3163.02和955.74 kg/m2,平均含沙量分別為0.134和0.047 g/mL;單寬流量為2.4×10-2m2/min時(shí),沖刷槽寬度為10 cm情況下累計(jì)產(chǎn)沙量和平均含沙量與其他寬度情況下差異顯著(P<0.05),其他沖刷槽寬度下累積產(chǎn)沙量和平均含沙量差異不顯著,沖刷槽寬度為10和30 cm時(shí)差異達(dá)到最大,累積產(chǎn)沙量分別為5 250.90和13 110.55 kg/m2,平均含沙量分別為0.112和0.245 g/mL;單寬流量為3.6×10-2m2/min時(shí),沖刷槽為10 cm情況下平均含沙量顯著低于沖刷槽寬度30、40 cm下平均含沙量(P<0.05),沖刷槽寬度為10和40 cm時(shí)平均含沙量差異達(dá)到最大,分別為0.165和0.252 g/mL;單寬流量為4.8×10-2m2/min時(shí),不同沖刷槽寬度之間累積產(chǎn)沙量和平均含沙量均沒(méi)有顯著差異。
圖4 累積產(chǎn)沙量和平均含沙量特征Fig.4 Characteristics of cumulative sediment yield and average sediment concentration
本研究表明在坡度為15°條件下,單寬流量為1.2×10-2,2.4×10-2,3.6×10-2m2/min時(shí),不同沖刷槽寬度之間徑流率、產(chǎn)沙率存在顯著差異(P<0.05);單寬流量為4.8×10-2m2/min時(shí),不同沖刷槽寬度之間徑流率、產(chǎn)沙率差異不顯著。單寬流量一定,不同沖刷槽寬度下徑流率隨時(shí)間變化趨勢(shì)相同。單寬流量為1.2×10-2m2/min時(shí),不同沖刷槽寬度條件下產(chǎn)沙率和含沙量隨時(shí)間變化趨勢(shì)不同,沖刷槽寬度為10、20和30 cm時(shí),產(chǎn)沙率和含沙量呈先增大后穩(wěn)定波動(dòng)變化,而當(dāng)沖刷槽寬度為40 和50 cm時(shí),產(chǎn)沙率和含沙量逐步遞增,其他單寬流量下產(chǎn)沙率和含沙量隨時(shí)間變化趨勢(shì)相同,均呈增大-穩(wěn)定-減小趨勢(shì)。
總體來(lái)講,當(dāng)單寬流量為1.2×10-2,2.4×10-2,3.6×10-2m2/min時(shí),不同沖刷槽寬度對(duì)崩積體侵蝕產(chǎn)流產(chǎn)沙特征影響達(dá)到顯著水平(P<0.05),單寬流量為4.8×10-2m2/min時(shí)沖刷槽寬度對(duì)崩積體侵蝕產(chǎn)流產(chǎn)沙影響不顯著。本試驗(yàn)以崩崗崩積體為對(duì)象進(jìn)行研究,由于崩積體具有含沙量高、結(jié)構(gòu)性差、易侵蝕等特點(diǎn),與其他土壤差異較大,因此今后還需針對(duì)其他土壤類(lèi)型研究沖刷槽寬度對(duì)侵蝕產(chǎn)流產(chǎn)沙特征的影響。
[1] 王禮先,孫保平,余新曉. 中國(guó)水利百科全書(shū): 水土保持分冊(cè)[M]. 中國(guó)水利水電出版社,2004:48-49.
[2] 林金石,莊雅婷,黃炎和,等. 不同剪切方式下崩崗紅土層抗剪特征隨水分變化規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(24):106-110. Lin Jinshi, Zhuang Yating, Huang Yanhe, et al. Shear strengths of collapsing hill in red soil as affected by soil moisture under different experimental methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 106-110. (in Chinese with English abstract)
[3] 梁音,寧堆虎,潘賢章,等. 南方紅壤區(qū)崩崗侵蝕的特點(diǎn)與治理[J]. 中國(guó)水土保持,2009,30(1):31-34. Liang Yin, Ning Duihu, Pan Xianzhang, et al. The characteristics and govemance of collapsing hills in southern red soil erosion area[J]. Soil and Water Conservation in China, 2009, 30(1): 31-34. (in Chinese with English abstract)
[4] 劉希林,唐川,張大林. 野外模擬崩崗崩積體坡面產(chǎn)流過(guò)程及水分分布[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):179-185. Liu Xilin, Tang Chuan, Zhang Dalin. Simulated runoff processes on colluvial deposits of Liantanggang Benggang and their water distributions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 179-185. (in Chinese with English abstract)
[5] Jiang Fangshi, Huang Yanhe, Wang Mingkuang, et al. Effects of rainfall intensity and slope gradient on steep colluvial deposit erosion in Southeast China[J]. Soil Science Society of America Journal, 2014, 78(5): 1741-1752.
