鄧 輝,李政家,金志文,張 濤
?
棉稈與污泥共熱解制備生物炭工藝優(yōu)化及其結(jié)構(gòu)與吸附性能
鄧 輝,李政家,金志文,張 濤
(新疆兵團(tuán)化工綠色過(guò)程重點(diǎn)實(shí)驗(yàn)室/石河子大學(xué)化學(xué)化工學(xué)院,石河子 832003)
隨著經(jīng)濟(jì)的發(fā)展,產(chǎn)量巨大的棉稈與污泥亟需找到新的資源化方式。該研究利用污泥與棉稈共熱解制備炭,采用正交試驗(yàn)法全面考察與分析了各因素對(duì)污泥-棉稈炭吸附性能以及表面結(jié)構(gòu)的影響。結(jié)果表明,污泥質(zhì)量分?jǐn)?shù)、KOH濃度、微波功率、輻照時(shí)間以及裝填量均會(huì)顯著影響污泥-棉稈炭的吸附性能、表面官能團(tuán)以及孔結(jié)構(gòu)。優(yōu)化工藝參數(shù)為:污泥質(zhì)量分?jǐn)?shù)30%,微波功率280 W,輻照時(shí)間24 min,KOH質(zhì)量分?jǐn)?shù)50%,裝填量150 g,在該工藝條件可制備獲得綜合吸附性能較優(yōu)的污泥-棉稈炭,其亞甲基藍(lán)、酸性品紅、硫酸銅以及碘的吸附值分別達(dá)到157.80、293.39、272.12、1 281.93 mg/g。污泥-棉稈炭的吸附性能可達(dá)到或超過(guò)國(guó)家木質(zhì)凈水用活性炭一級(jí)品的標(biāo)準(zhǔn),但吸附質(zhì)與炭的結(jié)構(gòu)特性均會(huì)影響其吸附性能。酸性官能團(tuán)總量與孔容分別與酸性品紅吸附值及硫酸銅吸附值顯著相關(guān),其他結(jié)構(gòu)參數(shù)與吸附性能相關(guān)性不顯著,污泥-棉稈炭對(duì)污染物的吸附并不只是單一的物理吸附或化學(xué)吸附。該研究結(jié)果對(duì)于定向設(shè)計(jì)高效的棉稈-污泥炭基吸附劑具有參考價(jià)值。
廢棄物;污泥;生物質(zhì);棉稈炭;吸附性能;KOH活化-微波熱解法;表面結(jié)構(gòu)
國(guó)家《“十二五”全國(guó)城鎮(zhèn)污水處理及再生利用設(shè)施建設(shè)規(guī)劃》提出,到2015年,中國(guó)城市污水處理率應(yīng)達(dá)到85%,隨之而來(lái)的是產(chǎn)量巨大的污水污泥。據(jù)報(bào)道,2013年中國(guó)全年污水處理量升至444.60億m3,按照城市污水中含固率為0.02%估算[1],2013年污泥產(chǎn)量約為8.89×107t(以干物質(zhì)計(jì))。目前,污泥的處理和處置成為污水處理廠(chǎng)發(fā)展進(jìn)程中面臨的重要課題之一。
污泥作為污水處理的副產(chǎn)物,其中包含覆蓋面很廣的各類(lèi)污染物質(zhì),如少量重金屬(Cd、Pb、Cu、Hg等)、微量的毒性有機(jī)物以及大量的致病微生物(致病細(xì)菌、病毒體、寄生蟲(chóng)卵、有害昆蟲(chóng)卵等)等。但污泥固形物中一般還含有約33.5%~47.2%的有機(jī)質(zhì)[2],故可將其炭化制備炭基吸附劑[3-6]。目前國(guó)內(nèi)外學(xué)者已經(jīng)制備出可用于重金屬[7-8]、染料[9-14]以及其他有機(jī)污染物[15]吸附的污泥炭。但研究結(jié)果顯示,污泥炭的吸附效果劣于商品活性炭。研究者們嘗試通過(guò)向污泥中添加生物質(zhì)(蘆葦秸稈[16]、甘蔗渣[17]、玉米秸稈[18-19]以及谷殼[20])的方式,采用共熱解方法制備污泥-生物質(zhì)炭,以增大炭的吸附性能,但目前此類(lèi)研究集中于如何通過(guò)改善工藝條件制備高碘值或亞甲基藍(lán)吸附值的炭材料,而關(guān)于制備條件對(duì)污泥-生物質(zhì)炭表面結(jié)構(gòu)的影響研究較少,對(duì)微波加熱條件下污泥-生物質(zhì)炭表面結(jié)構(gòu)的演化規(guī)律未見(jiàn)報(bào)道,對(duì)生物炭表面結(jié)構(gòu)與吸附性能之間的關(guān)系研究罕見(jiàn)報(bào)道。
