孫鳳娟 趙圣剛 江力勤
綜 述
PI3K/AKT信號通路與心肌缺血再灌注損傷
孫鳳娟 趙圣剛 江力勤
PI3K/AKT;信號通路;心肌缺血再灌注損傷
心肌缺血再灌注損傷(myocardial ischemiareperfusion injury,MIRI)是各種缺血性心肌病再灌注治療過程中不可避免的,并且隨著冠狀動脈介入治療及溶栓治療的廣泛開展,減輕缺血再灌注損傷對提高再灌注療效顯得尤為重要。目前研究認(rèn)為MIRI的機制主要與炎癥因子釋放、氧自由基產(chǎn)生、鈣離子超載、線粒體損傷和能量代謝障礙及中性粒細(xì)胞浸潤有關(guān)。近來,磷脂酰肌醇-3-激酶/蛋白激酶 B(phosphoinositide-3-kinase/protein kinase B,PI3K/AKT)信號通路在MIRI中的重要作用受到廣泛關(guān)注。
PI3K是一類具有酶活性的蛋白質(zhì),由磷脂酰肌醇(phosphatidylinositol,PI)肌醇環(huán)上的第 3 位碳原子發(fā)生磷酸化而形成,是具有重要作用的轉(zhuǎn)導(dǎo)信號之一。根據(jù)其作用底物與排序不同可分為Ⅰ、Ⅱ、Ⅲ這3個亞型[1]:Ⅰ型主要磷酸化PI(4,5)P2;Ⅱ型主要磷酸化PI和PI-4P;Ⅲ型僅磷酸化PI。PI3K/AKT通路中發(fā)揮作用的為Ⅰ型,此類是由一個調(diào)節(jié)亞基與一個催化亞基構(gòu)成的異源二聚體。調(diào)節(jié)亞基又被稱為P85,含有SH2及SH3結(jié)構(gòu)域,與相應(yīng)的靶蛋白結(jié)合發(fā)揮作用;而催化亞基有4種,除一種僅存在于白細(xì)胞外,其余廣泛分布于各種類型細(xì)胞中。PI3K的活化刺激因子包括多種細(xì)胞生長因子及信號轉(zhuǎn)導(dǎo)復(fù)合物,這些刺激因子激活受體酪氨酸激酶(receptor tyrosinekinase,RTK),從而引起其磷酸化,受體磷酸化后會募集到一個接頭蛋白,之后調(diào)節(jié)亞基的SH2和SH3結(jié)構(gòu)域與接頭蛋白結(jié)合,當(dāng)PI3K與活化的受體結(jié)合后,再經(jīng)過多種中間體的磷酸化,最終使PI3K被磷酸化而激活[2]。
AKT相對分子質(zhì)量大約為60 KD,由約480個氨基酸殘基排列組成,是由原癌基因c-AKT編碼的一種具有絲-蘇氨酸激酶活性的蛋白,又被稱作蛋白激酶B(protein kinase B,PKB)。它是PI3K信號轉(zhuǎn)導(dǎo)通路上一個非常重要的下游靶點?;罨腁KT為p-AKT,可調(diào)節(jié)下游的靶蛋白如內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS),糖原合成激酶(glycogen synthase kinase,GSK)-3β,叉頭蛋白O亞家族(Fork-head O subfamily,F(xiàn)OXOs),雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR),凋亡相關(guān)基因 Bcl-2、caspase-3、Bax等,調(diào)節(jié)細(xì)胞的存活、增殖、凋亡等[3,4]。如PI3K/AKT/細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)1/2 主要功能是調(diào)節(jié)線粒體功能和細(xì)胞凋亡。另外,PI3K/AKT通路參與突觸形成、樹突棘發(fā)育和突觸可塑性的維持[5,6],并通過調(diào)節(jié)GSK-3活性來調(diào)節(jié)β-淀粉樣多肽(amyloid β-protein,Aβ)的代謝和 tau 蛋白磷酸化[7,8],可影響人類的學(xué)習(xí)和記憶。