国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

粗顆粒物料管道水力輸送不淤臨界流速計(jì)算

2017-01-03 05:57:35夏建新
關(guān)鍵詞:漿體水力顆粒物

邱 灝,曹 斌,夏建新

(中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院,北京 100081)

?

粗顆粒物料管道水力輸送不淤臨界流速計(jì)算

邱 灝,曹 斌,夏建新

(中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院,北京 100081)

近30年來(lái),固體物料的管道水力輸送技術(shù)應(yīng)用越來(lái)越廣泛。在管道水力輸送系統(tǒng)設(shè)計(jì)中,不淤臨界流速是首先需要確定的重要參數(shù),對(duì)確保管道安全輸送具有重要意義。對(duì)于細(xì)顆粒物料,已有比較成熟的計(jì)算方法,但對(duì)粗顆粒物料,不同的計(jì)算式差異較大,給參數(shù)確定帶來(lái)困難。在對(duì)已有的管道不淤臨界流速計(jì)算進(jìn)行比較分析基礎(chǔ)上,探討了顆粒濃度、粒徑、密度以及管道直徑等因素對(duì)不淤臨界流速的影響,并分析了計(jì)算式結(jié)構(gòu)的差異。整理不同學(xué)者針對(duì)粗顆粒輸送的試驗(yàn)數(shù)據(jù),重點(diǎn)分析了不淤臨界流速隨顆粒粒徑加大的變化規(guī)律?;诹烤V分析法,提出了粗顆粒在管道輸送中不淤臨界流速計(jì)算式,其計(jì)算結(jié)果與試驗(yàn)數(shù)據(jù)相對(duì)誤差在10%以下,基本滿足不淤臨界流速計(jì)算的工程要求。

粗顆粒物料; 管道; 水力輸送; 不淤臨界流速

固體物料管道水力輸送因其效率高、成本低、環(huán)境友好等特點(diǎn)成為繼公路、鐵路和水運(yùn)之后的第四大運(yùn)輸方式,如昆鋼大紅山精鐵礦輸送管線長(zhǎng)達(dá)171 km,年輸送量高達(dá)600萬(wàn)t;正在建造的神渭輸煤管線輸送距離達(dá)到750 km[1]。同時(shí),管道充填采礦也被廣泛采用[2-3]。對(duì)于由細(xì)顆粒(粒徑d<0.1 mm)組成的漿體,管道輸送技術(shù)已比較成熟。隨著管道水力輸送應(yīng)用范圍越來(lái)越廣,許多工程要求直接輸送粗顆粒,如建筑用砂最佳粒徑在3~5 mm,如過(guò)于細(xì)小則會(huì)影響混凝土的力學(xué)性能指標(biāo);深海采礦時(shí)管道提升的礦石粒徑更粗,甚至可能達(dá)到30 mm,其原因是在深海海底進(jìn)行礦石破碎成本很高,同時(shí),細(xì)顆粒難以從尾水中去除,無(wú)法滿足海洋環(huán)境保護(hù)的要求。

不淤臨界流速,即管道水力運(yùn)輸過(guò)程中,固體物料能夠連續(xù)輸送、不淤積的速度。在此流速下,系統(tǒng)運(yùn)行安全可靠且消耗的能量較少[4]。因此,不淤臨界速度是管道輸送工程設(shè)計(jì)首先要確定的重要工藝參數(shù),也是評(píng)估管道輸送安全的重要依據(jù)。目前國(guó)內(nèi)外有關(guān)由細(xì)顆粒組成的漿體管道輸送不淤臨界流速的研究成果很多,但對(duì)于粗顆粒輸送不淤臨界流速的研究成果則較少,且計(jì)算式和結(jié)果之間均存在很大的差異,在管道工程設(shè)計(jì)時(shí)無(wú)法提供可靠依據(jù)。

本文對(duì)現(xiàn)有的管道水力輸送不淤臨界流速計(jì)算式進(jìn)行比較和分析,利用不同學(xué)者的試驗(yàn)數(shù)據(jù),得到了適合粗顆粒物料管道水力輸送的不淤臨界流速計(jì)算式。

