楊 軒,王自奎,曹 銓?zhuān)瑥埿∶鳎蛴矸f
(蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,蘭州 730020)
隴東地區(qū)幾種旱作作物產(chǎn)量對(duì)降水與氣溫變化的響應(yīng)
楊 軒,王自奎,曹 銓?zhuān)瑥埿∶?,沈禹穎※
(蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,蘭州 730020)
研究作物產(chǎn)量對(duì)氣候變化的響應(yīng),對(duì)于指導(dǎo)區(qū)域農(nóng)業(yè)生產(chǎn),保障糧食安全和生態(tài)安全具有一定的理論指導(dǎo)意義。結(jié)合大田試驗(yàn)與農(nóng)業(yè)生產(chǎn)系統(tǒng)模擬模型(Agricultural Production Systems Simulator,APSIM),在驗(yàn)證模擬研究區(qū)冬小麥、玉米和紫花苜蓿產(chǎn)量可靠性的基礎(chǔ)上,分析5個(gè)降水變化梯度(降水量不變、降低10%和20%、升高10%和20%)和5個(gè)氣溫變化梯度(不變、降低1.5和1℃、升高1.5和1℃)組合情景下3種作物的產(chǎn)量變化趨勢(shì)。結(jié)果表明:APSIM模型在試驗(yàn)點(diǎn)對(duì)3種作物籽粒產(chǎn)量和生物量的模擬精度較高,決定系數(shù)R2在0.80~0.93之間,歸一化均方根誤差在11.35%~22.48%之間,模型有效系數(shù)在0.53~0.91之間。冬小麥、玉米和紫花苜蓿在氣溫升高、降水量減少的情景下減產(chǎn),減產(chǎn)的最大幅度分別為38.7%、40.3%和41.8%;冬小麥、紫花苜蓿的在氣溫降低、降水量增加時(shí)增產(chǎn),增產(chǎn)的最大幅度分別為29.8% 和51.7%;玉米在降水量增加、溫度不變的情景下增產(chǎn)幅度最大,為22.0%。總之,在研究范圍內(nèi),3種作物的產(chǎn)量隨降水的增加而增高;玉米的產(chǎn)量隨氣溫升高先增高后降低,另2種作物的產(chǎn)量隨氣溫的升高而降低;紫花苜蓿適應(yīng)氣候變化的能力最強(qiáng)。結(jié)果對(duì)明確黃土高原地區(qū)主要作物的生產(chǎn)走勢(shì),制訂農(nóng)業(yè)布局、管理措施等具有一定意義。
氣候變化;降水;溫度;APSIM;產(chǎn)量;隴東地區(qū)
氣候變化引起的氣溫與降水格局的轉(zhuǎn)變必將對(duì)中國(guó)主要農(nóng)作物的生產(chǎn)產(chǎn)生重要影響[1-2]。對(duì)于以旱作為主的黃土高原西部來(lái)說(shuō),農(nóng)業(yè)生產(chǎn)對(duì)氣溫和降水的依賴(lài)程度更大[3-5],探討氣溫和降水變化條件下該區(qū)主要作物產(chǎn)量的變化趨勢(shì),對(duì)于指導(dǎo)該區(qū)域種植結(jié)構(gòu)調(diào)整,保障區(qū)域糧食穩(wěn)產(chǎn)具有一定的參考價(jià)值。
以往有關(guān)作物生產(chǎn)和氣象條件之間關(guān)系的研究大都基于田間試驗(yàn)方法,這種方法雖然取得的數(shù)據(jù)精確、結(jié)論可靠,但是一般試驗(yàn)周期長(zhǎng)、成本高,而且結(jié)果的通用性差。作物生長(zhǎng)模擬模型通過(guò)綜合氣候條件、土壤狀況及農(nóng)田管理措施來(lái)預(yù)測(cè)作物產(chǎn)量,能分析產(chǎn)量和各因素之間的關(guān)系,可為農(nóng)民和決策者提供技術(shù)指導(dǎo)和決策依據(jù)[6-7]。因此,本研究采用試驗(yàn)與模擬相結(jié)合的方法研究作物產(chǎn)量對(duì)降水和氣溫變化的響應(yīng)。
農(nóng)業(yè)生產(chǎn)系統(tǒng)模擬模型(Agricultural Production Systems Simulator,APSIM)是澳大利亞聯(lián)邦科學(xué)與工業(yè)研究組織于1990s研發(fā)的用于模擬農(nóng)業(yè)生產(chǎn)系統(tǒng)生物物理過(guò)程的機(jī)理模型[8-10],已在世界范圍內(nèi)被廣泛應(yīng)用于評(píng)價(jià)氣候變化對(duì)農(nóng)作物生產(chǎn)的影響及指導(dǎo)農(nóng)田灌溉、施肥及耕作等管理實(shí)踐[11-14]。在中國(guó),一些研究完成了APSIM在華北、西南和西北地區(qū)的適應(yīng)性評(píng)估和驗(yàn)證[15-17];并且在此基礎(chǔ)上,有學(xué)者利用APSIM評(píng)估氣候因素對(duì)作物生產(chǎn)的影響:Wang等[15]基于該模型分析了氣候變化對(duì)冬小麥物候期的影響;Chen等[2]以APSIM模型為平臺(tái)分析了氣象因子變化對(duì)華北地區(qū)糧食生產(chǎn)的影響;董朝陽(yáng)等[18]利用APSIM分析了北方地區(qū)干旱對(duì)玉米產(chǎn)量的影響。在黃土高原西部雨養(yǎng)農(nóng)業(yè)區(qū),模型完成了本土化[19-21],并在驗(yàn)證、應(yīng)用方面取得了進(jìn)展[21-22],但是在作物長(zhǎng)期生產(chǎn)方面的研究較少。隴東地處黃土高原西部,是典型的雨養(yǎng)農(nóng)業(yè)區(qū),冬小麥和玉米為主要的糧食作物。該區(qū)水土流失嚴(yán)重,土壤肥力嚴(yán)重下降[23],當(dāng)?shù)卣?008年啟動(dòng)了以發(fā)展草地畜牧業(yè)、蘋(píng)果、瓜菜為主的“六個(gè)百萬(wàn)工程”,以期改善生態(tài)環(huán)境和農(nóng)業(yè)格局。紫花苜蓿作為應(yīng)用廣泛的多年生牧草,是發(fā)展草地畜牧業(yè),實(shí)現(xiàn)農(nóng)業(yè)結(jié)構(gòu)調(diào)整,增加農(nóng)民收入重要的飼草作物。為探討該區(qū)小麥、玉米及紫花苜蓿的產(chǎn)量對(duì)氣溫和降水變化的響應(yīng),本研究首先利用多年大田試驗(yàn)數(shù)據(jù)對(duì)APSIM模型進(jìn)行驗(yàn)證,然后設(shè)定不同的降水和氣溫變化情景,模擬分析氣候變化對(duì)冬小麥、玉米和紫花苜蓿生產(chǎn)的影響,擬為主要作物的產(chǎn)量對(duì)氣溫、降水變化的響應(yīng)提供參考,為實(shí)現(xiàn)黃土高原農(nóng)業(yè)系統(tǒng)可持續(xù)發(fā)展提供理論和實(shí)際依據(jù)。
1.1 試驗(yàn)點(diǎn)概況
