朱珠,韓翔,董強(qiáng)
動(dòng)脈夾層指由于血管內(nèi)膜撕裂或滋養(yǎng)血管破裂引起的壁內(nèi)血腫,可位于內(nèi)膜或外膜下,前者可繼發(fā)血管狹窄閉塞,后者則易導(dǎo)致管腔擴(kuò)張[1]。顱頸動(dòng)脈夾層是導(dǎo)致中青年缺血性卒中和蛛網(wǎng)膜下腔出血(subarachnoid hemorrhage,SAH)的重要病因,研究發(fā)現(xiàn),顱內(nèi)動(dòng)脈夾層(intracranial artery dissection,IAD)在歐洲人群中的發(fā)生率不足頸部動(dòng)脈夾層(cervical artery dissection,CAD)的10%[2],但在以東亞人群為對(duì)象的研究中IAD的比例則高達(dá)67%~90%[3-4]。由于臨床表現(xiàn)缺乏特異性,動(dòng)脈夾層的診斷主要依賴影像學(xué)檢查,但與頸部血管相比,顱內(nèi)動(dòng)脈管徑細(xì)、走行迂曲,因此診斷更具挑戰(zhàn)性[3]。數(shù)字減影血管造影(digital subtraction angiography,DSA)盡管被奉為診斷顱內(nèi)血管病變的“金標(biāo)準(zhǔn)”,但由于并不能觀察到管壁自身的情況,因此對(duì)表現(xiàn)為管腔正?;蚍翘禺惇M窄、閉塞的動(dòng)脈夾層診斷價(jià)值有限[5]?;诖?,學(xué)者們推薦應(yīng)用管壁聯(lián)合管腔成像技術(shù)對(duì)動(dòng)脈夾層進(jìn)行診斷,并指出確診IAD需要壁內(nèi)血腫證據(jù)或影像學(xué)動(dòng)態(tài)變化特點(diǎn)[3,6]。本文將對(duì)磁共振管壁成像(vessel wall magnetic resonance imaging,VW-MRI)在IAD中的應(yīng)用進(jìn)行簡(jiǎn)要綜述。
顱內(nèi)血管的諸多病變起源于血管壁,而管腔異常則是繼發(fā)性改變,因此諸如計(jì)算機(jī)斷層掃描血管成像(computed tomography angiography,CTA),磁共振血管成像(magnetic resonance angiography,MRA)或DSA等管腔成像對(duì)顱內(nèi)血管病的診斷存在兩方面不足:其一,對(duì)于非特異性的管腔改變?nèi)绐M窄或閉塞難以確定病因[7];其二,某些疾病早期未引起管腔改變時(shí)很難發(fā)現(xiàn)異常[8]。VM-MRI則可彌補(bǔ)以上不足,與管腔成像互為補(bǔ)充,提高
顱內(nèi)血管疾病的準(zhǔn)確診斷率。1995年,有研究者首次應(yīng)用VM-MRI比較了顱內(nèi)段頸內(nèi)動(dòng)脈及椎動(dòng)脈管壁強(qiáng)化程度與研究人群年齡的關(guān)系,并發(fā)現(xiàn)管壁的強(qiáng)化程度隨著年齡的增長(zhǎng)而增加,提示這種強(qiáng)化與顱內(nèi)血管粥樣硬化有關(guān)[9];13年后,Kuker等[10]發(fā)現(xiàn)了顱內(nèi)血管壁增厚及強(qiáng)化與血管炎的關(guān)系。近年來(lái)VM-MRI技術(shù)正越來(lái)越廣泛的應(yīng)用于科學(xué)研究和臨床實(shí)踐中。