1 已有不淤臨界流速計(jì)算式

表1 不同學(xué)者的管道水力輸送不淤臨界流速計(jì)算式

Tab.1 Formulas for critical velocity given by different scholars

序號(hào)作者計(jì)算式與主要參數(shù)的關(guān)系Cvd適用范圍1Shook[5]vc=2.43C1/3vC1/4D2gD(s-1)vc∝C1/3vvc∝d1/40.2mm≤d≤5.25mm1.5≤s≤3.9540mm≤D≤580mm2Wasp[6]vc=3.40C0.22v(dD)1/62gD(s-1)vc∝C0.22vvc∝d1/60.25mm≤d≤2.04mm0.01≤Cv≤0.2526.7mm≤D≤139.7mm3Mehmet[7]vc=0.055C0.27v(ρfwdμf)0.3(dD)-0.6gD(s-1)0.07vc∝C0.27vvc∝d-0.30.23mm≤d≤5.34mm0.0075≤Cv≤0.301.04≤s≤2.6825.4mm≤D≤152.4mm4Turian[8]vc=1.82C0.11v(1-Cv)0.25(dD)0.062gD(s-1)vc∝C0.36vvc∝d0.060.02mm≤d≤2.2mm0.028≤Cv≤0.5611.26≤s≤7.4158mm≤D≤101.6mm

圖1 已有的不淤臨界流速公式計(jì)算結(jié)果Fig.1 Calculation results of existing different critical velocity formulas

當(dāng)Rep<1時(shí),CD=24/Rep;

(1)

(2)

當(dāng)Rep>1 000時(shí),CD與Rep關(guān)系不大,通常取CD≈0.44[9]。

(3)

在上述計(jì)算式的適用范圍內(nèi),如選取Cv=0.1,D=100 mm,s=2.65,可以得到圖1。從圖中可以看出,不同學(xué)者的計(jì)算結(jié)果差異較大,尤其是在粒徑較大時(shí),甚至出現(xiàn)了相反的趨勢(shì)。

2 粗顆粒物料管道水力輸送不淤臨界流速影響因素

根據(jù)顆粒與水流的跟隨性,大致可分兩種情況。當(dāng)顆粒粒徑較小(細(xì)顆粒)時(shí),跟隨性好,能與水形成均質(zhì)漿體;當(dāng)顆粒粒徑較大(粗顆粒),其速度明顯小于水流速度,形成顆粒與水的固液兩相流。在顆粒粒徑逐漸變大過(guò)程中,跟隨性逐漸變差,一般情況下可認(rèn)為,粒徑小于0.1 mm顆粒有較好的跟隨性,粒徑在0.1~1.0 mm之間顆粒跟隨性逐漸變差。在管道水力輸送過(guò)程中,粒徑大于1 mm顆??烧J(rèn)為是粗顆粒。

影響粗顆粒物料管道水力輸送不淤臨界流速的因素很多,如顆粒濃度、粒徑、物料密度和管道直徑等因素。

2.1 濃度對(duì)不淤臨界流速影響

漿體濃度對(duì)于不淤臨界流速的影響比較復(fù)雜,一方面隨著顆粒濃度的增加,漿體密度和黏性增加,有效重力減小,使其中的顆粒更難沉降。因此,濃度增加可減小臨界流速;另一方面,由于顆粒濃度增加抑制了水流紊動(dòng)強(qiáng)度,不利于顆粒懸浮,因此必須提高輸送速度。在濃度較低時(shí),濃度增加對(duì)抑制紊動(dòng)起主要作用,表現(xiàn)為臨界流速隨濃度增加而提高,但超過(guò)一定濃度后,濃度增加則對(duì)減小顆粒沉降速度起主要作用,表現(xiàn)為臨界流速隨濃度增加而減小[10]。

對(duì)于粗顆粒,由于難以與液相形成漿體,當(dāng)物料濃度較低時(shí)(Cv<10%),固液混合物的黏度主要取決于液相的黏度[11],因此在輸送粗顆粒時(shí),隨著物料濃度的增大,不淤臨界流速隨之增加。當(dāng)濃度增加到一定值后,由于顆粒存在而使過(guò)流面積減小,使實(shí)際液相速度大于平均輸送流速,臨界流速又相應(yīng)減小。同時(shí),隨濃度增加因顆粒沉速快速下降,也使不淤臨界流速隨之下降[11-12]。