隨著對心肌缺血再灌注損傷的研究,發(fā)現(xiàn)PI3K/AKT信號傳導(dǎo)的激活可抑制I/R過程中的炎癥反應(yīng)、氧化應(yīng)激、細(xì)胞凋亡及內(nèi)質(zhì)網(wǎng)(ER)應(yīng)激[9],并一定程度上改善內(nèi)皮完整性[3],減少再灌注心臟中的M1巨噬細(xì)胞和嗜中性粒細(xì)胞浸潤[10],起到保護(hù)心肌細(xì)胞的作用。
2.1 PI3K/AKT與細(xì)胞凋亡 MIRI是指閉塞的冠狀動脈在恢復(fù)血流灌注后,缺血的心肌細(xì)胞損傷和功能障礙進(jìn)一步加重,甚至轉(zhuǎn)化為不可逆,并最終導(dǎo)致心肌梗死面積增加。該過程涉及多種分子、基因及信號通路復(fù)雜而精細(xì)的調(diào)控。大量研究表明,心肌細(xì)胞死亡是造成心肌梗死患者預(yù)后差的主要原因。在MIRI過程中,PI3K/AKT信號通路可能通過其抗細(xì)胞凋亡作用,保護(hù)受損心肌細(xì)胞,其中機制可能是PI3K/AKT信號通路受外界刺激而激活,當(dāng) PI3K活化后,磷脂酰肌醇(3,4,5)-磷酸鹽(PIP3)積聚在細(xì)胞膜上,然后招募含有PH結(jié)構(gòu)域的蛋白質(zhì),包括磷酸肌醇依賴性蛋白激酶-1(phosphoinositide-dependent protein kinase-1,PDK-1)和AKT,而后PDK-1再磷酸化AKT的Thr308位點和Ser473位點,共同激活A(yù)KT。當(dāng)AKT被激活后,進(jìn)一步激活涉及細(xì)胞增殖、代謝的多個下游信號通路,并影響下游兩種凋亡相關(guān)底物的磷酸化,包括Bcl-2在內(nèi)的抗凋亡底物增加和包括caspase3、Bax的促凋亡底物減少,發(fā)揮抗細(xì)胞凋亡作用[11-13]。Tang等[14]通過給MIRI模型大鼠使用PI3K的抑制劑LY294002,發(fā)現(xiàn)除了下游AKT的活化受到抑制,Ser473的磷酸化也相應(yīng)減少,更加驗證了PI3K/AKT通路是MIRI中保護(hù)心肌細(xì)胞的重要機制。除此之外,PI3K/AKT在心肌細(xì)胞的生長、存活過程中也發(fā)揮重要作用,并受胰島素和胰島素樣生長因子-1(insulin-like growth factor-1,IGF-1)調(diào)節(jié)[15,16]。以前的大量研究發(fā)現(xiàn),PI3K/AKT/eNOS/NO途徑在胰島素介導(dǎo)的I/R損傷保護(hù)作用中具有重要作用[17]。近來,Sun等[18]進(jìn)一步提出,AKT增強N-myc下游調(diào)節(jié)基因2(N-myc downstream regulated gene 2,NDRG2)磷酸化是胰島素減少心肌細(xì)胞凋亡的重要通路。心臟上廣泛分布著δ-和κ-阿片樣受體,二者的活化可有效減輕心肌梗死。進(jìn)一步的研究表明,δ-阿片受體激活可進(jìn)一步激活PI3K/AKT信號通路,這可能是瑞芬太尼發(fā)揮心臟保護(hù)作用的重要機制[19]。研究發(fā)現(xiàn),丹參酮ⅡA磺酸鈉可減少MIRI過程中的細(xì)胞凋亡,減少心肌梗死面積,這種保護(hù)機制涉及PI3K/Akt/FOXO3A/Bim抗凋亡通路激活,進(jìn)而抑制細(xì)胞凋亡相關(guān)caspase-3、細(xì)胞色素c的釋放和Bim表達(dá)[20]。