新疆作為中國(guó)主要的產(chǎn)棉區(qū)之一,每年會(huì)產(chǎn)生巨量的棉稈。棉稈糖化困難、糖化率低,生產(chǎn)乙醇成本較高;棉稈的木質(zhì)化程度高、適口性差以及游離棉酚含量嚴(yán)重超標(biāo),不適宜未經(jīng)處理直接作為飼料[21]。目前,大部分棉稈被直接焚燒還田,嚴(yán)重影響空氣質(zhì)量和交通運(yùn)輸?shù)恼_\(yùn)營(yíng)[22]。因此,合理、有效的利用棉稈,實(shí)現(xiàn)其減量化、無(wú)害化及資源化是目前新疆亟需解決的環(huán)境問(wèn)題之一。棉稈中含有豐富的碳,可考慮將其與污泥共熱解以促進(jìn)污泥炭的孔隙結(jié)構(gòu)形成,但目前尚未見(jiàn)此類(lèi)報(bào)道。本研究以新疆石河子市污水處理廠(chǎng)的剩余污泥及市郊所產(chǎn)棉稈為研究對(duì)象,采用KOH活化-微波加熱的方式熱解污泥與棉稈的混合物獲取污泥-棉稈炭(sludge and cotton stalk chars,SCA),通過(guò)正交試驗(yàn)設(shè)計(jì)制備工藝參數(shù),并對(duì)SCA進(jìn)行結(jié)構(gòu)與吸附性能表征,研究污泥質(zhì)量分?jǐn)?shù)、微波功率、輻射時(shí)間、KOH濃度以及裝瓶量對(duì)SCA表面官能團(tuán)、孔結(jié)構(gòu)以及吸附性能的影響,并初步揭示SCA的結(jié)構(gòu)與吸附性能間的相互關(guān)系。
1.1 試驗(yàn)材料
污水污泥取自新疆石河子市污水處理廠(chǎng)的污泥脫水間,經(jīng)過(guò)壓濾機(jī)后成為泥餅。泥餅取回后,日光下曝曬10 d,105 ℃干燥24 h后,粉碎備用。污泥的N、C以及H的干基質(zhì)量分?jǐn)?shù)分別為1.018%、9.778%、1.359%。
棉花秸稈采自石河子大學(xué)農(nóng)試廠(chǎng)(2014年10月),105 ℃烘干,粉碎,過(guò)40 目篩備用。棉稈的N、C以及H的干基質(zhì)量分?jǐn)?shù)分別為1.592%、42.76%、5.633%。
試驗(yàn)用其他試劑如氫氧化鉀(KOH)等均為市售分析純?cè)噭?/p>
1.2 試驗(yàn)儀器
試驗(yàn)中用到的主要儀器如下:101A-6型電熱鼓風(fēng)干燥箱(上海康路儀器設(shè)備有限公司)、NJL07-3型微波爐、BL150 型高精密電子分析天平(北京賽多利斯儀器系統(tǒng)有限公司)、VarioEL cube型元素分析儀(德國(guó)Elementar有限公司)、ASAP2020型全自動(dòng)比表面積及微孔孔隙分析儀(美國(guó)麥克儀器公司)以及722N紫外可見(jiàn)分光光度計(jì)(上海精密科學(xué)儀器有限公司)等。
1.3 試驗(yàn)方法
1.3.1 SCA的制備
稱(chēng)取一定量污泥,按照一定比例與棉稈混勻后,用一定濃度的KOH溶液按照1∶2(固液質(zhì)量比)浸泡,靜置20 h后,稱(chēng)取一定質(zhì)量含KOH溶液的污泥-棉稈混合物于石英玻璃瓶中,在預(yù)定功率下,加熱一段時(shí)間,隨后取出殘?jiān)脽崴畬堅(jiān)粗翞V出水為中性,干燥,粉碎過(guò)150目篩,記為樣品SCA。
在前期單因素試驗(yàn)的基礎(chǔ)上(此處未給出具體數(shù)據(jù)),采用正交設(shè)計(jì)試驗(yàn)方法,對(duì)制備條件進(jìn)行設(shè)計(jì)。試驗(yàn)選取污泥質(zhì)量分?jǐn)?shù)、微波功率,輻照時(shí)間,KOH濃度和裝填量為考察因素,按照正交表L16(45)安排正交試驗(yàn),見(jiàn)表1。
表1 正交試驗(yàn)安排表
1.3.2 SCA表面結(jié)構(gòu)的測(cè)定
