朱彥蓉 張代民 陳紹良 葉鵬
綜 述
鈣激活鉀通道與冠脈支架內(nèi)新生動脈粥樣硬化機制
朱彥蓉 張代民 陳紹良 葉鵬
冠狀動脈疾??;支架內(nèi)新生動脈粥樣硬化;巨噬細(xì)胞;鈣激活鉀通道;經(jīng)皮冠狀動脈支架置入術(shù)
冠狀動脈粥樣硬化性心臟?。ü谛牟。┦俏:θ祟惤】档膰?yán)重心血管疾病之一。經(jīng)皮冠狀動脈支架植入術(shù)(PCI)已經(jīng)成為治療冠心病的常規(guī)手段。支架生物工程技術(shù)的飛速發(fā)展,支架結(jié)構(gòu)、生產(chǎn)工藝、藥物載體及涂層藥物等工藝改進(jìn)[1-4],提高了支架植入術(shù)臨床冠心病介入治療的療效。相比再狹窄率高達(dá)50%的經(jīng)皮冠脈成形術(shù)(PTCA)[5],裸金屬支架(BMS)及藥物涂層支架(DES)再狹窄率大幅下降;但10%~20%的支架內(nèi)再狹窄(in-stent restenosis,ISR)率及晚期支架血栓(LST)仍是制約DES植入術(shù)后臨床效果的重要因素[6,7]。支架內(nèi)再狹窄及晚期支架內(nèi)血栓可致患者再次發(fā)生包括心絞痛、急性心肌梗死,甚至心源性猝死等主要心血管不良事件(MACE),是目前冠心病介入支架治療后面臨的嚴(yán)峻問題。本文就鈣激活鉀通道與冠脈介入治療支架內(nèi)再狹窄的研究進(jìn)展進(jìn)行綜述。
支架內(nèi)新生動脈粥樣硬化(in-stent neoatherosclerosis,ISNA)是具有或不具有壞死核心的新生內(nèi)膜內(nèi)富含脂質(zhì)的泡沫巨噬細(xì)胞簇[8]。DES及BMS植入后,血管內(nèi)超聲(IVUS)發(fā)現(xiàn)新生內(nèi)膜增殖、鈣化及壞死,且支架植入時間越長,新生內(nèi)膜中壞死及鈣化的成分越多[9]。分辨率達(dá)到微米水平的光學(xué)干涉斷層成像(OCT)技術(shù)證據(jù)及尸檢結(jié)果顯示,ISNA是DES植入后支架內(nèi)再狹窄及晚期支架內(nèi)血栓的重要原因[7,10-13],即支架治療失敗的共同路徑。
對于動脈粥樣斑塊旋切術(shù)患者,斑塊中巨噬細(xì)胞浸潤及血液中單核細(xì)胞活化狀態(tài)與再狹窄相關(guān)[14]。病理發(fā)現(xiàn)大量的炎癥細(xì)胞聚集在斑塊內(nèi),主要是巨噬細(xì)胞、淋巴細(xì)胞和嗜酸性粒細(xì)胞[11];在兔、豬球囊損傷模型中,早期單核細(xì)胞從管腔浸潤至血管損傷局部血栓內(nèi)[15]。DES植入時血管內(nèi)膜在球囊及支架作用下遭受破壞,觸發(fā)損傷修復(fù)急性炎癥反應(yīng)[16];斑塊擠破后釋放大量組織因子,激活凝血酶,進(jìn)而激活血小板并釋放大量活性物質(zhì)及炎性因子,中性粒細(xì)胞及單核細(xì)胞游走并浸潤于內(nèi)膜下形成巨噬細(xì)胞。以巨噬細(xì)胞為主導(dǎo)的炎癥反應(yīng)促進(jìn)中膜平滑肌細(xì)胞遷移,同時損傷處的血栓為平滑肌細(xì)胞增殖提供了一個可吸收的載體[15]。DES誘發(fā)靶病變血管慢性而持續(xù)的炎癥反應(yīng),導(dǎo)致靶病變以“再內(nèi)皮化延遲”為特點“愈合延遲”[7,17]。