近期報道顯示,PI3K/AKT依賴性信號通路的抗細(xì)胞凋亡作用還可能與PTEN表達(dá)抑制、下游GSK-3β激活、減少過度的自噬功能有關(guān)[21-23]。自噬是一種動態(tài)過程,介導(dǎo)細(xì)胞器和蛋白質(zhì)溶酶體相關(guān)的降解過程,并通過調(diào)節(jié)細(xì)胞存活和死亡途徑在細(xì)胞內(nèi)穩(wěn)態(tài)中起關(guān)鍵作用[24]。除此之外,自噬可能發(fā)揮細(xì)胞保護(hù)作用[25]。但是,自噬的過度上調(diào)已被報道可引起心肌細(xì)胞死亡[26]。而且PI3K調(diào)節(jié)自噬的功能受上游PI3K-Beclin1-mTOR自噬調(diào)節(jié)網(wǎng)絡(luò)的影響[27]。
2.2 PI3K/AKT與線粒體功能障礙及能量代謝 能量代謝障礙是MIRI的始發(fā)環(huán)節(jié)現(xiàn)已成為廣泛共識。近年來研究表明,線粒體與己糖激酶Ⅱ(mitochondrially-bound hexokinaseⅡ,mtHKⅡ)結(jié)合是缺血預(yù)處理的重要環(huán)節(jié),而AKT可激活mtHKⅡ進(jìn)而影響線粒體功能、活性氧(reactive oxygen species,ROS)生產(chǎn)和線粒體能量代謝,減少心肌細(xì)胞凋亡[28]。之前已有研究顯示,缺血預(yù)處理和后處理均涉及PI3K/AKT/eNOS途徑的激活,并最終阻止線粒體通透性轉(zhuǎn)換孔(mitochondrial permeablity transition pore,MPTP)的開放[29]。眾所周知,心肌缺血期間,pH顯著下降,再灌注后pH恢復(fù)正常,而隨后會引發(fā)ROS生成和MPTP開放,最終導(dǎo)致心肌細(xì)胞死亡,而酸中毒可以預(yù)防MPTP開放[30]。Qiao等[31]發(fā)現(xiàn),在再灌注早期酸化輸注可以模擬缺血后處理延遲恢復(fù)pH值,可保護(hù)心肌免受缺血再灌注損傷,其中機制與上述相同。近年來研究發(fā)現(xiàn),Rho激酶信號的調(diào)節(jié)對于細(xì)胞收縮、增殖和凋亡壞死等功能是非常重要的[32,33],而且Rho激酶可作為PI3K激活的負(fù)調(diào)節(jié)因子在缺血心肌中被激活[34]。法舒地爾作為一種Rho激酶抑制劑,對缺血性心臟病具有明顯保護(hù)作用,該作用是因其上調(diào)PI3K/AKT/eNOS途徑并誘導(dǎo)其下游靶點線粒體ATP敏感性鉀通道(mitochondrial ATP-sensitive potassium channel,mitoKATP channel)的開放,增強 Cx43 的表達(dá)[35]??梢奟ho激酶活性的抑制是預(yù)防心肌缺血再灌注損傷的新靶點。七氟醚因比其他吸入麻醉藥誘導(dǎo)和恢復(fù)更快、更平穩(wěn),廣泛用于心臟手術(shù)。近期研究發(fā)現(xiàn)七氟醚處理可使MIRI心肌梗死面積減小、ATP含量增加、心肌細(xì)胞凋亡減少,并進(jìn)一步證實這主要是由于PI3K/AKT/mTOR信號的激活及對線粒體能量代謝的保護(hù)[36]。