樣品采用美國(guó)ASAP 2020型自動(dòng)比表面積與孔隙度分析儀在77 K條件下對(duì)氮?dú)膺M(jìn)行吸附脫附,隨后計(jì)算SCA的比表面積、孔容以及平均孔徑。樣品表面的總酸性官能團(tuán)及總堿性官能團(tuán)數(shù)量,按照Boehm滴定法進(jìn)行測(cè)定。
1.3.3 SCA吸附性能的測(cè)定
SCA的碘值依據(jù)《木質(zhì)活性炭試驗(yàn)方法吸附碘值的測(cè)定》(GB/T12496.8-1999)測(cè)定。亞甲基藍(lán)值依據(jù)《木質(zhì)活性炭試驗(yàn)方法亞甲基藍(lán)吸附值的測(cè)定》(GB/T 12496.10-1999),酸性品紅值測(cè)定則是在前期試驗(yàn)基礎(chǔ)上,按照如下方法進(jìn)行測(cè)定:
稱(chēng)取經(jīng)粉碎的干燥試樣0.100 g,置于錐形瓶中,加入1.5 g/L的酸性品紅溶液50 mL,然后在振蕩器上室溫振蕩2 h后,用直徑12.5 cm的中速定性過(guò)濾紙進(jìn)行過(guò)濾。將濾液用分光光度計(jì)在552 nm下測(cè)定吸光度,利用標(biāo)準(zhǔn)曲線(xiàn)計(jì)算溶液中酸性品紅的濃度,依照吸附前后濃度差,計(jì)算酸性品紅吸附量。
硫酸銅吸附量測(cè)定是在前期試驗(yàn)基礎(chǔ)上,按照如下方法進(jìn)行測(cè)定:稱(chēng)取炭0.100 g置于50.0 mL錐形瓶中,加入20 000 mg/L的硫酸銅溶液20 mL震蕩2 h,過(guò)濾,700 nm測(cè)定吸光度值,利用標(biāo)準(zhǔn)曲線(xiàn)計(jì)算溶液中硫酸銅的濃度,依照吸附前后濃度差,計(jì)算硫酸銅(銅離子)吸附量。
2.1 制備條件對(duì)SCA結(jié)構(gòu)的影響
16種SCA表面結(jié)構(gòu)的表征結(jié)果如表2所示。
表2 污泥-棉稈炭的表面結(jié)構(gòu)參數(shù)
由表2可知,SCA9、SCA15分別有著較大的比表面積與總孔容,但它們均小于KOH-微波法制備獲得棉稈基活性炭[23],但優(yōu)于污泥基吸附劑[6],可見(jiàn)原料的特性會(huì)影響污泥炭表面孔結(jié)構(gòu)的形成。此外,16種SCA的表面酸性官能團(tuán)數(shù)目均少于堿性官能團(tuán)。這是因?yàn)槲锪系奶炕^(guò)程中,存在脫氫聚合、脫氫縮合反應(yīng)以及含碳物質(zhì)的分解反應(yīng)等,這會(huì)使無(wú)機(jī)物質(zhì)含量提高[23],進(jìn)而導(dǎo)致SCA表面的堿性官能團(tuán)數(shù)目增多。此外,在熱解過(guò)程中,殘?jiān)砻娴乃嵝怨倌軋F(tuán)還可能會(huì)與KOH發(fā)生中和反應(yīng),進(jìn)一步導(dǎo)致了SCA表面具有較多的堿性官能團(tuán)。
對(duì)表2中數(shù)據(jù)進(jìn)行直方分析,考察各因素對(duì)SCA孔結(jié)構(gòu)與化學(xué)結(jié)構(gòu)形成的影響,結(jié)果見(jiàn)圖1。
a. 孔結(jié)構(gòu)
a. Pore structure
由圖1可知,各因素對(duì)所測(cè)定的表面結(jié)構(gòu)均有影響,但影響程度與順序并不相同。如影響比表面積的因素依次為:污泥質(zhì)量分?jǐn)?shù)>KOH濃度>輻照時(shí)間>裝填量>微波功率,而對(duì)酸性官能團(tuán)的影響順序則改變?yōu)镵OH濃度>輻照時(shí)間>裝填量>微波功率>污泥質(zhì)量分?jǐn)?shù)。此外,污泥表面孔結(jié)構(gòu)與化學(xué)結(jié)構(gòu)隨因素水平變化的趨勢(shì)也各不相同。