試驗(yàn)于2001-2010年在位于甘肅省慶陽(yáng)市西峰區(qū)的蘭州大學(xué)慶陽(yáng)黃土高原試驗(yàn)站(35°39′N(xiāo),107°51′E,海拔1 297 m)開(kāi)展。該區(qū)是典型的黃土高原西部雨養(yǎng)農(nóng)業(yè)區(qū),屬于大陸性季風(fēng)氣候,多年平均降水量為546 mm,且多集中于7-9月,年均蒸發(fā)為1 504 mm,年均氣溫在8~10℃之間,極端最高氣溫39.6℃,極端最低氣溫?22.4℃。年日照時(shí)數(shù)在2 300~2 700 h之間,無(wú)霜期150~190 d。試驗(yàn)地土壤為粉壤土,粉粒在600~700 g/kg之間。有機(jī)質(zhì)約1 g/kg,全氮低于0.1 g/kg,pH值在8.0~8.5之間,地下水埋深50 m以上。
根據(jù)西峰區(qū)1961-2010年50 a的歷史氣象數(shù)據(jù)可知,研究點(diǎn)各年降水與多年平均降水相差最大幅度接近40%(圖1a),年均氣溫的變化范圍在7.7~10.3℃之間(圖1b)。圖1中列出了以年降水量或年均氣溫為因變量,以年份為自變量的趨勢(shì)線表達(dá)式。由2個(gè)表達(dá)式可知,年降水量的變化為?2.099 mm/a,氣溫的變化為0.030℃/a;對(duì)年降水量和年均氣溫進(jìn)行的Mann-Kendall檢驗(yàn)結(jié)果表明,二者的變化趨勢(shì)并不顯著(P>0.05)。
圖1 慶陽(yáng)市西峰區(qū)1961-2010年逐年降水量及年均氣溫變化趨勢(shì)Fig.1 Annual precipitation and annual temperature change from 1961 to 2010 in Xifeng of Qingyang city
1.2 試驗(yàn)布置及測(cè)定
蘭州大學(xué)慶陽(yáng)黃土高原試驗(yàn)站從2001年以來(lái)一直開(kāi)展冬小麥田及玉米田保護(hù)性耕作研究[19,23-24],本文采用2001-2010年傳統(tǒng)耕作處理?xiàng)l件下的產(chǎn)量數(shù)據(jù)來(lái)驗(yàn)證APSIM模型。當(dāng)?shù)仄毡椴捎脙赡耆斓妮喿髦贫?,本試?yàn)中作物輪作序列為春玉米(Zea mays L.)-冬小麥(Triticum aestivum L.)-夏大豆(Gyleine max L.)或者春玉米-冬小麥-箭筈豌豆(Vicia sativa L.)。玉米的品種為中單2號(hào),冬小麥品種為西峰24號(hào)。試驗(yàn)小區(qū)4 m×14 m,設(shè)置4個(gè)重復(fù)。小麥和玉米產(chǎn)量在每個(gè)小區(qū)隨機(jī)設(shè)定l m樣條方測(cè)定,箭筈豌豆用0.50 m×0.50 m樣方進(jìn)行收割、脫粒,風(fēng)干后測(cè)定其產(chǎn)量。
紫花苜蓿(medicago sativa cv Longdong)播種時(shí)間為2002年9月、2007年9月。2002年9月播種后于2003 年3月進(jìn)入返青期,本研究中采用2003年和2004年(1齡及2齡)紫花苜蓿的干物質(zhì)產(chǎn)量。2007年播種后由2008 年3月進(jìn)入返青期,本研究中采用2009年(2齡)紫花苜蓿的干物質(zhì)產(chǎn)量。紫花苜蓿的播種及田間管理參數(shù)列于表1中。苜蓿播種當(dāng)年刈割2次,之后每年刈割3次,刈割時(shí)在苜蓿地隨機(jī)設(shè)定4塊1 m×1 m的樣方,將刈割后的苜蓿在75℃下烘干,測(cè)定其生物量。
表1 冬小麥、春玉米及紫花苜蓿的田間管理參數(shù)Table 1 Field management parameters for winter wheat, spring maize and lucerne
模擬所用初始土壤水分,0~10 cm以質(zhì)量法測(cè)定,其余土層(10~30、>30~60、>60~90、>90~120、>120~150、>150~200 cm)用中子水分儀測(cè)定;所用初始土壤氮以凱氏定氮法測(cè)定。
模擬所用氣象參數(shù),包括每日最高和最低氣溫(℃)、降雨(mm)及太陽(yáng)輻射(MJ/m2)采用位于試驗(yàn)站的PC200W型自動(dòng)氣象站測(cè)定。
1.3 APSIM模型參數(shù)校準(zhǔn)及驗(yàn)證方法
APSIM模型所需要輸入的參數(shù)包括氣象、土壤、作物生長(zhǎng)參數(shù)、管理參數(shù)等[8]。
APSIM所采用的分層土壤水量平衡模塊是在PERFECT模型基礎(chǔ)上發(fā)展的。假定當(dāng)某土層含水量小于田間持水量時(shí),非飽和水分在相鄰?fù)翆又械倪\(yùn)動(dòng)用Richard方程描述。當(dāng)土壤含水量達(dá)到田間持水量后,飽和水分將移向下層。需要確定水分運(yùn)動(dòng)的主要參數(shù)有飽和含水量,田間持水量和凋萎含水量[19-20]。土壤養(yǎng)分運(yùn)移模塊是在CERES模型基礎(chǔ)上發(fā)展的,可以逐日分層次地計(jì)算土壤C和N的變化,但與CERES不同的是將土壤有機(jī)質(zhì)庫(kù)分為3個(gè)庫(kù):活性C、土壤微生物及其產(chǎn)物庫(kù)和土壤有機(jī)質(zhì)庫(kù)[21]。
田間最大持水(drainage upper limit,DUL)于2001 年4月采用池塘法測(cè)定,用中子儀測(cè)定土壤水分含量直至穩(wěn)定記為DUL[20]。作物水分利用最低限(crop low limit,CLL)測(cè)定于2002年作物生長(zhǎng)旺季。以遮雨棚隔絕雨水進(jìn)入,并在無(wú)雨時(shí)去掉遮蓋;收獲期于遮雨棚中心部位以土鉆取樣,重復(fù)4次,測(cè)量體積含水量,記為CLL;該參數(shù)與土壤在?1.5 MPa下的凋萎系數(shù)不同,CLL會(huì)因作物或生長(zhǎng)條件不同而異[20]。試驗(yàn)田各層主要土壤參數(shù)列于表2中。
表2 試驗(yàn)地主要土壤參數(shù)Table 2 Main soil parameters of experimental site
APSIM模型的作物參數(shù)包括有效積溫、春化作用系數(shù)、光周期系數(shù)、最大植株高度及最大潛在收獲指數(shù)等(表3)。研究使用的作物品種:西峰24號(hào)冬小麥、中單2號(hào)玉米、隴東紫花苜蓿的主要參數(shù)已由前期研究利用基于4年的連續(xù)田間試驗(yàn)完成測(cè)定和率定,經(jīng)過(guò)校準(zhǔn)的APSIM模型對(duì)于2001-2005年3種作物的籽粒產(chǎn)量和生物量的模擬精度較高,決定系數(shù)R2達(dá)到0.70~0.98[19-21]。另外,APSIM模型的苜蓿模塊沒(méi)有描述越冬期的參數(shù),在溫度較低的冬季,模型仍然設(shè)置為反應(yīng)苜蓿生長(zhǎng),但生長(zhǎng)速度極其緩慢[21]。