2.3 PI3K/AKT與氧化應(yīng)激及炎癥反應(yīng) 氧化應(yīng)激是促進(jìn)缺血再灌注損傷進(jìn)展的重要原因之一。有研究證實再灌注損傷的關(guān)鍵特征包括ATP/NADH的喪失、氧化應(yīng)激水平增強和細(xì)胞死亡增加。而PI3K/AKT信號通路可以激活核因子E2相關(guān)因子-2(nuclear factor erythroid-2 related factor-2,Nrf-2),隨后Nrf-2直接抑制氧化應(yīng)激或者通過調(diào)節(jié)抗氧化酶作用抵抗缺氧再復(fù)氧帶來的氧化應(yīng)激反應(yīng),從而保護(hù)心肌細(xì)胞[37]。研究表明,中藥伊卡林(icaritin,ICT)可以激活PI3K/AKT途徑,抑制腫瘤壞死因子-α(tumor necrosis factor,TNF-α)產(chǎn)生,增加白細(xì)胞介素-10(interleukin-10,IL-10)水平而發(fā)揮抗炎作用,并減少超氧化物和丙二醛(malondialdehyde,MDA)含量來減輕氧化應(yīng)激,最終達(dá)到減輕大鼠MIRI的作用[38]。長期以來高壓氧預(yù)處理(hyperbaric oxygen preconditioning,HBO-PC) 用于治療多種活性氧損傷相關(guān)的疾病,如局灶性腦缺血、脊髓缺血性損傷、外傷性腦損傷等[39,40]。近年來Yin等[41]發(fā)現(xiàn),HBO-PC能減輕MIRI,涉及機制可能是 PI3K/AKT/Nrf-2/抗氧化反應(yīng)元件(antioxidant response element,ARE)依賴型抗氧化防御系統(tǒng)的激活。以前大量研究表明,氣體分子SO2主要通過線粒體損傷及氧化應(yīng)激加重心肌損傷[42]。但最近的一項研究提出,PI3K/AKT途徑參與低劑量(1~10 μmol/kg)SO2預(yù)處理對大鼠 MIRI的保護(hù)[43]。調(diào)節(jié)性 T細(xì)胞(Regulatory cell,Treg)通過調(diào)節(jié)炎癥反應(yīng)減弱心室重塑[44],并可能參與他汀類藥物預(yù)處理引起的心臟保護(hù)作用[45]。近期研究也有類似發(fā)現(xiàn),在缺血再灌注早期,N,N-二甲基鞘氨醇(N,N-dimethylsphingosine,DMS)可能在體內(nèi)通過PI3K/AKT途徑招募Treg來減輕MIRI[46]。除此之外,一種間充質(zhì)干細(xì)胞衍生出的外來體可以升高小鼠ATP和NADH水平,降低氧化應(yīng)激水平,增加AKT和GSK-3β磷酸化,減少c-Jun氨基末端激酶(c-Jun N-terminalkinase,c-JNK)磷酸化,顯著減輕局部和全身炎癥,從而增強MIRI后的心臟功能,減輕心肌損傷[47]。因此,此外來體可能是心肌梗死再灌注治療的潛在治療策略。之前一項研究顯示,高遷移率族蛋白 1(high mobility group box-1 protein,HMGB1)在MIRI早期可作為一種促炎細(xì)胞因子與TNF-α和IL-6一起加劇炎癥反應(yīng),并可促進(jìn)二者釋放[48]。Li等[49]報道PI3K/AKT途徑激活可能抑制大鼠HMGB1表達(dá),減輕炎癥反應(yīng),減輕心肌損傷。
總的來說,PI3K/AKT在MIRI的發(fā)生發(fā)展過程中發(fā)揮重要作用。PI3K/AKT通路的激活可通過多種途徑減輕MIRI,但其機制復(fù)雜,特別是上游激活因子及下游作用靶點還有待于進(jìn)一步探討。雖然目前關(guān)于PI3K/AKT通路的研究多數(shù)仍處于實驗階段,但是有理由相信,PI3K/AKT通路的藥物干預(yù)可能成為治療MIRI的新策略,并且其抗炎、抗氧化、抗凋亡及減輕線粒體能量代謝障礙等的機制也為某些基于PI3K/AKT通路發(fā)揮作用的藥物提供更廣泛的應(yīng)用前景。
[1]Liao Y,Hung MC.Physiological regulation of Akt activity and stability.Am J Transl Res,2010,2:19-42.