ISNA不但與支架植入處的炎癥反應(yīng)及損傷血管的“愈合延遲”有關(guān),而且與血管損傷修復(fù)過程及動脈粥樣硬化過程密切相關(guān)。損傷修復(fù)過程及動脈粥樣硬化過程是個炎癥過程。巨噬細(xì)胞及遷移的中膜平滑肌細(xì)胞開啟了吞噬過程的關(guān)鍵步驟[18],巨噬細(xì)胞在炎癥因子的作用下,上調(diào)清道夫受體,大量吞噬支架下原有聚集的脂質(zhì)成分,快速誘發(fā)泡沫細(xì)胞的形成、凋亡、壞死及崩解,形成新的脂核。支架涂層上的藥物釋放完后,對平滑肌細(xì)胞增殖的抑制作用逐漸消失,加之DES結(jié)構(gòu)持續(xù)的慢性炎癥反應(yīng),共同作用刺激平滑肌細(xì)胞過度增殖,并合成大量的細(xì)胞外基質(zhì),使內(nèi)膜發(fā)生重構(gòu)[19]。DES支架植入1個月至3年內(nèi)累計有約1/3支架內(nèi)病變階段發(fā)生ISNA,甚至早在DES植入后4個月就出現(xiàn)了ISNA,且一半以上的粥樣斑塊內(nèi)可以發(fā)現(xiàn)泡沫巨噬細(xì)胞簇[11,18],經(jīng)皮介入治療后,新生內(nèi)膜處的炎癥細(xì)胞量增加2.4倍[20]。因此,炎癥反應(yīng)貫穿于支架植入后損傷修復(fù)整個過程,是ISNA形成關(guān)鍵因素。
鈣激活鉀通道(KCa channel)屬于化學(xué)門控型的鉀通道家族成員之一。其門控行為受細(xì)胞內(nèi)鈣離子濃度和膜電位的控制,按電導(dǎo)大小分為小電導(dǎo)、中電導(dǎo)和大電導(dǎo)3個亞型。KCa3.1屬于中電導(dǎo)型鈣激活鉀通道,在可興奮細(xì)胞及非可興奮細(xì)胞膜上都有分布[21]。TRAM-34為其特異性阻斷劑[22]。KCa3.1參與細(xì)胞分泌、細(xì)胞周期調(diào)控、細(xì)胞遷移和增殖等多種生理活動[21]。
免疫細(xì)胞中,KCa3.1的主要功能是通過調(diào)節(jié)膜電位及鈣信號來調(diào)節(jié)免疫細(xì)胞的激活、增殖等許多鈣依賴性的生理活動。KCa3.1通道對于T淋巴細(xì)胞的激活和增殖有重要作用,參與T細(xì)胞膜復(fù)極化、胞內(nèi)鈣信號調(diào)節(jié)、T淋巴細(xì)胞活化和凋亡等一系列重要的生理過程[23-25]。Nicolaou等[26]報道,在T細(xì)胞和巨噬細(xì)胞的免疫突觸形成中,KCa3.1與巨噬細(xì)胞的吞噬活動及隨后抗原呈遞行為有關(guān)。KCa3.1選擇性阻斷劑TRAM-34對膠原蛋白抗體誘導(dǎo)的風(fēng)濕性關(guān)節(jié)炎有治療作用[25]。KCa3.1通道也分布肥大細(xì)胞[27]和巨噬細(xì)胞[28],KCa3.1對巨噬細(xì)胞的遷移活動起重要作用受到了免疫學(xué)界的關(guān)注[29]。KCa3.1通道通過維持膜的復(fù)極化電位來調(diào)節(jié)細(xì)胞內(nèi)的鈣離子流動,進(jìn)而影響細(xì)胞的激活和增殖,其阻斷劑作為可能的免疫抑制的靶點,有望治療多種自身免疫缺陷病[27,28,30,31]。
KCa3.1調(diào)節(jié)巨噬細(xì)胞吞噬功能。但KCa3.1如何發(fā)揮調(diào)節(jié)作用,對支架內(nèi)新生動脈粥樣斑塊形成機制研究還有待進(jìn)一步深入探討。這將有助于人們更好地認(rèn)識支架內(nèi)再狹窄的機制,對指導(dǎo)篩選支架內(nèi)狹窄治療的新靶點具有重要的理論意義和實用價值。
[1]Garg S,Bourantas C,Serruys PW.New concepts in the design of drugeluting coronary stents.Nat Rev Cardiol,2013,10:248-260.