2.2 粒徑對(duì)不淤臨界流速影響

當(dāng)顆粒粒徑較小時(shí)(<0.1 mm),顆粒與流體形成均質(zhì)漿體,不易沉降,速度較小時(shí)便可輸送;當(dāng)顆粒粒徑進(jìn)一步增大后,顆粒有效重力增加,容易沉降,要使顆粒不淤必須加大流速;當(dāng)顆粒粒徑達(dá)到一定值后(1~2 mm),大部分以推移狀態(tài)輸送。對(duì)于粗顆粒,隨著水流速度從小到大變化,其在管道中的運(yùn)動(dòng)形態(tài)依次出現(xiàn)3種:間歇式推移狀態(tài)、連續(xù)推移狀態(tài)和懸移狀態(tài)[13]。

顆粒在水平管道中輸送時(shí),水平方向上受到水的拖曳力和管道摩擦阻力作用,垂直方向上受到重力、浮力和流體作用于顆粒的升力作用。在低濃度條件下,管道中粗顆粒運(yùn)動(dòng)主要受水流拖曳力控制。拖曳力與顆粒粒徑平方成正比,即FD∝d2。在同樣的輸送速度下,粗顆粒比細(xì)顆粒受到的拖曳力作用更強(qiáng),因此,不淤臨界輸送速度有可能反而有所減小。

2.3 密度對(duì)不淤臨界流速的影響

粗顆粒在水中運(yùn)動(dòng)時(shí),垂直方向上受重力、浮力以及拖曳力的垂直分量,對(duì)于在水中運(yùn)動(dòng)的體積確定的顆粒,其浮力一定,重力隨密度增加而增加,因此需要拖曳力提供向上的垂直分力相應(yīng)增加,而拖曳力與流速成正相關(guān),由此,不淤臨界流速隨粗顆粒密度增加而增大。

2.4 管道直徑對(duì)不淤臨界流速的影響

管道內(nèi)徑對(duì)不淤臨界流速的影響主要表現(xiàn)在兩方面:一方面管道直徑越大,其絕對(duì)粗糙度越小,水力半徑越大,紊動(dòng)作用越強(qiáng),使得不淤臨界流速減小[14];另一方面,管徑加大,固體顆粒從管底懸浮起來(lái)難度更大,更難維持原有的垂線濃度梯度,需要更大的輸送速度。從已有的試驗(yàn)資料分析,隨著管道內(nèi)徑增加,不淤臨界流速也需加大[15]。

3 粗顆粒物料水力輸送不淤臨界流速計(jì)算

圖2 部分不淤臨界流速試驗(yàn)數(shù)據(jù)及擬合Fig.2 Testing and simulation results of coarse particle under critical velocity

為進(jìn)一步深入分析粗顆粒管道輸送的不淤臨界流速變化規(guī)律,將已有的試驗(yàn)數(shù)據(jù)進(jìn)行整理和分析,如R.Durand[16],I.Avci[17],N.Yotsukura[18]等的研究,見(jiàn)表2。

將上述試驗(yàn)數(shù)據(jù)中濃度條件相近的進(jìn)行分組,可以得到3組不同濃度條件下的不淤臨界流速變化,如圖2。從圖2可見(jiàn),當(dāng)顆粒較細(xì)(d<1 mm)時(shí),臨界流速隨顆粒粒徑增大而增大;當(dāng)顆粒較粗(d>1 mm)時(shí),不淤臨界流速隨顆粒粒徑增大反而有所減小,但幅度很小。

為得到粗顆粒不淤臨界流速的計(jì)算公式,采用量綱分析法,并對(duì)上表中的數(shù)據(jù)進(jìn)行擬合得到(采用的試驗(yàn)數(shù)據(jù)在1 mm

表2 不同學(xué)者不淤臨界流速試驗(yàn)數(shù)據(jù)