隨污泥質(zhì)量分?jǐn)?shù)的增加,SCA的比表面積、孔容、官能團(tuán)數(shù)目呈現(xiàn)先增后降的趨勢(shì),平均孔徑呈不規(guī)則變化。生物質(zhì)熱解殘?jiān)械目紫吨饕且蛟现械奶妓卦跓峤鈺r(shí)氣化或液化后脫離固體表面而留下的孔穴形成[12,18,23]。官能團(tuán)則主要來(lái)源于原料本身的含氧基團(tuán)與以及原料與KOH相互作用形成的表面物種(-COK,-COOK等)。熱解過(guò)程中主要有3種反應(yīng)[19],一是活化劑脫水形成相應(yīng)的堿金屬氧化物,而它們可能是后期促成炭顆粒生孔的主要活性組分。二是炭表面含氧基團(tuán)與活化劑作用而發(fā)生的脫水現(xiàn)象,它使顆粒表面被改性,變成活性表面。三是消碳反應(yīng),活化劑與炭顆粒表面形成多種結(jié)合狀態(tài)。本研究中,棉稈的含碳量是污泥的4.37倍,故增加污泥質(zhì)量分?jǐn)?shù),會(huì)使SCA結(jié)構(gòu)變化。但值得注意的是,當(dāng)污泥與棉稈的混合比例為1∶1時(shí),比表面積與孔容最大,可見(jiàn)SCA表面的孔隙結(jié)構(gòu)形成還可能與污泥中的灰分相關(guān)。
隨功率的增大,比表面積出現(xiàn)波動(dòng),孔容與酸性官能團(tuán)出現(xiàn)“V”型變化,孔徑與堿性官能團(tuán)出現(xiàn)倒“V”型變化。功率低時(shí),反應(yīng)溫度低,熱解不充分,SCA保留原料的特征較多;隨功率增大,反應(yīng)溫度上升,形成的孔隙與官能團(tuán)增多,但同時(shí)官能團(tuán)分解也加劇,致使兩類(lèi)官能團(tuán)呈現(xiàn)不同變化趨勢(shì);當(dāng)微波功率繼續(xù)上升,過(guò)高的加熱溫度使得初期形成的微孔不斷擴(kuò)大成為中孔、大孔;體系中的K或其他金屬化合物也在此時(shí)發(fā)生升華、分解反應(yīng),脫離固體表面,在表面形成新的微孔;同時(shí),炭表面會(huì)發(fā)生強(qiáng)烈的脫水反應(yīng)與縮聚反應(yīng)[23-24],這些均導(dǎo)致最終孔徑、堿性官能團(tuán)再次減小,而孔容與酸性官能團(tuán)則呈現(xiàn)反向變化。
隨時(shí)間延長(zhǎng),比表面積、孔容、堿性官能團(tuán)出現(xiàn)倒“V”型變化,孔徑出現(xiàn)“V”型變化,酸性官能團(tuán)數(shù)量則持續(xù)上升。輻照時(shí)間決定物料的熱解程度,時(shí)間較短,混合物熱解不充分。隨著時(shí)間延長(zhǎng),炭表面的脫水與縮聚反應(yīng)加劇,孔隙結(jié)構(gòu)越發(fā)達(dá),酸性官能團(tuán)數(shù)目增多。但微波活化的速率很快,繼續(xù)延長(zhǎng)時(shí)間會(huì)使本已形成的微孔和中孔孔徑變大[22-23]。
隨KOH濃度的增大,比表面積、孔容、堿性官能團(tuán)出現(xiàn)倒“V”型變化趨勢(shì),平均孔徑呈“V”型變化,而酸性官能團(tuán)則持續(xù)上升。物料熱解過(guò)程中,KOH主要通過(guò)與原料中的C直接反應(yīng)生成堿金屬氧化物以及COOK等結(jié)構(gòu),使殘?jiān)砻娉霈F(xiàn)孔隙,同時(shí)高溫條件下,還會(huì)因K升華后在殘?jiān)砻媪粝赂嗟目紫禰23-24]。故適量的KOH會(huì)使孔隙形成充分,過(guò)量的KOH會(huì)因其與C的過(guò)度反應(yīng),使得生成的孔隙繼續(xù)擴(kuò)大,最終導(dǎo)致比表面積與孔容下降,平均孔徑上升。但值得注意的是,在本研究中,當(dāng)KOH的濃度達(dá)超過(guò)50%時(shí),SCA的比表面積與孔容下降速率減緩,平均孔徑上升,堿性官能團(tuán)的數(shù)目下降,這可能是因?yàn)樵囼?yàn)所用污泥中含有更多的灰分,而這些灰分可能與KOH發(fā)生離子交換或其他的反應(yīng)所致。
隨著裝填量的增大,比表面積、酸性官能團(tuán)出現(xiàn)倒“V”型變化,孔徑出現(xiàn)“V”型變化,堿性官能團(tuán)數(shù)目則逐漸增多。裝填量低時(shí),單位質(zhì)量原料吸收的微波能過(guò)多,過(guò)量的微波能使熱解形成的孔結(jié)構(gòu)官能團(tuán)再次被破壞。而裝填量過(guò)大時(shí),物料吸收的微波能不足以支撐完全、充分的熱解反應(yīng),炭保留原料特性較多。