[2]Vanhaesebroeck B,Leevers SJ,Ahmadi K,et al.Synthesis and function of 3-phosphorylated inositol lipids.Annu Rev Biochem,2001,70:535-602.
[3]Kong Q,Dai L,Wang Y,et al.HSPA12B Attenuated Acute Myocardial Ischemia/reperfusion Injury via Maintaining Endothelial Integrity in a PI3K/Akt/mTOR-dependent Mechanism.Sci Rep,2016,6:33636.
[4]Yao H,Han X,Han X.The cardioprotection of the insulin-mediatedPI3K/Akt/mTOR signaling pathway.Am JCardiovasc Drugs,2014,14:433-442.
[5]Sanna PP,Cammalleri M,Berton F,et al.Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region.J Neurosci,2002,22:3359-3365.
[6]Lee CC,Huang CC,Hsu KS.Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways.Neuropharmacology,2011,61:867-879.
[7]Hong M,Lee VM.Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons.J Biol Chem,1997,272:19547-19553.
[8]Phiel CJ,Wilson CA,Lee VM,et al.GSK-3alpha regulates production of Alzheimer′s disease amyloid-beta peptides.Nature,2003,423:435-439.
[9]Guo J,Bian Y,Bai R,et al.Globular adiponectin attenuates myocardial ischemia/reperfusion injury by upregulating endoplasmic reticulum Ca2+-ATPase activity and inhibiting endoplasmic reticulum stress.J Cardiovasc Pharmacol,2013,62:143-153.
[10]Tian Y,Piras BA,Kron IL,et al.Adenosine 2B Receptor Activation Reduces Myocardial Reperfusion Injury by Promoting Anti-Inflammatory Macrophages Differentiation via PI3K/Akt Pathway.Oxid Med Cell Longev,2015,2015:585297.
[11]Li WN,Wu N,Shu WQ,et al.The protective effect of fasudil pretreatment combined with ischemia postconditioning on myocardial ischemia/reperfusion injury in rats.Eur Rev Med Pharmacol Sci,2014,18:2748-2758.
[12] Hong GL,Liu JM,Zhao GJ,et al.Cycloartenyl Ferulate Inhibits Paraquat-Induced Apoptosis in HK-2 Cells With the Involvement of ABCC1.J Cell Biochem,2016,117:872-880.
[13]Jiang YQ,Chang GL,Wang Y,et al.Geniposide Prevents Hypoxia/Reoxygenation-Induced Apoptosisin H9c2 Cells:Improvement of Mitochondrial Dysfunction and Activation of GLP-1R and the PI3K/AKT Signaling Pathway.Cell Physiol Biochem,2016,39:407-421.
[14]Tang L,Mo Y,Li Y,et al.Urolithin A alleviates myocardial ischemia/reperfusion injuryviaPI3K/Aktpathway.Biochem Biophys Res Commun,2017,486:774-780.
[15]Ghigo A,Li M.Phosphoinositide 3-kinase:friend and foe in cardiovascular disease.Front Pharmacol,2015,6:169.
[16]Ng KW,Allen ML,Desai A,et al.Cardioprotective effects of insulin:how intensive insulin therapy may benefit cardiac surgery patients.Circulation,2012,125:721-728.
[17] Gao F,Gao E,Yue TL,et al.Nitric oxide mediates the antiapoptotic effect of insulin in myocardialischemiareperfusion:the roles of PI3-kinase,Akt,and endothelial nitric oxide synthase phosphorylation.Circulation,2002,105:1497-1502.