與頸部血管相比,顱內(nèi)血管細(xì)小且迂曲,如大腦中動(dòng)脈(middle cerebral artery,MCA)直徑約3~5 mm,管壁厚度僅有0.5~0.7 mm,為清晰顯示管壁結(jié)構(gòu),目前顱內(nèi)血管顯像所應(yīng)用的幾乎均為高分辨率磁共振(high resolution magnetic resonance imaging,H R-M R I)。顱內(nèi)血管周圍多由腦脊液(cerebral spinal fluid,CSF)圍繞,有研究報(bào)道,腔內(nèi)血流聯(lián)合腔外CSF信號(hào)抑制能更清晰地顯示管壁增厚情況,并有助于對(duì)潛在病因進(jìn)行鑒別[11-15],但需要注意因抑制CSF信號(hào)導(dǎo)致的管壁信噪比損失。三維VM-MRI的發(fā)展顯著改善了空間分辨率和(或)信噪比,增加了成像范圍,并可通過(guò)多平面重建獲得血管全貌信息;且因圖像采集所需時(shí)間更短,降低了運(yùn)動(dòng)偽影對(duì)圖像質(zhì)量的影響;而增強(qiáng)技術(shù)的應(yīng)用則使得更精確的病因鑒別成為可能[16]。Mossa-Basha等[8]的研究還發(fā)現(xiàn),如果能夠較理想地抑制血液和CSF信號(hào),則分辨率約為0.4~0.5 mm3體素的VM-MRI可以準(zhǔn)確顯示三級(jí)分支血管的情況。
2.1 診斷 IAD以椎動(dòng)脈硬膜內(nèi)段最常見(jiàn)[3],典型影像學(xué)表現(xiàn)包括壁內(nèi)血腫、內(nèi)膜瓣、雙腔征及管腔狹窄伴擴(kuò)張等,它們的發(fā)生率在不同研究中差異較大。在一項(xiàng)研究中,在臨床癥狀與CTA檢查懷疑IAD的患者中,90%以上在MRI成像中可見(jiàn)內(nèi)膜瓣,而50%以上可發(fā)現(xiàn)壁內(nèi)血腫[17],壁內(nèi)血腫在VW-MRI中的典型表現(xiàn)為邊緣銳利的“新月形”管壁增厚伴夾層血管的外徑增大及真腔狹窄或閉塞。另有報(bào)道在SAH患者中,管腔擴(kuò)張伴狹窄最為常見(jiàn),并且在這部分患者中,節(jié)段性管腔狹窄或閉塞即高度提示IAD的診斷;相反,在無(wú)SAH的患者中,單純的管腔狹窄或閉塞則并不具有特異性[18-21]。相似的,非分叉部位的管腔擴(kuò)張伴狹窄是動(dòng)脈夾層的特征性表現(xiàn),但單純的管腔擴(kuò)張并不足以診斷動(dòng)脈夾層。HR-MRI作為一種組織對(duì)比度和空間分辨率均較為理想的多參數(shù)成像序列,不僅可以獲取管腔形態(tài)信息,更重要的是通過(guò)管壁成像可直接觀察到動(dòng)脈夾層所致的特征性壁內(nèi)血腫、內(nèi)膜瓣及雙腔征[22-23],因而被推薦作為診斷動(dòng)脈夾層的首選方法[3]。利用黑血序列抑制管腔內(nèi)血流,可清晰顯示血管壁內(nèi)膜結(jié)構(gòu),對(duì)發(fā)現(xiàn)動(dòng)脈夾層的特異性征象如內(nèi)膜瓣、雙腔征等十分重要[22,24-25]。Sakurai等[25]發(fā)現(xiàn)T1加權(quán)體積各向同性快速自旋回波捕獲(volumetric isotropic turbo spin echo acquisition,VISTA)序列與其他方法比較能更清晰的顯示假腔結(jié)構(gòu)。雙翻轉(zhuǎn)恢復(fù)(double inversion recovery,DIR)黑血成像序列的應(yīng)用還可將壁內(nèi)血腫與腔內(nèi)血栓進(jìn)行鑒別[26]。Han等[17]的研究發(fā)現(xiàn)HR-MRI對(duì)診斷狹窄閉塞型顱內(nèi)椎動(dòng)脈夾層的敏感性和特異性均較高,且觀察者間診斷吻合度良好。