2.2 制備條件對(duì)SCA吸附性能的影響
對(duì)SCA的亞甲基藍(lán)、酸性品紅、碘以及硫酸銅吸附值進(jìn)行測(cè)定,結(jié)果如表3所示。
表3 污泥-棉稈炭的吸附量
由表3可知,16種炭對(duì)4種物質(zhì)的吸附具有顯著的差異性,亞甲基藍(lán)、酸性品紅、碘以及CuSO4吸附值可分別相差202.11%,7.52%,13.77%與39.27%。與國(guó)家木質(zhì)凈水用活性炭一級(jí)品標(biāo)準(zhǔn)相比,9種SCA的亞甲基藍(lán)值優(yōu)于國(guó)家標(biāo)準(zhǔn),其中SCA6的亞甲基藍(lán)值最大,是國(guó)家標(biāo)準(zhǔn)的1.39倍,接近棉稈基活性炭[22-23],高于其他學(xué)者制備的污泥基或污泥-生物質(zhì)基吸附劑[9,15,19,22];16種SCA的碘值均優(yōu)于國(guó)家標(biāo)準(zhǔn),其中SCA15的碘值最大,是國(guó)標(biāo)的1.21倍,接近棉稈基活性炭[22-23],高于其他學(xué)者的污泥基或污泥-生物質(zhì)基吸附劑[15,19,22]。SCA11具有最高的酸性品紅與CuSO4吸附性能,它們也優(yōu)于其他學(xué)者制備的污泥基吸附劑[24]。
結(jié)合表1與表3可知,針對(duì)不同的吸附質(zhì),會(huì)獲得不同的SCA最優(yōu)制備工藝條件,說(shuō)明吸附質(zhì)的結(jié)構(gòu)也會(huì)影響SCA的吸附性能。在實(shí)際使用過(guò)程中,吸附劑常被用于多種物質(zhì)的吸附,因此,本試驗(yàn)采用綜合評(píng)分法對(duì)SCA的吸附性能結(jié)果進(jìn)行綜合分析[4],具體方法為:分別取酸性品紅、碘、亞甲基藍(lán)和CuSO4吸附值的最高值為100分,其余數(shù)值除以其對(duì)應(yīng)的最高吸附值再乘以100得分項(xiàng)分值。各分項(xiàng)分值相加為最終綜合分值。對(duì)表3中的數(shù)據(jù)進(jìn)行分項(xiàng)分值與綜合分值計(jì)算,并對(duì)計(jì)算結(jié)果進(jìn)行直方分析,結(jié)果如圖2所示。
由圖2可知,5種因素均對(duì)亞甲基藍(lán)與CuSO4的吸附有較大的影響,而對(duì)酸性品紅與碘的吸附則影響較小。各因素對(duì)不同吸附質(zhì)的影響順序各不相同,如它們對(duì)亞甲基藍(lán)吸附值的影響程度依次為污泥質(zhì)量分?jǐn)?shù)>輻照時(shí)間>裝填量>微波功率>KOH濃度;而對(duì)硫酸銅吸附值影響的順序則為裝填量>污泥質(zhì)量分?jǐn)?shù)>KOH濃度>微波功率>輻照時(shí)間。
若以綜合分值為考察指標(biāo),因素對(duì)SCA整體吸附性能的影響程度依次為裝填量>輻照時(shí)間>污泥質(zhì)量分?jǐn)?shù)>微波功率>KOH濃度。本研究中SCA的最優(yōu)制備工藝參數(shù)為:污泥質(zhì)量分?jǐn)?shù)30%,微波功率280 W,輻照時(shí)間24 min,KOH濃度50%,裝填量150 g,以此工藝條件制備獲得SCA,其亞甲基藍(lán)、酸性品紅、硫酸銅以及碘的吸附值分別達(dá)到157.80、293.39、272.12、1281.93 mg/g,其綜合分值為384,要優(yōu)于表1所列條件制備的SCA。
2.3 SCA的表面結(jié)構(gòu)與吸附性能的相關(guān)性分析
對(duì)SCA的結(jié)構(gòu)與吸附性能的相關(guān)數(shù)據(jù)進(jìn)行相關(guān)性分析,結(jié)果如表4所示。
表4 污泥-棉稈炭的結(jié)構(gòu)參數(shù)與吸附性能參數(shù)的相關(guān)系數(shù)
注:*表示在0.05水平上是顯著相關(guān)的。
Note: * shows that correlation is significant at 0.05 level.