Tab.2 Experimental data from past studies

數(shù)據(jù)來(lái)源d/mmD/mCv/%svc/(m·s-1)數(shù)據(jù)來(lái)源d/mmD/mCv/%svc/(m·s-1)Avci[17]0.4210.0520.0502.681.450.4210.0520.1002.681.580.5960.0520.0501.180.490.5960.0520.1001.180.520.5960.0520.1501.180.580.8430.0520.0501.180.520.8430.0520.1001.180.54Grafetal.[19]0.4500.1020.0072.651.550.4500.1020.0102.651.710.4500.1020.0302.651.900.4500.1020.0702.651.980.4500.1520.0082.651.780.4500.1520.0192.652.120.4500.1520.0252.652.270.4500.1520.0542.652.420.8800.1520.0082.651.950.8800.1520.0112.652.040.8800.1520.0302.652.210.8800.1520.0502.652.25Durand[16]0.5850.1080.0502.601.990.5850.1080.1002.602.120.5850.1080.1502.602.441.1500.1080.1002.602.321.1500.1080.1502.602.67Yotsukura[18]0.4400.1500.0502.602.470.4400.1500.1002.602.650.4400.1500.1502.602.712.0400.1500.0252.602.192.0400.1500.0752.602.532.0400.1500.0792.602.412.0400.1500.1002.602.62Sinclair[20]2.2050.0250.1201.740.452.2050.0250.1401.740.47Mehmet[7]1.0900.1500.0152.602.333.2000.0520.0501.410.603.2000.0520.1001.040.273.2000.0520.1001.410.653.2000.0520.1501.410.683.7000.1500.0221.741.623.7000.1500.0361.741.903.7000.1500.0391.741.713.7000.1500.0501.741.883.7000.1500.0551.742.045.3400.1500.0152.551.965.3400.1500.0262.552.035.3400.1500.0272.552.315.3400.1500.0372.552.45

圖3 計(jì)算值與實(shí)測(cè)值比較Fig.3 Comparison between calculated and measured values

(4)

將計(jì)算值和實(shí)測(cè)值進(jìn)行比較,結(jié)果見(jiàn)圖3,平均誤差為8.1%,因此,在D≤150 mm,1 mm≤d≤6 mm,Cv<15%,s>1范圍內(nèi),可以基本滿足工程設(shè)計(jì)要求。

4 結(jié) 語(yǔ)

本文通過(guò)理論分析并對(duì)其他學(xué)者所提出的公式進(jìn)行對(duì)比,結(jié)合前人的試驗(yàn)數(shù)據(jù)擬合分析,得到粗顆粒不淤臨界流速預(yù)測(cè)公式,并將該公式計(jì)算結(jié)果與實(shí)測(cè)數(shù)據(jù)進(jìn)行比較。結(jié)果表明該公式的平均誤差在10%以下,滿足工程設(shè)計(jì)參數(shù)選擇的要求。

[1]陳光國(guó),夏建新.我國(guó)礦漿管道輸送技術(shù)水平與挑戰(zhàn)[J].礦冶工程,2015,35(2):29- 32.(CHEN Guang-guo,XIA Jian-xin.Existing technology and technical challenges in slurry pipeline transportation development in China[J].Mining and Metallurgical Engineering,2015,35(2):29- 32.(in Chinese))

[2]李公成,王洪江,吳愛(ài)祥,等.基于傾斜管實(shí)驗(yàn)的膏體自流輸送規(guī)律[J].中國(guó)有色金屬學(xué)報(bào),2014,24(12):3162- 3169.(LI Gong-cheng,WANG Hong-jiang,WU Ai-xiang,et al.Gravity transport law of paste based on inclined pipe experiment[J].The Chinese Journal of Nonferrous Metals,2014,24(12):3162- 3169.(in Chinese))

[3]吳迪,蔡嗣經(jīng),楊威,等.基于CFD的充填管道固-液兩相流輸送模擬及試驗(yàn)[J].中國(guó)有色金屬學(xué)報(bào),2012,22(7):2133- 2140.(WU Di,CAI Si-jing,YANG Wei,et al.Simulation and experiment of back filling pipeline transportation of solid-liquid two-phase flow based on CFD[J].The Chinese Journal of Nonferrous Metals,2012,22(7):2133- 2140.(in Chinese))

[4]胡去劣,熊夢(mèng)婕.尾礦流槽臨界流速和臨界坡度計(jì)算[J].水利水運(yùn)工程學(xué)報(bào),2011(2):48- 53.(HU Qu-lie,XIONG Meng-jie.Calculation of the critical velocity and the critical slope of trailing hydro-transport in open channels[J].Hydro-Science and Engineering,2011(2):48- 53.(in Chinese))

[5]SHOOK C A,ROCO M C.Critical deposit velocity in slurry flow[J].AICHE Journal,1985,8:1401- 1404.