[6] 蔣芳市,黃炎和,林金石,等. 坡面水流分離崩崗崩積體土壤的動(dòng)力學(xué)特征[J]. 水土保持學(xué)報(bào),2013,27(1):86-89,229. Jiang Fangshi, Huang Yanhe, Lin Jinshi, et al. The dynamic characteristics of soil detachment of slumping deposit by surface runoff in benggang[J]. Journal of Soil and Water Conservation, 2013, 27(1): 86-89, 229. (in Chinese with English abstract)
[7] 蔣芳市,黃炎和,林金石,等. 坡度和雨強(qiáng)對(duì)花崗巖崩崗崩積體細(xì)溝侵蝕的影響[J]. 水土保持研究,2014,21(1):1-5. Jiang Fangshi, Huang Yanhe, Lin Jinshi, et al. Effects of different rainfall intensities and slope gradients on rill erosion of colluvial deposits in granite Benggang[J]. Research of Soil and Water Conservation, 2014, 21(1): 1-5. (in Chinese with English abstract)
[8] 賴(lài)奕卡. 坡面土壤侵蝕影響因子研究進(jìn)展[J]. 亞熱帶水土保持,2008,20(1):12-16. Lai Yika. Research progress of slope soil erosion factors[J]. Subtropical Soil and Water Conservation, 2008, 20(1): 12-16. (in Chinese with English abstract)
[9] 郭軍權(quán),劉敏,王文龍. 上方來(lái)水對(duì)淺溝侵蝕產(chǎn)沙的野外放水沖刷試驗(yàn)研究[J]. 水土保持學(xué)報(bào),2012,26(3):49-52. Guo Junquan, Liu min, Wang Wenlong. Experimental study on upslope runoff effects on ephemeral gully erosion process[J]. Journal of Soil and Water Conservation, 2012, 26(3): 49-52. (in Chinese with English abstract)
[10] 汪邦穩(wěn),肖勝生,張光輝,等. 南方紅壤區(qū)不同利用土地產(chǎn)流產(chǎn)沙特征試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(2):239-243. Wang Bangwen, Xiao Shengsheng, Zhang Guanghui, et al. Study on runoff and sediment yield characteristics under different land uses in red soil area of southern China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(2): 239-243. (in Chinese with English abstract)
[11] Wang Bing, Zhang Guanghui, Zhang X C, et al. Effects of near soil surface characteristics on soil detachment by overland flow in a natural succession grassland[J]. Soil Science Society of America Journal, 2014, 78(2): 589-597.
[12] 王軍光,李朝霞,蔡崇法,等. 坡面沖刷過(guò)程中紅壤分離速率定量研究[J]. 長(zhǎng)江流域資源與環(huán)境,2011,20(1):96-100. Wang Junguang, Li Zhaoxia, Cai Chongfa, et al. Quantitative research of red soil detachment rate in the slope scouring processResources and Environment in the Yangtze Basin, 2011, 20(1): 96-100. (in Chinese with English abstract)
[13] Dong Yuequn, Zhuang Xiaohui, Lei Tingwu, et al. A method for measuring erosive flow velocity with simulated rill[J]. Geoderma, 2014, 232: 556-562.
[14] 趙純清,蔡崇法,丁樹(shù)文,等. 土壤侵蝕模擬試驗(yàn)的小型水槽設(shè)計(jì)[J]. 農(nóng)業(yè)工程,2012,2(1):64-66. Zhao Chunqing, Cai Chongfa, Ding Shuwen, et al. Design of minitype flume for simulation experiment on soil erosion[J]. Agricultural Engineering, 2012, 2(1): 64-66. (in Chinese with English abstract)
[15] Zhang Guanghui, Liu Yumei, Han Yanfeng, et al. Sediment transport and soil detachment on steep slopes: I. Transport capacity estimation[J]. Soil Science Society of America Journal, 2009, 73(4): 1291-1297.