[2]Scacciatella P,D′Amico M,Pennone M,et al.Effects of EPC capture stent and CD34+mobilization in acute myocardial infarction.Minerva cardioangiologica,2013,61:211-219.
[3]TCT 2010會議發(fā)布多項藥物洗脫冠脈支架臨床研究結(jié)論.中國心血管病研究,2010,8:834.
[4]于一,趙迎新,史冬梅,等.生物可吸收支架的最新研究進(jìn)展.中國介入心臟病學(xué)雜志,2016,24:521-525.
[5]Nobuyoshi TK,Nosaka SM.Restenosis after successful percutaneous transluminal coronary angioplasty:serial angiographic follow-up of 229 patients.J Am Coll Cardiol,1988,12:616-623.
[6]Mohan S,Dhall A.A comparative study of restenosis rates in bare metal and drug-eluting stents.Int J Angiol,2010,19:e66-72.
[7]Park SJ,Kang SJ,Virmani R,et al.In-stent neoatherosclerosis:a final common pathway of late stent failure.J Am Coll Cardiol,2012,59:2051-2057.
[8]Nakazawa G,Otsuka F,Nakano M,et al.The pathology of neoatherosclerosis in human coronary implants bare-metal and drugeluting stents.J Am Coll Cardiol,2011,57:1314-1322.
[9]Kang SJ,Mintz GS,Park DW,et al.Tissue characterization of in-stent neointima using intravascular ultrasound radiofrequency data analysis.Am J Cardiol,2010,106:1561-1565.
[10]Wong DT,Soh SY,Malaiapan Y.In-stent thrombosis due to neoatherosclerosis:insight from optical coherence tomography.J Invasive Cardiol,2013,25:304.
[11]Otsuka F,Vorpahl M,Nakano M,et al.Pathology of secondgeneration everolimus-eluting stents versus first-generation sirolimus-and Paclitaxel-eluting stents in humans.Circulation,2014,129:211-223.
[12]Tian F,Chen Y,Liu H,et al.Assessment of Characteristics of Neointimal Hyperplasia after Drug-Eluting Stent Implantation in Patients with Diabetes Mellitus:An Optical Coherence Tomography Analysis.Cardiology,2014,128:34-40.
[13]Nakazawa G,Vorpahl M,F(xiàn)inn AV,et al.One step forward and two steps back with drug-eluting-stents:from preventing restenosis to causing late thrombosis and nouveau atherosclerosis.JACC Cardiovasc Imaging,2009,2:625-628.
[14]Pietersma A,Kofflard M,de Wit LE,et al.Late lumen loss after coronary angioplasty is associated with the activation status of circulating phagocytes before treatment.Circulation,1995,91:1320-1325.
[15]Schwartz RS,Holmes DR Jr,Topol EJ.The restenosis paradigm revisited:an alternative proposal for cellular mechanisms.J Am Coll Cardiol,1992,20:1284-1293.
[16] Touchard AG,Schwartz RS.Preclinical restenosis models:challenges and successes.Toxicol Pathol,2006,34:11-18.
[17]Joner M,F(xiàn)inn AV,F(xiàn)arb A,et al.Pathology of drug-eluting stents in humans:delayed healing and late thrombotic risk.J Am Coll Cardiol,2006,48:193-202.