[6]WASP E J,KENNY J P,GANDHI R I.Solid-liquid flow-slurry pipeline transportation[M].Rockport:Trans Tech Publ,1977.

[7]MEHMET A K,MUSTAFA G.Critical flow velocity in slurry transporting horizontal pipelines[J].Canadian Metallurgical Quarterly,2001,127(9):763- 771.

[8]TURIAN R M,HSU F-L,MA T-W.Estimation of the critical velocity in pipeline flow of slurries[J].Powder Technology,1987,51:35- 47.

[9]費(fèi)祥俊.漿體與粒狀物料輸送水力學(xué)[M].北京:清華大學(xué)出版社,1994.(FEI Xiang-jun.Slurry and granular material conveying hydraulics[M].Beijing:Tsinghua University Press,1994.(in Chinese))

[10]汪東,許振良,孟慶華.漿體管道輸送臨界流速的影響因素及計(jì)算分析[J].管道技術(shù)與設(shè)備,2004(6):1- 2.(WANG Dong,XU Zhen-liang,MENG Qing-hua.Effect and calculating analysis of critical flow velocity in slurry pipeline[J].Pipeline Technique Equipment,2004(6):1- 2.(in Chinese))

[11]王紹周,王維春,孫萍,等.粒狀物料的漿體管道輸送[M].北京:海洋出版社,1998.(WANG Shao-zhou,WANG Wei-chun,SUN Ping,et al.Slurry pipeline transport of granular material[M].Beijing:China Ocean Press,1998.(in Chinese))

[12]費(fèi)祥俊.漿體管道的不淤流速研究[J].煤炭學(xué)報(bào),1997,22(5):532- 536.(FEI Xiang-jun.Study of non-deposit velocity slurry pipeline[J].Journal of China Coal Society,1997,22(5):532- 536.(in Chinese))

[13]曹斌,夏建新,黑鵬飛,等.粗顆粒在復(fù)雜空間形態(tài)管道水力輸送中運(yùn)動(dòng)形式的研究[J].礦冶工程,2012,32(2):5- 10,14.(CAO Bin,XIA Jian-xin,HEI Peng-fei,et al.Study on the movement state of coarse-grain during hydraulic transportation in pipeline of complex spatial morphology[J].Mining and Metallurgical Engineering,2012,32(2):5- 10,14.(in Chinese))

[14]李志銘,何炎平,諸葛瑋,等.泥沙管道輸送關(guān)鍵流速及其計(jì)算方法比較[J].人民黃河,2014,36(9):16- 19.(LI Zhi-ming,HE Yan-ping,ZHUGE Wei,et al.Comparative analysis the critical velocity and its calculation methods in slurry transportation by pipeline[J].Yellow River,2014,36(9):16- 19.(in Chinese))

[15]錢(qián)寧,萬(wàn)兆惠.泥沙運(yùn)動(dòng)力學(xué)[M].北京:科學(xué)出版社,1991.(QIAN Ning,WAN Zhao-hui.Mechanics of sediment transport[M].Beijing:Science Press,1991.(in Chinese))

[16]DURAND R.The hydraulic transportation of coal and other materialsin pipes[D].London:College of National Coal Board,1952.

[17]AVCI I.Experimentally determination of critical flow velocity in sediment carrying pipeline systems[C]∥Tech Rep Technical University,Istanbul,Turkey,1981.

[18]YOTSUKURA N.Some effects of bentonite suspensions on sand transport in a smooth 4-inch pipe[D].Fort Collins:Colorado State University,1961.