由表4可以看出,酸性官能團(tuán)總量與酸性品紅吸附值呈現(xiàn)明顯的負(fù)相關(guān),而孔容則與硫酸銅吸附值顯著正相關(guān)。此結(jié)果說(shuō)明,針對(duì)不同的被吸附質(zhì),SCA上對(duì)吸附起重要作用的結(jié)構(gòu)并不相同。此外,由表4還可知,SCA的結(jié)構(gòu)參數(shù)與吸附性能的相關(guān)系數(shù)多在0.3~0.6之間,說(shuō)明單一物理結(jié)構(gòu)或化學(xué)結(jié)構(gòu)與吸附性能的相關(guān)不顯著,SCA對(duì)污染物的吸附是一個(gè)復(fù)雜的過(guò)程,并不只包括單一的物理吸附或化學(xué)吸附。
1)污泥質(zhì)量分?jǐn)?shù)、KOH濃度、微波功率、輻照時(shí)間以及裝填量均會(huì)顯著影響SCA的比表面積、總孔容、平均孔徑、總酸性官能團(tuán)與總堿性官能團(tuán)數(shù)目;但五因素對(duì)于各結(jié)構(gòu)參數(shù)的影響順序各不相同,且隨因素水平的改變,各結(jié)構(gòu)參數(shù)呈現(xiàn)不同的變化趨勢(shì)。
2)污泥與棉稈混合后熱解可以制備符合國(guó)家木質(zhì)凈水用活性炭一級(jí)品標(biāo)準(zhǔn)的吸附劑。污泥質(zhì)量分?jǐn)?shù)、KOH濃度、微波功率、輻照時(shí)間以及裝填量對(duì)亞甲基藍(lán)與CuSO4的吸附有較大的影響,而對(duì)酸性品紅以及碘的吸附影響較小,五因素對(duì)4種物質(zhì)吸附的影響順序各不相同,它們對(duì)綜合吸附性能的影響程度為裝填量>輻照時(shí)間>污泥質(zhì)量分?jǐn)?shù)>微波功率>KOH濃度。在污泥質(zhì)量分?jǐn)?shù)30%,微波功率280 W,輻照時(shí)間24 min,KOH質(zhì)量分?jǐn)?shù)50%,裝填量150 g的工藝條件可制備獲得綜合吸附性能較優(yōu)的SCA,其亞甲基藍(lán)、酸性品紅、硫酸銅以及碘的吸附值分別達(dá)到157.80、293.39、272.12、1 281.93 mg/g。
3)表面化學(xué)結(jié)構(gòu)、孔結(jié)構(gòu)以及吸附質(zhì)均會(huì)影響SCA的吸附性能;SCA對(duì)污染物的吸附并不只是單一的物理吸附或化學(xué)吸附;針對(duì)不同吸附質(zhì),SCA表面起重要作用的表面結(jié)構(gòu)并不相同。
[1] 閆鳳英,池勇志,劉曉敏,等. 響應(yīng)面法優(yōu)化微波熱解剩余污泥產(chǎn)酸[J]. 化工進(jìn)展,2015,34(7):2049-2054.
Yan Fengying, Chi Yongzhi, Liu Xiaoming, et al. Application of response surface methodology for volatile fatty acids recovery from waste activated sludge using microwave pretreatment process[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 2049-2054. (in Chinese with English abstract)
[2] 花莉. 城市污泥堆肥資源化過(guò)程與污染物控制機(jī)理研究[D]. 杭州:浙江大學(xué),2008.
Hua Li. Research on Mechanism of Sludge Reclamation and Pollution Control[D]. Hangzhou: Zhejiang University, 2008. (in Chinese with English abstract)
[3] 任曉莉,朱開(kāi)金. 化學(xué)干法熱解制備污泥吸附劑及其工藝優(yōu)化[J]. 化工進(jìn)展,2013,32(12):2997-3001.
Ren Xiaoli, Zhu Kaijin. Preparation of sludge-derived adsorbent by dry pyrolysis and its process optimization research[J]. Chemical Industry and Engineering Progress, 2013, 32(12): 2997-3001. (in Chinese with English abstract)
[4] 李鑫,李偉光,王廣智,等. 基于ZnCl2活化法的污泥基活性炭制備及其性質(zhì)[J]. 中南大學(xué)學(xué)報(bào):自然科學(xué)版,2013,44(10):4362-4370.
Li Xin, Li Weiguang, Wang Guangzhi, et al. Preparation and properties of sludge-based activated carbon based on ZnCl2activation method[J]. Journal of Central South University: Science and Technology, 2013, 44(10): 4362-4370. (in Chinese with English abstract)
[5] Rozada F, Otero M, Morán A, et al. Activated carbons from sewage sludge and discarded tyres: Production and optimization[J]. Journal of Hazardous Materials B, 2005, 124: 181-191.
[6] Liu Chen, Tang Zhengguang, Chen Yao, et al. Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite[J]. Bioresource Technology, 2010, 101: 1097-1101.
[7] 唐子君,方平,黃建航,等. 城市剩余污泥制備活性炭吸附劑對(duì)Ni2+的吸附研究[J]. 工業(yè)水處理,2014,32(14):57-60.
Tang Zijun, FangPing, Huang Jianhang, et al. Research on the adsorption of activated carbon adsorbent prepared with urban surplus sludge for Ni2+[J]. Industrial Water Treatment, 2014, 32(14): 57-60. (in Chinese with English abstract)
[8] 付臨汝,張立國(guó),劉蕾,等. 改性污泥基吸附劑對(duì)水中鉻(Ⅵ)的吸附性能研究[J]. 華南師范大學(xué)學(xué)報(bào):自然科學(xué)版,2015,47(1):50-54.
Fu Linru, Zhang Liguo, Liu Lei, et al. Adsorptive property of Cr(Ⅵ) by modified sludge based adsorbent with foaming agent[J]. Journal of South China Normal University: Natural Science Edition, 2015, 47(1): 50-54. (in Chinese with English abstract)
[9] Otero M, Rozada F, Calvo L F, et al. Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges[J]. Biochemical Engineering Journal, 2003, 15: 59-68.