在前期工作的基礎(chǔ)上,模型的有效性驗(yàn)證使用實(shí)測(cè)值和模擬值回歸關(guān)系的決定系數(shù)R2、歸一化均方根誤差(normalized root mean squared error,NRMSE)及模型有效系數(shù)(model efficiency,ME)幾個(gè)參數(shù)量化[25-27]。
1.4 氣候情景設(shè)置
根據(jù)15次IPCC報(bào)告,至本世紀(jì)末葉(2081-2100年),在極端情況下,西北地區(qū)氣溫的變化可達(dá)1.5~2℃,降水變化可達(dá)10%~20%[28],參考已有氣候情景設(shè)定,多以降水變化0~20%,氣溫0~2℃或以1℃為步長(zhǎng)設(shè)置變化范圍[13,22,29-32]。本研究將降水變化10%為步長(zhǎng)設(shè)立5個(gè)降水梯度,氣溫變化0.5~1℃為步長(zhǎng)設(shè)立5個(gè)氣溫梯度。各降水梯度分別為降水量降低20%(P1)、降低10%(P2)、不變(P3)、升高10%(P4)與升高20%(P5);各氣溫梯度分別為降低1.5℃(T1)、降低1℃(T2)、不變(T3)與升高1℃(T4)、升高1.5℃(T5),兩因素兩兩組合共計(jì)25個(gè)情景,其中P3T3為對(duì)照CK情景,即歷史氣候條件。
利用APSIM模型,使用來(lái)源于西峰氣象局的1961 -2010年氣象數(shù)據(jù)對(duì)各個(gè)情景冬小麥、玉米、紫花苜蓿進(jìn)行50 a的連續(xù)生產(chǎn)模擬。長(zhǎng)期模擬使用的耕作管理措施與田間試驗(yàn)相同。為去除管理參數(shù)、土壤初始狀態(tài)對(duì)作物生產(chǎn)的影響,突出作物產(chǎn)量對(duì)氣候因素的響應(yīng),本研究在各情景模擬下所設(shè)定的同種作物的土壤初始水分、土壤初始氮和耕作管理參數(shù)均一致,具體管理設(shè)置參數(shù)見(jiàn)表1。
表3 三種作物品種的主要參數(shù)Table 3 Main crop parameters of 3 crops
1.5 數(shù)據(jù)分析
統(tǒng)計(jì)冬小麥、玉米籽粒產(chǎn)量和紫花苜蓿生物量為產(chǎn)量。采用Microsoft Excel軟件對(duì)所得數(shù)據(jù)進(jìn)行處理分析,Sigma Plot 10.0制作曲面圖并求趨勢(shì)面方程,采用Genstat統(tǒng)計(jì)軟件比較模擬值、實(shí)測(cè)值之間的差異,各情景產(chǎn)量概率曲線斜率的差異。
2.1 模型驗(yàn)證
運(yùn)用APSIM模型模擬2002-2010年冬小麥、2001- 2010年玉米籽粒產(chǎn)量和生物量與2003-2004及2009年各茬紫花苜蓿的生物量積累,并根據(jù)實(shí)測(cè)數(shù)據(jù)和模擬數(shù)據(jù)進(jìn)行模型的有效性檢驗(yàn)。冬小麥、玉米的籽粒產(chǎn)量模擬值與實(shí)測(cè)值之間線性回歸關(guān)系的決定系數(shù)R2分別為0.93和0.83,3種作物生物量模擬值與實(shí)測(cè)值之間的R2分別為0.90、0.80和0.81(圖2)。冬小麥和紫花苜蓿的回歸線斜率<1,模型有高估低值的趨勢(shì),而玉米回歸線的斜率>1.1(圖2),模型低估了大部分?jǐn)?shù)值較高的點(diǎn)。歸一化均方根誤差NRMSE主要反映模型對(duì)高值的模擬效果,冬小麥和玉米籽粒產(chǎn)量對(duì)應(yīng)的NRMSE分別為11.35%、14.91%,冬小麥、玉米和紫花苜蓿生物量對(duì)應(yīng)的NRMSE為21.08%、13.74%和22.48%,模型的有效系數(shù)ME達(dá)到0.53~0.91,均大于0.5,模擬效果較好[26-27]。綜上所述,APSIM模型可以有效地模擬研究區(qū)西峰24冬小麥、中單2號(hào)玉米和隴東紫花苜蓿的籽粒產(chǎn)量和生物量。
圖2 冬小麥玉米籽粒產(chǎn)量和3種作物生物量的實(shí)測(cè)值與模擬值Fig.2 Observed and simulated grain yield of winter wheat, maize and biomass of three crops
2.2 三種作物各情景的模擬產(chǎn)量波動(dòng)范圍比較
首先模擬P3T3(CK)情景下1961-2010年3種作物的產(chǎn)量。圖3顯示了不同作物模擬產(chǎn)量的概率累積曲線。冬小麥產(chǎn)量變化范圍最小,其中有60%的年份產(chǎn)量達(dá)到4 363 kg/hm2;玉米的最高產(chǎn)量可達(dá)11 853 kg/hm2,60%的年份產(chǎn)量達(dá)到8 279 kg/hm2以上,但有8個(gè)年份產(chǎn)量低于3 000 kg/hm2;紫花苜蓿有4個(gè)年份的產(chǎn)量低于4 000 kg/hm2,近80%的年份達(dá)到6 000 kg/hm2以上。
圖3 西峰1961-2010年間冬小麥、玉米和紫花苜蓿模擬產(chǎn)量的概率累積曲線Fig.3 Accumulative probability curves of simulated yields of winter wheat, maize, and lucerne from 1961 to 2010 in Xifeng
圖4展示了各作物在各情景下的產(chǎn)量范圍和100%、75%、50%、25%、0概率下的產(chǎn)量。
圖4 三種作物產(chǎn)量的不同概率堆積圖Fig.4 Different probability stacked bar for yield of 3 crops
由圖4可知,各作物各情景的產(chǎn)量最高點(diǎn)隨降水梯度上升而上升;冬小麥、紫花苜蓿的產(chǎn)量最高點(diǎn)隨氣溫梯度上升而下降,而玉米的產(chǎn)量最高點(diǎn)隨氣溫梯度增加呈先上升后下降的趨勢(shì)。冬小麥、紫花苜蓿于各情景下100%(情景產(chǎn)量最低點(diǎn))、75%、50%、25%概率下的產(chǎn)量點(diǎn)趨勢(shì)與最高點(diǎn)基本一致,但冬小麥在P3~P5梯度時(shí),雖然最高點(diǎn)隨氣溫梯度下降,最低點(diǎn)卻有隨氣溫梯度上升而提高的趨勢(shì)。對(duì)玉米來(lái)說(shuō),各概率產(chǎn)量點(diǎn)趨勢(shì)多變,其最低點(diǎn)僅在P4、P5梯度下有6個(gè)情景不為0(分別為2個(gè)與4個(gè)情景),其余概率下的產(chǎn)量點(diǎn)與最高點(diǎn)的趨勢(shì)基本一致。