[18]Ross R.Atherosclerosis-an inflammatory disease.N Engl J Med Overseas Ed,1999,340:115-126.
[19]Yin RX,Yang DZ,Wu JZ.Nanoparticle drug-and geneeluting stents for the prevention and treatment of coronary restenosis.Theranostics,2014,4:175-200.
[20] Toutouzas K,Colombo A,Stefanadis C.Inflammation and restenosis after percutaneous coronary interventions.Eur Heart J,2004,25:1679-1687.
[21]Begenisich T,Nakamoto T,Ovitt CE,et al.Physiological roles of the intermediate conductance,Ca2+-activated potassium channel Kcnn4.J Biol Chem,2004,279:47681-47687.
[22]Girodet PO,Ozier A,Carvalho G,et al.The KCa3.1 blocker TRAM 34 attenuates airway remodeling and eosinophilia in a mouse asthma model.Am J Respir Cell Mol Biol,2013,48:212-219.
[23]Di L,Srivastava S,Zhdanova O,et al.Nucleoside diphosphate kinase B knock-out mice have impaired activation of the K+channel KCa3.1,resulting in defective T cell activation.J Biol Chem,2010,285:38765-38771.
[24]Ohya S,Niwa S,Yanagi A,et al.Involvement of dominantnegative spliced variants of the intermediate conduetance Ca2+-activated K+channel,K(Ca)3.1,in immune function of lymphoid cells.Biol Chem,2011,286:16940-16952.
[25]Chou CC,Lunn CA,Murgolo NJ.KCa3.1:target and marker for cancer,autoimmune disorder and vascular inflammation?Expert Rev Mol Diagn,2008,8:179-187.
[26]Nicolaou SA,Neumeier L,Peng Y,et al.The Ca2+-activated K(+) channel KCa3.1 compartmentalizes in the immunological synapse of human T lymphocytes.Am J Physiol Cell Physiol,2007,292:C1431-1439.
[27]Forsythe P,Wang B,Khambati I,et al.Systemic effects of ingested lactobacil/us rhamnosus:inhibition of mast cell membrane potassium(IKCa)current and degranulation.PLoS One,2012,7:e41234.
[28] Wulff H,Kohler R.Endothelial small-and Intermediateconductante KCa channels:an update on their pharmacology and usefulness as cardiovascular targets.J Cardiovasc Pharmacol,2013,61:102-112.
[29]Toyama K,Wulff H,Chandy KG,et al.The intermediateconductance calcium activeted potassium channelKCa3.1 contributes to atherogenesis in mice and humans.J Clin Invest,2008,118:3025-3037.
[30] Cahalan MD,Chandy KG.The functional network of ion channels in T lympho-cytes.Immunol Rev,2009,231:59-87.
[31]Wulff H,Castle NA.Therapeutic potential of KCa3.1 blockers:recentadvances and promising trends.Expert Rev Clin Pharmacol,2010,3:385-396.
Calcium activated potassium channels and in-stent neoatherosclerosis
Coronary artery disease;In-stent neoatherosclerosis;Macrophage;Calcium activated potassium channel;Percutaneous coronary intervention
10.3969/j.issn.1672-5301.2017.11.001
R541.4
A
1672-5301(2017)11-0961-03
國家自然科學(xué)基金(項目編號:81370304);國家人社部和南京市留學(xué)回國人員科技活動擇優(yōu)資助項目(2014);江蘇省自然科學(xué)基金(項目編號:BK20151085);南京市醫(yī)學(xué)科技發(fā)展項目(項目編號:YKK15101,ZKX16048);江蘇省雙創(chuàng)人才資助(2015);江蘇省六大人才高峰(項目編號:2016-WSN-185);江蘇省333工程科研項目(項目編號:BRA2016025)
210006 江蘇省南京市,南京醫(yī)科大學(xué)附屬南京醫(yī)院,南京市第一醫(yī)院心內(nèi)科
張代民,E-mail:daiminzh@126.com
2017-06-02)