[10] Djati Utomo H, Ong X C, Lim S M S, et al. Thermally processed sewage sludge for methylene blue uptake[J]. International Biodeterioration & Biodegradation, 2013, 85: 460-465.
[11] Li Wen-Hong, Yue Qin-Yan,Gao Bao-Yu, et al. Preparation of sludge-based activated carbon made from paper mill sewage sludge by steam activation for dye wastewater treatment[J]. Desalination, 2011, 278: 179-185.
[12] Jindarom Charothon, Meeyoo Vissanu, Kitiyanan Boonyarach, et al. Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge[J]. Chemical Engineering Journal, 2007, 133: 239-246.
[13] Chiang Hsiu-Mei, Chen Ting-Chien, Pan San-De, et al. Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers[J]. Journal of Hazardous Materials, 2009, 161: 1384-1390.
[14] 高元官,陳霖,秦朝琪,等. 污泥衍生吸附劑對(duì)廢水中酸性雪青的吸附特性研究[J]. 安徽農(nóng)業(yè)科學(xué),2015,43(8):205-207.
Gao Yuanguan, Chen Lin, Qin Zhaoqi, et al. Studies on adsorption characteristic of sludge-derived adsorbent for acid violet from wastewater[J]. Journal of Anhui Agri Sci, 2015, 43(8): 205-207. (in Chinese with English abstract)
[15] 趙海培,侯影飛,祝威,等. 熱解含油污泥制備吸附劑及熱解過(guò)程的優(yōu)化[J]. 環(huán)境工程學(xué)報(bào),2012,6(2):627-632.
Zhao Haipei, Hou Yingfei, Zhu Wei, et al. Process optimization of preparation adsorbent material and Pyrolysis for oily sludge[J]. Chinese Journal of Environmental Engineering, 2012, 6(2): 627-632. (in Chinese with English abstract)
[16] 周品,谷麟,饒姍姍,等. 秸稈-污泥復(fù)合基活性炭的制備及其對(duì)1,2,4-酸氧體的吸附特性[J]. 環(huán)境化學(xué):自然科學(xué)版,2013,32(1):106-111.
Zhou Pin, Gu Lin, Rao Shanshan, et al. Preparation of sludge-straw based actived carbon and its adsorption for1- diazo-2-naphtol-4-sulfonic acid[J]. Environmental Chemistry, 2013, 32(1): 106-111. (in Chinese with English abstract)
[17] 項(xiàng)國(guó)梁,喻澤斌,陳穎,等. 響應(yīng)面法優(yōu)化甘蔗渣-污泥復(fù)合活性炭的制備工藝[J]. 環(huán)境工程學(xué)報(bào),2014,8(12):5475-5482.
Xiang Guoliang, Yu Zebin, Chen Ying, et al. Optimizing the preparation of sugarcane bagasse-sludge compositional activated carbon by response surface methodology[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5475-5482. (in Chinese with English abstract)
[18] 張雙全,王文俊,周家珍,等. 共熱解法制備污泥-秸稈吸附劑及其煙道氣脫汞性能研究[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2015,44(5):901-905.
Zhang Shuangquan, Wang Wenjun, Zhou Jiazhen, et al. Preparation of adsorbent by co-pyrol ysis of sewage sludge and cornstalk and its performance form ercury removal of flue gas[J]. Journal of China University of Mining & Technology, 2015, 44(5): 901-905. (in Chinese with English abstract)
[19] 張雙全,武娜,董明建,等. 城市污泥與玉米秸稈共熱解制備吸附劑的研究[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2011,40(5): 799-802.
Zhang Shuangquan, Wu Na, Dong Mingjian, et al. Research on preparation of adsorbents by co-pyrolysis of sewage sludge with corn straw[J]. Journal of China University of Mining & Technology, 2011, 40(5): 799-802. (in Chinese with English abstract)
[20] 劉雪成,張惠靈,盧雪麗,等. 污泥谷殼吸附劑對(duì)兩種染料的吸附動(dòng)力學(xué)研究[J]. 工業(yè)水處理,2014,34(5):33-36.
Liu Xuecheng, Zhang Huiling, Lu Xueli, et al. Study on the adsorption of two kinds of dyes by adsorbent derived from sludge and rice husk[J]. Industrial Water Treatment, 2014, 34(5): 33-36. (in Chinese with English abstract)
[21] Rebecca A S, Ye C, et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J]. Bioresource Technology,2007, 98(16): 3000-3011.
[22] 鄧輝,查志華,張根林,等. 氯化鋅活化棉稈制備活性炭及孔結(jié)構(gòu)表征[J]. 石河子大學(xué)學(xué)報(bào):自然科學(xué)版,2010,27(6):760-763.
Deng Hui, Zha Zhihua, Zhang Genlin, et al. Characterization on pore structures and preparation of activated carbon from cotton stalk impregnated with zinc chloride[J]. Journal of Shihezi University: Natural Science, 2010, 27(6): 760-763. (in Chinese with English abstract)
[23] Deng Hui, Li Guoxue, Yang Hongbing, et al. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3activation[J]. Chemical Engineering Journal, 2010, 163: 373-381.