為進(jìn)一步量化各作物在各情景下的產(chǎn)量高低,將不同降水梯度、氣溫梯度下3種作物的產(chǎn)量概率累積曲線的斜率列于表4與表5中。產(chǎn)量概率累積曲線的斜率都小于0,斜率越小,表示累積曲線越陡,產(chǎn)量的波動(dòng)范圍越小。表4中,對(duì)比不同降水梯度,冬小麥、玉米的概率曲線斜率均隨降水梯度的增加而減小,這是因?yàn)樽魑锏漠a(chǎn)量的波動(dòng)范圍隨降水升高而逐漸減小,紫花苜蓿的產(chǎn)量波動(dòng)范圍則逐漸增加。冬小麥在降水梯度P5與其他各梯度之間斜率差異顯著(P<0.05),但P2~P4之間斜率差異不顯著;對(duì)玉米而言,除P5與其他各梯度之間斜率差異顯著(P<0.05),P1~P4間不顯著(P>0.05);紫花苜蓿則是除P1與其他梯度有顯著差異外(P<0.05),各梯度間斜率的差異均不顯著(P>0.05)。
表4 各作物在不同降水梯度下產(chǎn)量曲線的斜率均值Table 4 Mean absolute values and standard deviations of slope of probability curves in different precipitate gradients
表5 各作物在不同氣溫梯度下產(chǎn)量曲線的斜率均值Table 5 Mean absolute values and standard deviations of slope of probability curves in different temperature gradients
表5中,冬小麥與紫花苜蓿產(chǎn)量累計(jì)概率曲線的斜率隨氣溫的提升而減小,表明產(chǎn)量的范圍縮?。挥衩桩a(chǎn)量概率曲線的斜率則隨氣溫的提升于T1~T3呈現(xiàn)增大趨勢(shì),表明產(chǎn)量范圍擴(kuò)大,但在T3~T5間變化很小。各梯度間,冬小麥只于T5與T1、T2間差異顯著(P<0.05);玉米各梯度間均無(wú)顯著差異(P>0.05);而紫花苜蓿除T5與T1、T2間,T4也與T1有顯著差異(P<0.05)。另外,表4~5中紫花苜蓿斜率于各情景間的變化最小。各氣溫梯度斜率的差異不如降水梯度之間顯著,說(shuō)明氣溫對(duì)作物產(chǎn)量波動(dòng)范圍的影響較降水小。
綜上,降水與氣溫的整體上升均會(huì)對(duì)冬小麥的產(chǎn)量波動(dòng)范圍產(chǎn)生減小趨勢(shì);玉米在降水上升時(shí)范圍減少,當(dāng)設(shè)定氣溫低于基準(zhǔn)氣溫時(shí),增溫傾向擴(kuò)大波動(dòng)范圍,而當(dāng)設(shè)定氣溫高于基準(zhǔn)氣溫時(shí),增溫對(duì)波動(dòng)范圍影響極??;對(duì)于紫花苜蓿來(lái)說(shuō),降水同時(shí)提高了其產(chǎn)量和波動(dòng)范圍,而增溫會(huì)縮小范圍,同時(shí),由于紫花苜蓿在不同情景間,斜率變化最小,故其產(chǎn)量區(qū)間的變化幅度也最小,突出了其較好的氣候適應(yīng)性。
2.3 氣溫與降水變化情景下3種作物的模擬產(chǎn)量變化
圖5顯示了其他設(shè)定情景與P3T3相比作物產(chǎn)量的變化率,從圖中可明顯看出在研究區(qū)降水對(duì)產(chǎn)量的影響要遠(yuǎn)遠(yuǎn)大于氣溫,所以不論氣溫升高或者降低,降水增多都使作物的產(chǎn)量增大。降水減少和氣溫升高對(duì)3種作物產(chǎn)量形成的負(fù)效應(yīng)最為顯著。個(gè)別在P3T3下絕收或產(chǎn)量極低的年份,由于氣候情景變化產(chǎn)生的產(chǎn)量上升幅度超過(guò)100%。剔除這些極端值后,冬小麥、玉米及紫花苜蓿產(chǎn)量的最大增幅分別為29.8%、22.0%及51.7%,最大減幅分別為38.7%、40.3% 和41.8%。圖5中產(chǎn)量變化率與氣溫及降水梯度之間接近曲面關(guān)系,故用二元二次方程擬合了它們之間的關(guān)系
式中Yw、Ym及Yl分別為冬小麥、玉米及紫花苜蓿相對(duì)于P3T3的產(chǎn)量變化率,%;Pr為降水梯度(?20%~20%),T為溫度梯度(?1.5~1.5℃)。擬合結(jié)果的決定系數(shù)高達(dá)0.97~0.99,說(shuō)明二元二次方程可較好地描述產(chǎn)量變化率與氣溫及降水梯度之間的關(guān)系。由式(1)~式(3)可知,由于方程中Pr的系數(shù)分為1.42~1.70,而Pr2的系數(shù)極小,為?0.019~?0.001,因此降水增加主要對(duì)各作物的產(chǎn)量產(chǎn)生正效應(yīng)。式(1)、式(3)中T的系數(shù)為?2.17、?8.56,絕對(duì)值遠(yuǎn)大于T2的系數(shù),同時(shí)T2的系數(shù)又<1,因此氣溫主要對(duì)冬小麥、紫花苜蓿的產(chǎn)量產(chǎn)生負(fù)效應(yīng);對(duì)玉米來(lái)說(shuō),由于T、T2的系數(shù)分別為?1.31和?2.94,因此除T3兩項(xiàng)之和為0,氣溫梯度無(wú)論在本研究設(shè)定范圍內(nèi)如何變化,兩項(xiàng)之和均為負(fù)數(shù),說(shuō)明式(2)中描述的玉米產(chǎn)量在T3梯度時(shí)傾向最高。
圖5 各情景與P3T3(CK情景)相比的產(chǎn)量變動(dòng)Fig.5 Yield variations of different scenarios in comparison with P3T3 (CK scenario)
為了研究產(chǎn)量變化率與單一因素降水或氣溫之間的關(guān)系,假定一個(gè)因素不變,擬合產(chǎn)量變化率與另一因素之間的線性關(guān)系。當(dāng)氣溫一定時(shí),冬小麥、玉米和紫花苜蓿產(chǎn)量變化率隨降水的增加而增大,斜率分別為14.3~16.0、11.8~15.5和15.0~18.9,說(shuō)明3種作物的產(chǎn)量大體隨降水梯度的上升而增加。當(dāng)降水一定時(shí),斜率隨溫度梯度升高,分別為由?1.3和?4.8下降至?2.5和?8.9,說(shuō)明冬小麥和紫花苜蓿的產(chǎn)量大體隨氣溫梯度的上升而減少。對(duì)玉米而言,降水量為P1時(shí)產(chǎn)量隨氣溫的升高而下降,此時(shí)產(chǎn)量與氣溫近似正相關(guān);降水量為P2、P4及P5時(shí)產(chǎn)量在T3處達(dá)到最大,降水量為P3時(shí)產(chǎn)量于T2處達(dá)到最大,此時(shí)玉米產(chǎn)量對(duì)氣溫梯度并非單純的直線變化趨勢(shì),而傾向于正拋物線趨勢(shì)。總體來(lái)說(shuō),降水作為自變量時(shí)方程的斜率更高,也說(shuō)明在研究設(shè)定范圍內(nèi),降水是影響作物產(chǎn)量的主要因素。