[18]Sun Z,Tong G,Ma N,et al.NDRG2:a newly identified mediator of insulin cardioprotection against myocardial ischemia-reperfusion injury.Basic Res Cardiol,2013,108:341.
[19]Dou MY,Wu H,Zhu HJ,et al.Remifentanil preconditioning protects rat cardiomyocytes against hypoxia-reoxygenation injury via delta-opioid receptor mediated activation of PI3K/Akt and ERK pathways.Eur J Pharmacol,2016,789:395-401.
[20]Zhang MQ,Zheng YL,Chen H,et al.Sodium tanshinone IIA sulfonate protects rat myocardium against ischemia-reperfusion injury via activation of PI3K/Akt/FOXO3A/Bim pathway.Acta Pharmacol Sin,2013,34:1386-1396.
[21]Jian J,Xuan F,Qin F,et al.Bauhinia championii flavone inhibits apoptosis and autophagy via the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in rats.Drug Des Devel Ther,2015,9:5933-5945.
[22]Cheng XY,Gu XY,Gao Q,et al.Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury.Mol Med Rep,2016,14:797-803.
[23]Wang X,Ha T,Hu Y,et al.MicroRNA-214 protects against hypoxia/reoxygenation induced celldamage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression.Oncotarget,2016,7:86926-86936.
[24]Hirano Y,Yoshinaga S,Ogura K,et al.Solution structure of atypicalprotein kinase C PB1 domain and itsmode of interaction with ZIP/p62 and MEK5.J Biol Chem,2004,279:31883-31890.
[25]Dziedzic SA,Caplan AB.Autophagy proteins play cytoprotective and cytocidal roles in leucine starvation-induced cell death in Saccharomyces cerevisiae.Autophagy,2012,8:731-738.
[26] Essick EE,Wilson RM,Pimentel DR,et al.Adiponectin modulates oxidative stress-induced autophagy in cardiomyocytes.PLoS One,2013,8:e68697.
[27]Wang ZG,Wang Y,Huang Y,et al.bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway.Sci Rep,2015,5:9287.
[28]Roberts DJ,Tan-Sah VP,Smith JM,et al.Akt phosphorylates HK-Ⅱat Thr-473 and increases mitochondrial HK-Ⅱassociation to protect cardiomyocytes.J Biol Chem,2013,288:23798-23806.
[29]Hausenloy DJ,Tsang A,Yellon DM.The reperfusion injury salvage kinase pathway:a common target for both ischemic preconditioning and postconditioning.Trends Cardiovasc Med,2005,15:69-75.
[30]Cohen MV,Yang XM,Downey JM.Acidosis,oxygen,and interference with mitochondrialpermeability transition pore formation in the early minutes of reperfusion are critical to postconditioning′s success.Basic Res Cardiol,2008,103:464-471.
[31]Qiao X,Xu J,Yang Q J,et al.Transient acidosis during early reperfusion attenuates myocardium ischemia reperfusion injury via PI3k-Akt-eNOS signaling pathway.Oxid Med Cell Longev,2013,2013:126083.
[32] Nunes KP,Rigsby CS,Webb RC.RhoA/Rho-kinase and vascular diseases:what is the link?Cell Mol Life Sci,2010,67:3823-3836.
[33]Satoh K,F(xiàn)ukumoto Y,Shimokawa H.Rho-kinase:important new therapeutic target in cardiovascular diseases.Am J Physiol Heart Circ Physiol,2011,301:H287-296.
[34]Hamid SA,Bower HS,Baxter GF.Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium.Am JPhysiolHeartCircPhysiol,2007,292:H2598-2606.
[35]Wu N,Zhang X,Jia D.Highdose fasudil preconditioning and postconditioning attenuate myocardial ischemiareperfusion injury in hypercholesterolemic rats.Mol Med Rep,2014,9:560-566.
[36]Zhang J,Wang C,Yu S,et al.Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation ofPI3K/AKT/mTOR signaling.SciRep,2014,4:7317.