[24] 谷麟,周品,袁海平,等. 不同活化劑制備秸稈-污泥復(fù)配活性炭的機(jī)理及性能[J]. 凈水技術(shù),2013,32(2):61-66.
Gu Lin, Zhou Pin, Yuan Haiping, et al. Mechanism and performance of preparation of compositional straw-sludge based activated carbon with different chemical activators[J]. Water Purification Technology, 2013, 32(2): 61-66. (in Chinese with English abstract)
[25] 盧雪麗. 以城市污泥為主料制備吸附劑及其應(yīng)用的研究[D]. 湖北:武漢科技大學(xué),2015.
Lu Xueli. Preparation of Absorbent Using Sewage Sludge and its Application on Wastewater Treatment[D]. Hubei: Wuhan University of Science and Technology, 2015. (in Chinese with English abstract)
Process optimization of char prepared from co-pyrolysis of cotton stalk and sludge and analysis on its structure and adsorption capacity
Deng Hui, Li Zhengjia, Jin Zhiwen, Zhang Tao
(/,832003,)
The production of sludge and cotton stalk arise along with the rapid development of China’s economy. Currently the most common methods for sludge and cotton stalk disposal are landfilling, incineration, and application in land in China. And incineration of cotton stalk may bring new air pollution problems; it may contaminate soils and ground water when sludge is used in land as fertilizer. Therefore, it is necessary to find an efficient way for the sludge and cotton stalk recycling. As alternative technology for the common sludge and cotton stalk treatment methods, the pyrolysis has been researched. But there are few researches on the effect of reaction conditions on surface structure properties of chars obtained from co-pyrolysis of sludge and biomass, as well as the research on the relationship between surface structure and adsorption properties. In this study, the pore structure properties (BET surface area, total pore volume and average pore width), the abundance of surface functional groups and the adsorption capacities of sludge and cotton stalk chars (SCA) were analyzed under 5 different reaction conditions. The reaction conditions included sludge content, concentration of KOH (potassium hydroxide) solution, radiation power, radiation time and loading amount. Chars were made from the mixtures of cotton stalk and sludge by microwave heating via KOH activation. The adsorption capacities of SCA were measured by removing methylene blue (MB), acid fuchsin (AF), iodine and copper sulphate (CuSO4) in aqueous solution. The correlations between the structure parameters and the adsorption capacities were calculated to test if the structure would affect the adsorption properties of chars. The results showed that all reaction conditions influenced the pore structure properties, and the abundance of surface chemical groups of chars significantly. On the same structure parameter, the effects of 5 conditions were not the same. For all pore or chemical structure parameters, each of these factors showed the influence with different capacities, and all the responses showed different trend with the change of condition levels. The adsorption capacity of SCA could reach the national stand of wooden activated carbon. All reaction conditions influenced the adsorption capacities to the MB and the CuSO4significantly, but its influence on the adsorption capacities to AF and iodine was not significant. And for the same adsorption capacity, the reaction conditions showed different influence. The composite index, which was calculated by the adsorption capacity to MB, AF, iodine and CuSO4, was used to optimize the preparation process of the char, and the optimal parameters were as follows: the sludge content of 30%, the concentration of KOH solution of 50%, the radiation power of 280 W, the radiation time of 24 min and the loading amount of 150 g. The adsorption capacities of the SCA to MB, AF, iodine and CuSO4obtained at the optimal parameters were 157.80, 293.39, 1281.93 and 272.12 mg/g, respectively. The effects of the reaction condition on composite index were as follows: load amount > radiation time > sludge content > radiation power > KOH concentration. The chemical and pore structure properties of the chars and the characteristics of the adsorbate influenced the adsorption properties of SCA significantly. The number of total acidic groups and total pore volume had significant correlation with the adsorption capacity to AF and CuSO4respectively. But other single structure characteristic did not significantly correlate with the adsorption capacity of SCA. The adsorption of SCA to the pollutants is not a single physical adsorption or chemical adsorption. The research results can provide a reference for designing an effective adsorbent made from the SCA.
wastes; sludges; biomass; cotton stalk chars; adsorption capacity; potassium hydrate activation-microwave pyrolysis method; structure properties
10.11975/j.issn.1002-6819.2016.24.033
X705
A
1002-6819(2016)-24-0248-07
2015-12-16
2016-10-17
國(guó)家自然科學(xué)基金項(xiàng)目(51368051與51162024):石河子大學(xué)高層次人才科研啟動(dòng)資金專(zhuān)項(xiàng)(RCZX201204);石河子大學(xué)杰出青年項(xiàng)目(2012ZRKX JQ-05)。
鄧輝,女,博士,副教授,從事固體廢棄物資源化方面的研究工作。石河子 石河子大學(xué)化學(xué)化工學(xué)院,832003。Email:huid@163.com