[16] Zhang Qingwen, Dong Yuequn, Li Fang, et al. Quantifying detachment rate of eroding rill or ephemeral gully for WEPP with flume experiments[J]. Journal of Hydrology, 2014, 519: 2012-2019.
[17] 蔣芳市. 花崗巖崩崗崩積體侵蝕機(jī)理研究[D]. 福州:福建農(nóng)林大學(xué),2013. Jiang Fangshi. Erosion Mechanism of Colluvial Deposits in Granite Benggang[D]. Fuzhou:Fujian Agriculture and Forestry University, 2013. (in Chinese with English abstract)
[18] 蔡雄飛,王濟(jì),雷麗,等. 不同雨強(qiáng)對(duì)我國(guó)西南喀斯特山區(qū)土壤侵蝕影響的模擬研究[J]. 水土保持學(xué)報(bào),2009,23(6):5-8. Cai Xiongfei, Wang Ji, Lei Li, et al. Laboratorial simulation of different rainfall intensity influence on soil erosion in southwest karst area, China[J]. Journal of Soil and Water Conservation, 2009, 23(6): 5-8. (in Chinese with English abstract)
[19] 解文艷,樊貴盛. 土壤質(zhì)地對(duì)土壤入滲能力的影響[J]. 太原理工大學(xué)學(xué)報(bào),2004,35(5):537-540. Xie wenyan, Fan guisheng. Influence of soil structure on infiltration characteristics in field soils[J]. Journal of Taiyuan university of technology , 2004, 35(5): 537-540. (in Chinese with English abstract)
[20] 彭怡,王玉寬,傅斌,等. 紫色土流失土壤的顆粒特征及影響因素[J]. 水土保持通報(bào),2010,30(2):142-144. Peng Yi, Wang Yukuan, Fu Bin, et al. Particle characteristics and influencing factors of eroded purple soil[J]. Bulletin of Soil and Water Conservation, 2010, 30(2): 142-144. (in Chinese with English abstract)
[21] 朱智勇,解建倉(cāng),李占斌,等. 坡面徑流侵蝕產(chǎn)沙機(jī)理試驗(yàn)研究[J]. 水土保持學(xué)報(bào),2011,25(5):1-7. Zhu Zhiyong, Xie Jiancang, Li Zhanbin, et al. Experimental study on mechanism of slope runoff-erosion-sediment yield[J]. Journal of Soil and Water Conservation, 2011, 25(5): 1-7. (in Chinese with English abstract)
[22] 趙淦,黃炎和,林金石,等. 流量及坡度對(duì)崩崗崩積體侵蝕的影響[J]. 水土保持研究,2014,21(2):11-16. Zhao Gan, Huang Yanhe, Lin Jinshi, et al. Effect of discharge and slope gradient on colluvial deposits erosion in Benggang[J]. Research of Soil and Water Conservation, 2014, 21(2): 11-16. (in Chinese with English abstract)
[23] 張科利. 黃土坡面侵蝕產(chǎn)沙分配及其與降雨特征關(guān)系的研究[J]. 泥沙研究,1991,36(4):39-46. Zhang Keli. A study on the distribution of erosion and sediment yield on loess slope and the relationship between the distribution and rain characteristics[J]. Journal of Sediment Research, 1991, 36(4): 39-46. (in Chinese with English abstract)
Effects of different width of scouring flumes on runoff and sediment yield of colluvial deposits of collapsing hill
Li Xuezeng, Huang Yanhe※, Lin Jinshi, Jiang Fangshi, Hao Fuxing, Guan Jiachun, Xu Huangji, Yang Dandan, Wang Zhenhong
(College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
Collapsing hill is the typical and serious erosion phenomenon in the red soil area of southern China. The colluvial deposit erosion is the main sediment source of collapsing hill, which has the characteristics of loose texture, bad structure, and high erodibility. Study of the influence of elements on erosion sediment in the process of slope erosion is of great significance for revealing the mechanism of slope erosion. The width of scouring flumes is one of the factors that affect the characteristics of erosion and yield of runoff and sediment in the process of slope scouring erosion but now has fewer research achievements. With the colluvial deposits of collapsing hill as the research object, and through the simulated scouring in laboratory, this study intended to disclose the impacts of different width of scouring flumes (10, 20, 30, 40 and 50 cm) and discharge per unit width (1.2×10-2, 2.4×10-2, 3.6×10-2and 4.8×10-2m2/min) on the slope scouring erosion and runoff and sediment yield of colluvial deposits. Soil samples were collected from the Longmen Town, Anxi County, Fujian Province in southeast China, and preprocessed according to the experimental standards. Results showed that: 1) The width of