[37]Yu Q,Li X,Cao X.Linarin could protect myocardial tissue from the injury of Ischemia-reperfusion through activating Nrf-2.Biomed Pharmacother,2017,90:1-7.
[38] ZhangW,XingB,YangL,etal.Icaritin Attenuates MyocardialIschemia and Reperfusion Injury Via Anti-Inflammatory and Anti-Oxidative Stress Effects in Rats.Am J Chin Med,2015,43:1083-1097.
[39]Duan S,Shao G,Yu L,et al.Angiogenesis contributes to the neuroprotection induced by hyperbaric oxygen preconditioning againstfocalcerebralischemia in rats.IntJ Neurosci,2015,125:625-634.
[40] Arieli Y,Kotler D,Eynan M,et al.Hyperbaric oxygen preconditioning protects rats against CNS oxygen toxicity.Respir Physiol Neurobiol,2014,197:29-35.
[41] Yin X,WangX,F(xiàn)an Z,etal.Hyperbaric Oxygen Preconditioning Attenuates Myocardium Ischemia-Reperfusion Injury Through Upregulation of Heme Oxygenase 1 Expression:PI3K/Akt/Nrf2 Pathway Involved.J Cardiovasc Pharmacol Ther,2015,20:428-438.
[42]Zhang RY,Du JB,Sun Y,et al.Sulfur dioxide derivatives depress L-type calcium channel in rat cardiomyocytes.Clin Exp Pharmacol Physiol,2011,38:416-422.
[43]Zhao MM,Yang JY,Wang XB,et al.The PI3K/Akt pathway mediates the protection of SO2preconditioning against myocardial ischemia/reperfusion injury in rats.Acta Pharmacol Sin,2013,34:501-506.
[44]Tang TT,Yuan J,Zhu ZF,et al.Regulatory T cells ameliorate cardiac remodeling after myocardialinfarction.Basic Res Cardiol,2012,107:232.
[45]Ke D,F(xiàn)ang J,F(xiàn)an L,et al.Regulatory T cells contribute to rosuvastatin-induced cardioprotection against ischemiareperfusion injury.Coron Artery Dis,2013,24:334-341.
[46] Fang J,Hu F,Ke D,et al.N,N-dimethylsphingosine attenuates myocardial ischemia-reperfusion injury by recruiting regulatory T cells through PI3K/Akt pathway in mice.Basic Res Cardiol,2016,111:32.
[47]Arslan F,Lai RC,Smeets MB,et al.Mesenchymal stem cellderived exosomes increase ATP levels,decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and preventadverse remodeling after myocardial ischemia/reperfusion injury.Stem Cell Res,2013,10:301-312.
[48]Andrassy M,Volz HC,Igwe JC,et al.High-mobility group box-1 in ischemia-reperfusion injury of the heart.Circulation,2008,117:3216-3226.
[49] LiX,HuX,WangJ,etal.Short-Term Hesperidin Pretreatment Attenuates Rat Myocardial Ischemia/Reperfusion Injury by Inhibiting High Mobility Group Box 1 Protein Expression via the PI3K/Akt Pathway.Cell Physiol Biochem,2016,39:1850-1862.
PI3K/AKT signaling pathway and myocardial ischemia-reperfusion injury
PI3K/AKT;Signaling pathway;Myocardial ischemia-reperfusion injury
10.3969/j.issn.1672-5301.2017.11.003
R542.2
A
1672-5301(2017)11-0968-05
浙江省中醫(yī)藥科學(xué)研究基金計劃(項目編號:2015ZA204)
233000 安徽省蚌埠市,蚌埠醫(yī)學(xué)院究生部(孫鳳娟);嘉興學(xué)院附屬第二醫(yī)院心血管內(nèi)科(趙圣剛、江力勤)
江力勤,E-mail:jiangliqin@medmail.com.cn
2017-07-08)