為分析降水和氣溫變化對(duì)隴東地區(qū)冬小麥、玉米和紫花苜蓿產(chǎn)量的協(xié)同作用,利用研究區(qū)域氣候資料和土壤屬性資料,并根據(jù)研究區(qū)域2001-2010年的定位試驗(yàn)數(shù)據(jù),在APSIM 模型已有的冬小麥、玉米及苜蓿模塊基礎(chǔ)上對(duì)模型的有效性進(jìn)行檢驗(yàn)。通常情況下,產(chǎn)量和生物量模擬值與實(shí)測(cè)值的NRMSE低于30%,ME高于0.5,則表明模擬結(jié)果較好,模型在研究地區(qū)具有適應(yīng)性[26-27]。本研究中模型用APSIM模型模擬的3種作物的產(chǎn)量與實(shí)測(cè)值的NRMSE在11.35%~22.48%之間,ME高于0.5,說(shuō)明該模型在隴東地區(qū)的適用性較好。王琳等[33]基于APSIM模型模擬在華北平原冬小麥和夏玉米連作系統(tǒng)的生物量和產(chǎn)量,模擬結(jié)果的NRMSE值為24.6%;戴彤等[16]于重慶小麥產(chǎn)區(qū)分析了APSIM模型在該地區(qū)的適應(yīng)性,結(jié)果表明模擬產(chǎn)量與實(shí)測(cè)值間NRMSE值低于30%。以上研究均得到了較好的模型擬合度。
在黃土高原,降水是引起作物產(chǎn)量變動(dòng)的主要因素。半干旱地區(qū),一般降水難以滿(mǎn)足作物生育期的最佳的需水量,所以研究結(jié)果顯示3種作物的產(chǎn)量隨著降水量的增加而增加。Masikati等[34]基于APSIM研究作物的生產(chǎn)潛力和水分生產(chǎn)率時(shí)表明,生長(zhǎng)季降水與小麥產(chǎn)量顯著相關(guān),降水減少使得小麥和玉米的產(chǎn)量顯著降低,氣溫升高對(duì)產(chǎn)量產(chǎn)生的效應(yīng)較降水帶來(lái)的效應(yīng)弱,這與本研究結(jié)果所展示的趨勢(shì)相近。所以未來(lái)氣候干旱化勢(shì)必會(huì)對(duì)隴東地區(qū)農(nóng)業(yè)生產(chǎn)造成嚴(yán)重的影響。紫花苜蓿屬于深根系的多年生牧草,于夏季到秋季對(duì)水分的利用率明顯高于小麥和玉米[21],試驗(yàn)點(diǎn)的降水量也多集中在這個(gè)時(shí)期,降水增加所提升的產(chǎn)量較另外2種作物更高。Bowman 等[35]的研究表明,由于紫花苜蓿的抗旱能力較強(qiáng),低于300 mm的年降水量才會(huì)導(dǎo)致旱地生產(chǎn)潛力的降低,一定范圍內(nèi)氣溫的降低可提高其固氮能力,從而提高產(chǎn)量,這也與本文的結(jié)果一致;并且,紫花苜蓿的水分條件受土壤水庫(kù)的調(diào)節(jié)作用影響很大,除前期降水外,中深層有效貯水也對(duì)其水分需求有重要的調(diào)節(jié)作用[36]。本研究的結(jié)果中,紫花苜蓿的產(chǎn)量變異范圍不僅于各溫度梯度間無(wú)顯著差異(P>0.05),也于相鄰降水梯度間無(wú)顯著差異(P>0.05),表明紫花苜蓿對(duì)環(huán)境具有更強(qiáng)的適應(yīng)性。
在隴東地區(qū),冬小麥與紫花苜蓿的產(chǎn)量會(huì)隨氣溫的整體上升而降低,但對(duì)玉米而言,當(dāng)氣溫低于基準(zhǔn)氣溫時(shí),增溫對(duì)于產(chǎn)量具有正效應(yīng),而當(dāng)設(shè)定氣溫高于基準(zhǔn)氣溫時(shí),增溫對(duì)于產(chǎn)量具有負(fù)效應(yīng)。李廣等[22]研究春小麥產(chǎn)量對(duì)氣溫變化的響應(yīng)時(shí)也發(fā)現(xiàn),溫度升高對(duì)春小麥產(chǎn)量的貢獻(xiàn)率為負(fù)效應(yīng), 產(chǎn)量與溫度呈二次拋物線下降型變化;這也與其他學(xué)者認(rèn)為溫度升高將對(duì)作物產(chǎn)量起到負(fù)效應(yīng)研究結(jié)果一致[37?38]。玉米產(chǎn)量在氣溫不變的情況下要比氣溫較低時(shí)高,這是由于C4作物發(fā)育的最低積溫限制高于C3作物。Basso等[39]的研究認(rèn)為,溫度與玉米產(chǎn)量呈單向負(fù)相關(guān),最高氣溫高于30℃的天數(shù)越多,對(duì)玉米產(chǎn)量所造成的負(fù)面影響也越高;與該研究對(duì)比,隴東地區(qū)7-8月的逐日最高溫度很少達(dá)到30℃,所以本文的結(jié)果與他們的結(jié)論有所差異。本研究中降低氣溫造成某些年份玉米減產(chǎn)的另一個(gè)原因是其較易受5-9月冷害的影響[40]。
在研究區(qū)降水對(duì)產(chǎn)量的影響要遠(yuǎn)大于氣溫,所以不論氣溫升高或者降低,降水增多都使作物的產(chǎn)量增大。降水減少和氣溫升高對(duì)3種作物產(chǎn)量形成的負(fù)效應(yīng)最為顯著。玉米大幅度減產(chǎn)的現(xiàn)象多是由于生育前期低溫、少雨或者低溫少雨共同發(fā)生造成生長(zhǎng)發(fā)育滯后,導(dǎo)致花期結(jié)束太晚而未能完成灌漿過(guò)程。紫花苜蓿與同為作為C3植物的冬小麥相比具有固氮能力,顯示出更低的產(chǎn)量變異性和更好的適應(yīng)性??傮w來(lái)說(shuō),當(dāng)氣候條件劇變,特別是氣溫升高的同時(shí)降水趨向降低時(shí),有必要根據(jù)具體情況改變主要作物的播種面積和播種時(shí)間,規(guī)避高溫脅迫、充分利用降水以減少生產(chǎn)風(fēng)險(xiǎn),同時(shí)加強(qiáng)其他田間管理措施。本研究未考慮太陽(yáng)輻射和CO2濃度的變化對(duì)3種作物的影響,太陽(yáng)輻射、CO2濃度、降水和氣溫的變化對(duì)黃土高原西部農(nóng)業(yè)生產(chǎn)產(chǎn)生的綜合效應(yīng)仍需進(jìn)一步的分析討論。
農(nóng)業(yè)生產(chǎn)系統(tǒng)模擬模型對(duì)3種作物的產(chǎn)量的歸一化均方根誤差在11.35%~22.48%之間,模型有效系數(shù)均高于0.5,因此適用性較好。在黃土高原西部,研究設(shè)定的氣溫與降水變化范圍內(nèi),冬小麥、玉米、紫花苜蓿的產(chǎn)量受降水影響較氣溫更大,且均為正效應(yīng)。冬小麥與紫花苜蓿隨氣溫降低而提高產(chǎn)量,氣溫對(duì)產(chǎn)量產(chǎn)生負(fù)效應(yīng);玉米在降水提高且氣溫不變時(shí),產(chǎn)量最高。多年生、深根系作物紫花苜蓿的產(chǎn)量范圍受氣溫和降水的影響較1 a生作物冬小麥和玉米更小,適應(yīng)氣候變化的能力更強(qiáng)。在黃土高原西部,選擇合適的耕作措施、實(shí)施草田輪作、加強(qiáng)作物管理等可于一定程度規(guī)避氣候變化引起的高溫和水分脅迫導(dǎo)致的生產(chǎn)風(fēng)險(xiǎn)。