scouring flumes had significant effects on the runoff rate and sediment yield rate when the discharge per unit width was 1.2×10-2, 2.4×10-2and 3.6×10-2m2/min (P<0.05), while had no significant effects when the discharge per unit width was 4.8×10-2m2/min; 2) When the discharge per unit width was 1.2×10-2m2/min, the runoff rate increased gradually with the increase in time, when the discharge per unit width was 2.4×10-2and 3.6×10-2m2/min, the runoff rate increased at first and then became stable with the increase in time, and when the discharge per unit width was 4.8×10-2m2/min, the runoff rate increased at first and then decreased with the increase in time; when the discharge per unit width was 1.2×10-2m2/min, the trends of sediment yield rate and sediment concentration over time under different width of scouring flumes were different, and when the width of scouring flumes was 10, 20 and 30 cm, the sediment yield rate and sediment concentration increased at first and then became fluctuant, but increased with time all the way while the width of scouring flumes was 40 and 50 cm; when the discharge per unit width was 2.4×10-2, 3.6×10-2and 4.8×10-2m2/min, the sediment yield rate and sediment concentration under each width of scouring flumes showed an increase-stability-decrease trend with the increase in time; 3) When the discharge per unit width was constant, the difference of the cumulative runoff yield under different width of scouring flumes was not significant, and that of the cumulative sediment yield and the average sediment concentration were significant (P<0.05) while the discharge per unit width was 1.2×10-2, 2.4×10-2and 3.6×10-2m2/min; when the discharge per unit width was 4.8×10-2m2/min, the width of scouring flumes had no significant effects on the cumulative sediment yield and the average sediment concentration; 4) The width of scouring flumes had no effects on slope erosion and characteristics of runoff and sediment yield when the discharge per unit width was 4.8×10-2m2/min, and thus, faculative width of scouring flumes could be chosen while the discharge per unit width was 4.8×10-2m2/min. This research has used the colluvial deposits of collapsing hill as the research object and carried out the experiments under the condition of 15° slope, but colluvial deposits’ characteristics (loose texture, bad structure, high erodibility) are obviously different from other soil types, and thus, more studies aiming at other soil types about the effects of different width of scouring flumes on erosion and yield of runoff and sediment are needed, and further researches can also be conducted with other slope gradients.
scour; sand; runoff; collapsing hill; colluvial deposits; width of scouring flumes; discharge per unit width
10.11975/j.issn.1002-6819.2016.09.019
S157.1
A
1002-6819(2016)-09-0136-06
李學(xué)增,黃炎和,林金石,蔣芳市,郝福星,關(guān)家椿,許煌基,楊丹丹,王振紅. 不同寬度沖刷槽對(duì)崩崗崩積體產(chǎn)流產(chǎn)沙的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):136-141.
10.11975/j.issn.1002-6819.2016.09.019 http://www.tcsae.org
Li Xuezeng, Huang Yanhe, Lin Jinshi, Jiang Fangshi, Hao Fuxing, Guan Jiachun, Xu Huangji, Yang Dandan, Wang Zhenhong. Effects of different width of scouring flumes on runoff and sediment yield of colluvial deposits of collapsing hill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 136-141. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.019 http://www.tcsae.org
2015-12-29
2016-03-14
國(guó)家自然科學(xué)基金項(xiàng)目(41001169;41571272);國(guó)家科技支撐計(jì)劃項(xiàng)目(2014BAD15B0303)
李學(xué)增,男,河南林州人,研究方向?yàn)橥寥狼治g與治理。福州 福建農(nóng)林大學(xué)資源與環(huán)境學(xué)院,350002。Email:xuezeng_li@163.com
※通信作者:黃炎和,男,廣東饒平人,教授,博士,博士生導(dǎo)師,研究方向:土壤侵蝕與治理。福州 福建農(nóng)林大學(xué)資源與環(huán)境學(xué)院,350002。Email:yanhehuang@163.com
·農(nóng)業(yè)信息與電氣技術(shù)·