[19]GRAF W H,ROBINSON M P,YUCEL O.Critical velocity for solid-liquid mixtures[D].Bethlehem,Pa:Lehigh University,1970.

[20]SINCLAIR C G.The limit deposit-velocity of heterogeneous suspensions[C]∥Symposium on the Interaction between Fluids and Particles,Third Congress of the European Federation of Chemical Engineers,London,Institute of Chemical Engineering,1962:A68-A762.

Non-silting critical velocity calculation of coarse-grained materials in hydraulic pipeline

QIU Hao,CAO Bin,XIA Jian-xin

(CollegeofLifeandEnvironmentScience,MinzuUniversityofChina,Beijing100081,China)

In the past 30 years,pipeline hydraulic transportation of the solid materials has been applied much more wildly.In the design of the pipeline hydraulic transportation system,the non-silting critical velocity is an important parameter needed to be ascertained at first,which has a great significance for the system operation safety.For the fine-grained materials in the pipeline hydraulic transportation system,many calculation methods can be applied for this parameter.However,for the coarse-grained materials,how to choose the calculation formulas is a difficult problem because of their great different results.In this paper,based on the comparison and analysis of the existing non-silting critical velocity calculation formulas,the influences of the factors including particle concentration,size distribution,density and diameter of the pipeline,on the non-silting critical velocity are discussed especially for the coarse-grained materials,the structure differences of the formulas are compared.A careful analysis of variation law of the non-silting critical velocity changed with the increase of particle size is made by sorting out the experimental data of the coarse-grained materials transport given by different scholars.And based on a dimensional analysis,a new formula to calculate the non-silting critical velocity in a horizontal pipeline hydraulic transportation system has been suggested.The relative errors between the calculated results and the tested data are less than 10%,which can basically meet engineering requirements of calculation of the non-silting critical velocity.

coarse particle; pipeline; hydraulic transportation; non-silting critical velocity

10.16198/j.cnki.1009-640X.2016.06.015

邱灝,曹斌,夏建新.粗顆粒物料管道水力輸送不淤臨界流速計(jì)算[J].水利水運(yùn)工程學(xué)報(bào),2016(6):103-108.(QIU Hao,CAO Bin,XIA Jian-xin.Non-silting critical velocity calculation of coarse-grained materials in hydraulic pipeline[J].Hydro-Science and Engineering,2016(6):103-108.)

2015-11-13

國(guó)家自然科學(xué)基金資助項(xiàng)目(51179213,51339008,51434002)

邱 灝(1990—),男,湖南益陽(yáng)人,碩士研究生,主要從事水沙環(huán)境方面的研究。E-mail:qhatnight@163.com

TD522

A

1009-640X(2016)06-0103-06

猜你喜歡
漿體水力顆粒物
漿體輸送中彎管磨損原因分析及預(yù)防措施
昆鋼科技(2020年5期)2021-01-04 01:41:24
南平市細(xì)顆粒物潛在來(lái)源分析
球墨鑄鐵管的水力計(jì)算
K+和Na+在C3S-納米SiO2漿體上的吸附和脫附特性
長(zhǎng)距離漿體管道正排量泵智能協(xié)同系統(tǒng)的設(shè)計(jì)
戽流消能水力特性數(shù)值模擬
錯(cuò)流旋轉(zhuǎn)填料床脫除細(xì)顆粒物研究
水力噴射壓裂中環(huán)空水力封隔全尺寸實(shí)驗(yàn)
多層介質(zhì)阻擋放電處理柴油機(jī)尾氣顆粒物
混合量熱法測(cè)定水合物漿體蓄冷密度
红原县| 鲜城| 松潘县| 喀喇沁旗| 满洲里市| 磐石市| 土默特右旗| 东乡县| 崇文区| 鹤山市| 蚌埠市| 永靖县| 犍为县| 酉阳| 平和县| 武宣县| 措勤县| 微博| 新竹市| 酉阳| 博客| 同德县| 阿克陶县| 宁武县| 吉木乃县| 平罗县| 永登县| 巩义市| 富锦市| 江孜县| 定陶县| 综艺| 南雄市| 成安县| 武隆县| 望城县| 阜康市| 青冈县| 新建县| 丰城市| 监利县|