[1] 秦大河. 氣候變化與干旱[J]. 科技導(dǎo)報(bào),2009,27(11):3. Qin Dahe. Climate change and drought[J]. Science and Technology Review, 2009, 27(11): 3. (in Chinese with English abstract)
[2] Chen C, Wang E L, Yu Q, et al. Quantifying the effects of climate trends in the past 43 years (1961-2003) on crop growth and water demand in the North China Plain[J]. Climatic Change, 2010, 100(3/4): 559-578.
[3] 任繼周,胥剛. 傳統(tǒng)農(nóng)耕文化在黃土高原上的困境與機(jī)遇[J].草業(yè)科學(xué),2010,27(3):3-8. Ren Jizhou, Xu Gang. The difficulties and opportunities for traditional agrarian culture on the Loess Plateau[J]. Pratacultural Science, 2010, 27(3): 3-8. (in Chinese with English abstract)
[4] 雷廷武,邵明安,楊培嶺. 我國(guó)干旱半干旱地區(qū)農(nóng)業(yè)持續(xù)發(fā)展戰(zhàn)略探討[J]. 農(nóng)業(yè)工程學(xué)報(bào),1999,15(4):1-5. Lei Tingwu, Shao Mingan, Yang Peiling. On the strategies of sustainable agricultural development in the arid and semi-arid areas of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(4): 1-5. (in Chinese with English abstract)
[5] 劉曉清,趙景波,于學(xué)峰. 黃土高原氣候暖干化趨勢(shì)及適應(yīng)對(duì)策[J]. 干旱區(qū)研究,2006,23(4):627-631. Liu Xiaoqing, Zhao Jingbo, Yu Xuefeng. Study on the climatic warming-drying trend in the Loess Plateau and the counter measure[J]. Arid Zone Research, 2006, 23(4): 627-631. (in Chinese with English abstract)
[6] 羅毅,郭偉. 作物模型研究與應(yīng)用中存在的問(wèn)題[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(5):307-312. Luo Yi, Guo Wei. Development and problems of crop models[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(5): 307-312. (in Chinese with English abstract)
[7] 姚寧,周元?jiǎng)?,宋利兵,? 不同水分脅迫條件下DSSAT-CERES-Wheat模型的調(diào)參與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):138-150. Yao Ning, Zhou Yuangang, Song Libing, et al. Parameter estimation and verification of DSSAT-CERES-Wheat model for simulation of growth and development of winter wheat under water stresses at different growth stages[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 138-150. (in Chinese with English abstract)
[8] Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3): 267-288.
[9] Amarasingha R P R K, Suriyagoda L D B, Marambe B, et al. Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka[J]. Agricultural Water Management, 2015, 160: 132-143.
[10] Holzworth D P, Huth N I, DeVoil P G, et al. APSIM: Evolution towards a new generation of agricultural systems simulation[J]. Environmental Modelling & Software, 2014, 62: 327-350.
[11] Delve R J, Probert M E, Cobo J G, et al. Simulating phosphorus responses in annual crops using APSIM: model evaluation on contrasting soil types[J]. Nutrient Cycling in Agroecosystems, 2009, 84(3): 293-306.
[12] Semenov M A, Stratonovitch P, Alghabari F, et al. Adapting wheat in Europe for climate change[J]. Journal of Cereal Science, 2014, 59: 245-256.
[13] Msongaleli B, Rwehumbiza F, Tumbo S D, et al. Sorghum yield response to changing climatic conditions in semi-arid central Tanzania: evaluating crop simulation model applicability[J]. Agricultural Sciences, 2014, 5: 822-833.
[14] Balwinder-Singha, Gaydon D S, Humphreysc E, et al. The effects of mulch and irrigation management on wheat in Punjab, India Evaluation of the APSIM model[J]. Field Crops Research, 2011, 124: 1-13.
[15] Wang J, Wang E L, Feng L, et al. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain[J]. Field Crops Research, 2013, 144: 135-144.
[16] 戴彤,王靖,赫迪,等. APSIM模型在西南地區(qū)的適應(yīng)性評(píng)價(jià)-以重慶冬小麥為例[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015(4):1237-1243. Dai Tong, Wang Jing, He Di, et al. Adaptability of APSIM model in Southwestern China: A case study of winter wheat in Chongqing City, Chinese Journal of Applied Ecology, 2015(4): 1237-1243. (in Chinese with English abstract)
[17] 奧海瑋,謝應(yīng)忠,宋乃平,等. APSIM苜蓿模型在寧夏半干旱地區(qū)的適用性[J]. 草地學(xué)報(bào),2014,22(3):535-541. Ao Haiwei, Xie Yingzhong, Song Naiping, et al. Adaptability of ASPIM lucerne model in semiarid area of Ningxia[J]. Acta Agrectir Sinica, 2014, 22(3): 535-541. (in Chinese with English abstract)
[18] 董朝陽(yáng),劉志娟,楊曉光. 北方地區(qū)不同等級(jí)干旱對(duì)春玉米產(chǎn)量影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):157-164. Dong Chaoyang, Liu Zhijuan, Yang Xiaoguang. Effects of different grade drought on grain yield of spring maize in Northern China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 157-164. (in Chinese with English abstract)
[19] 周少平. 基于APSIM模型的黃土高原玉米-小麥-大豆輪作系統(tǒng)產(chǎn)量、土壤水分動(dòng)態(tài)[D]. 蘭州:蘭州大學(xué),2008. Zhou Shaoping. Simulated Crop Yield and Soil Water within a Maize-winter Wheat–soybean Rotation in the Loess Plateau by APSIM[D]. Lanzhou: Lanzhou University, 2008. (in Chinese with English abstract)
[20] 沈禹穎. 黃土高原苜蓿-小麥輪作系統(tǒng)土壤與作物的組分動(dòng)態(tài)[D]. 廣州:中山大學(xué),2004. Shen Yuying. Component Dynamics of the Soil and Crop within Lucerne-wheat Rotation Systems[D]. Guangzhou: Zhongshan University, 2004. (in Chinese with English abstract)
[21] Chen W, Shen Y Y, Robertson M J, et al. Simulation analysis of lucerne-wheat crop rotation on the Loess Plateau of Northern China[J]. Field Crops Research, 2008, 108: 179-187.
[22] 李廣,李玥,黃高寶,等. 基于APSIM模型旱地春小麥產(chǎn)量對(duì)溫度和CO2濃度升高的響應(yīng)[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2012,20(8):1088-1095. Li Guang, Li Yue, Huang Gaobao, et al. Response of dryland spring wheat yield to elevated CO2concentration and temperature by APSIM model, Chinese Journal of Eco-Agriculture, 2012(8): 1088-1095.(in Chinese with English abstract)
[23] 羅彩云,沈禹穎,南志標(biāo),等. 水土保持耕作下隴東玉米-小麥-大豆輪作系統(tǒng)產(chǎn)量、土壤易氧化有機(jī)碳動(dòng)態(tài)[J].水土保持學(xué)報(bào),2005,19(4):84-88. Luo Caiyun, Shen Yuying, Nan Zhibiao, et al. Dynamics of crop yield and soil oxdizible organic carbon fraction within a maize-winter whea-soy rotation under different tillage treatment in Longdong Loess Plateau[J]. Journal of Soil and Water Conservation, 2005, 19(4): 84-88. (in Chinese with English abstract)
[24] 楊晶,沈禹穎,南志標(biāo),等. 保護(hù)性耕作對(duì)黃土高原玉米-小麥-大豆輪作系統(tǒng)產(chǎn)量及表層土壤碳管理指數(shù)的影響[J]. 草業(yè)學(xué)報(bào),2010,19(1):75-82. Yang Jing, Shen Yuying, Nan Zhibiao, et al. Effects of conservation tillage on crop yield and carbon pool management index on top soil within a maize-wheat-soy rotation system in the Loess Plateau[J]. Acta Agrectir Sinica, 2010, 19(1): 75-82. (in Chinese with English abstract)
[25] Spara R L. Using R2with caution[J]. Current Medicine Research and Practice, 2014, 4(3): 130-134.
[26] Zhang X C. Calibration, refinement,and application of the WEPP model for simulation climatic impact on wheat production[J]. ASAE, 2004, 47(4): 1075-1085.
[27] Michele R, Nicola L, Zina F. Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy[J]. Agricultural Systems, 2003, 78: 17-30.
[28] IPCC. Climate change 2013: The Physical Science Basis[M]// Stocker T F, Qin D, Plattner G K, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013.
[29] Chen C, Baethgen W E, Robertson A. Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961-2003[J]. Climatic Change, 2013, 116(3): 767-788.
[30] Anwar M R, Liu D L, Farquharson R, et al. Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia[J]. Agricultural Systems, 2015, 132: 133-144.
[31] 劉曉清,趙景波,于學(xué)峰. 黃土高原氣候暖干化趨勢(shì)及適應(yīng)對(duì)策[J]. 干旱區(qū)研究,2006,23(4):627-631. Liu Xiaoqing, Zhao Jingbo, Yu Xuefeng. Study on the climatic warming-drying trend in the Loess Plateau and the countermeasure[J]. Arid Zone Research, 2006, 23(4): 627-631. (in Chinese with English abstract)
[32] 郭海英,趙建萍,索安寧,等. 隴東黃土高原農(nóng)業(yè)物候?qū)θ驓夂蜃兓捻憫?yīng)[J]. 自然資源學(xué)報(bào),2006,21(4):608-614. Guo Haiying, Zhao Jianping, Suo Anning, et al. Response of agricultural phenospectrum to global climate change in Loess Plateau of east Gansu province[J]. Journal of Natural Resources, 2006, 21(4): 608-614. (in Chinese with English abstract)
[33] 王琳,鄭有飛,于強(qiáng),等. APSIM模型對(duì)華北平原小麥-玉米連作系統(tǒng)的適用性[J]. 應(yīng)用生態(tài)學(xué)報(bào),2007,18(11):2480-2486. Wang Lin, Zheng Youfei, Yu Qiang, et al. Applicability of Agricultural Production Systems Simulator (APSIM) in simulating the production and water use of wheat maize continuous cropping system in North China Plain[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2480-2486. (in Chinese with English abstract)
[34] Masikati P, Manschadi A, Rooyen A. Maize-mucuna rotation: An alternative technology to improve water productivity in smallholder farming systems[J]. Agricultural Systems, 2014, 123: 62-70.
[35] Bowman A M, Smith W, Brockwell J. Forecasting lucerne productivity under dryland farming conditions in central-western and western New South Wales[J]. Soil Biology and Biochemistry, 2004, 36(8): 1253-1260.
[36] 王位泰,張?zhí)熹h,黃斌,等. 隴東黃土高原春播紫花苜蓿生長(zhǎng)規(guī)律及氣候生產(chǎn)潛力評(píng)估[J]. 干旱地區(qū)農(nóng)業(yè)研究,2007,25(5):214-219. Wang Weitai, Zhang Tianfeng, Huang Bing, et al. Growth disciplinarian of alfalfa sowed in spring and evaluation of climate productivity in the loess plateau of East Gansu[J]. Agricultural Research in the Arid Areas, 2007, 25(5): 214-219. (in Chinese with English abstract)
[37] 王修蘭,徐師華,崔讀昌. CO2濃度倍增及氣候變暖對(duì)農(nóng)業(yè)生產(chǎn)影響的診斷與評(píng)估[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2003,11(4):47-48. Wang Xiulan, Xu Shihua, Cui Duchang. The diagnosis and estimation of CO2concentration increasing and climate warming on the agricultural production[J]. Chinese Journal of Eco-Agriculture, 2003, 11(4): 47-48. (in Chinese with English abstract)
[38] Watson R T, Zinyowera M C, Moss R H. The Regional Impacts of Climate Change: An Assessment of Vulnerability[M]. Cambridge, United Kingdom: Cambridge University Press, 1997: 1-18.
[39] Basso B, Ritchie J. Temperature and drought effects on maize yield[J]. Nature Climate Change, 2014, 4(4): 233.
[40] 張麗. C3、C4不同作物光合生理特性比較的研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2004. Zhang Li. Comparison of Photosynthetic Characteristics for C3 and C4 Plants[D]. Beijing: China agricultural university, 2004. (in Chinese with English abstract)
Effects of precipitation and air temperature changes on yield of several crops in Eastern Gansu of China
Yang Xuan, Wang Zikui, Cao Quan, Zhang Xiaoming, Shen Yuying※
(College of Pastoral Agriculture Science and Technology, Key Laboratory of Grassland Agro-ecosystem, Lanzhou University, Lanzhou 730020, China)
Investigating the response of crop production to climate change can help to optimize local agricultural practices, and then ensure food and ecological security. Crop models can provide a useful way to examine the effects of a range of climatic condition, management or crop cultivar on crop growth and yield in field and pasture. This work investigated the effects of precipitation and air temperature changes on the production of winter wheat, maize and lucerne in rain-fed agriculture area located in the central and western Loess Plateau by field experiment and crop simulation model. The field experiment was conducted at Qingyang Loess Plateau Experimental Station of Lanzhou University through 2001 to 2010, and the Agricultural Production Systems Simulator (APSIM) was applied in this study to simulate the growing process of winter wheat, maize and lucerne. The APSIM was validated with the experimental data firstly, and then the APSIM was applied to simulate the yield variability of the crops under the combinations 5 precipitation levels and 5 air temperature levels based on historical climatic data from 1961 to 2010. Temperature levels were: 1) -1.5°C decrease in daily mean temperature (T1); 2) -1°C decrease in daily mean temperature (T2); 3) historical daily temperature (T2); 4) 1°C increase in daily mean temperature (T4); and 5) 1.5°C increase in daily mean temperature (T5). Precipitation levels were: 1) 20% decrease in daily precipitation (P1); 2) 10% decrease in daily precipitation (P2); 3) historical daily precipitation (P3); 4) 10% increase in daily precipitation (P4); and 5) 20% increase in daily precipitation (P5). Results showed that the APSIM can predict the grain yield and biomass of the 3 crops accurately with the determination coefficients varied between 0.80-0.93, the normalized root mean square errors varied between 11.35%-22.48%, and the model efficiency varied between 0.53-0.91; Overall, APSIM was powerful to simulate the crop grain yield and biomass of winter wheat, maize and lucerne in study site. Winter wheat and lucerne maintained the greatest yield increase when the air temperature decreased and the precipitation increased during 1961-2010, which was 29.8% and 51.7%. Maize reached its greatest yield, which improved 22% when the precipitation increased and the air temperature remained unchanged. The maximal reduction of yield of 3 crops were 38.7%, 40.3% and 41.8%, respectively, which presented in the scenarios with low precipitation level and high temperature level. In addition, the variation range of winter wheat yield was reduced by increasing air temperature and precipitation while lucerne yield exhibited a smaller variation range when precipitation decreased and temperature increased. According to the trend of winter wheat and lucerne, the variation range of maize yield tended to boost by increasing precipitation, otherwise, maize yield also showed a wider range under the temperature level varied from T1to T3; but when temperature level hoisted up the T5, variation range of maize yield tended to be narrower. Overer, lucerne could adapt to the climate change better than winter wheat and maize with relatively inferior changes of yield variation under different climatic scenarios. In conclusion, the 3 crops were more sensitive to precipitation and they had positive linear relationships with precipitation level by slopes of 14.3-16.0, 11.8-15.5 and 15.0-18.9, respectively. The results should offer better comprehension and consultation for future studies and actual production about long-term of chief crop production when climate changes. Future agricultural production should attach importance to change crop management such as sowing date and cultivar to avoid heat or moisture stress. Otherwise, more efforts should be paid to explore the effect of interaction by CO2, solar radiation, precipitation and air temperature on crop production on the western of Loess Plateau.
climate change; precipitation; temperature; APSIM; yield; Eastern Gansu
10.11975/j.issn.1002-6819.2016.09.015
P467;S501
A
1002-6819(2016)-09-0106-09
楊 軒,王自奎,曹 銓?zhuān)瑥埿∶?,沈禹穎. 隴東地區(qū)幾種旱作作物產(chǎn)量對(duì)降水與氣溫變化的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):106-114.
10.11975/j.issn.1002-6819.2016.09.015 http://www.tcsae.org
Yang Xuan, Wang Zikui, Cao Quan, Zhang Xiaoming, Shen Yuying. Effects of precipitation and air temperature changes on yield of several crops in Eastern Gansu of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 106-114. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.015 http://www.tcsae.org
2015-09-28
2016-02-10
甘肅省重大科技專(zhuān)項(xiàng)(1203FKDA035);教育部長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT13019);甘肅省科技支撐項(xiàng)目(150NKCA081)
楊 軒,男,寧夏銀川人,博士生,主要從事作物生長(zhǎng)模型應(yīng)用方面的研究。蘭州 蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,730020。Email:yangxuan2014@lzu.edu.cn
※通信作者:沈禹穎,女,上海人,教授,博士生導(dǎo)師,主要從事草地農(nóng)業(yè)生態(tài)方面的研究。蘭州 蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,730020。Email:yy.shen@lzu.edu.cn