我國(guó)學(xué)者應(yīng)用非增強(qiáng)血管與斑塊內(nèi)出血同步(simultaneous noncontrast angiography and intraplaque hemorrhage,SNAP)磁共振成像在一次掃描中即可同時(shí)獲取管腔與管壁形態(tài)信息,使成像時(shí)間縮短了50%,且對(duì)壁內(nèi)血腫的敏感性達(dá)79.2%[27]。另外,短期(3個(gè)月)內(nèi)血管形態(tài)恢復(fù)也是診斷顱內(nèi)動(dòng)脈夾層的重要標(biāo)準(zhǔn)[3],磁共振成像(magnetic resonance imaging,MRI)作為一種無(wú)創(chuàng)、無(wú)放射性的檢查手段更適合對(duì)患者進(jìn)行隨訪,以明確診斷及判斷治療效果。
2.2 鑒別診斷
2.2.1 動(dòng)脈粥樣硬化 顱內(nèi)動(dòng)脈粥樣硬化在亞洲人群中十分常見(jiàn),常引起顱內(nèi)動(dòng)脈狹窄或閉塞,當(dāng)繼發(fā)斑塊內(nèi)出血時(shí),與動(dòng)脈夾層所致的壁內(nèi)血腫鑒別較為困難。但動(dòng)脈粥樣硬化多不伴有血管外徑擴(kuò)張,而這卻恰是動(dòng)脈夾層的重要特征之一,采用基線平行解剖掃描(basiparallel anatomic scanning,BPAS)MRI可清晰呈現(xiàn)血管外膜,從而有助于對(duì)二者進(jìn)行鑒別[28-29]。另有研究者通過(guò)定量分析發(fā)現(xiàn)動(dòng)脈夾層與粥樣硬化所致MCA狹窄的重構(gòu)指數(shù)存在差異,因而提出該方法有望為MCA狹窄的病因診斷提供依據(jù)[4]。
2.2.2 椎動(dòng)脈發(fā)育不良(vertebral artery hypoplasia,VAH) VAH是先天性的椎動(dòng)脈細(xì)小,人群中的發(fā)生率約25%[30]。由于多數(shù)患者并無(wú)后循環(huán)缺血癥狀,該病既往被認(rèn)為呈良性病程[31],而近年的研究發(fā)現(xiàn)VAH可能與后循環(huán)缺血有關(guān)[31-33]。VAH典型的影像學(xué)表現(xiàn)為管腔狹窄,并不具有特異性;而管壁厚度正?;蜉^優(yōu)勢(shì)側(cè)薄弱,與動(dòng)脈夾層壁內(nèi)血腫所致的管壁增厚恰好相反。因此VW-MRI對(duì)二者的鑒別至關(guān)重要。需要指出的是,VAH可能是動(dòng)脈夾層的易感因素之一[34],提示對(duì)于后循環(huán)卒中尤其是伴有異常形態(tài)VAH的患者,需要進(jìn)行管壁成像以明確卒中病因?qū)W診斷。
HR-MRI可提供動(dòng)脈夾層的詳細(xì)結(jié)構(gòu)信息,如內(nèi)膜瓣,假腔出入口,壁內(nèi)血腫體積、長(zhǎng)度、延伸方向及分支血管的繼發(fā)改變等[35]。Swartz等[22]研究了不同原因血管病變的管壁成像特點(diǎn),結(jié)果發(fā)現(xiàn)在動(dòng)脈夾層中受累血管呈現(xiàn)不規(guī)則偏心強(qiáng)化,由此提出動(dòng)脈夾層的發(fā)生可能與血管壁的炎癥相關(guān);Arai等[36]則分析了5例動(dòng)脈夾層患者VW-MRI的特點(diǎn),發(fā)現(xiàn)4例存在病變部位的血管壁增強(qiáng)而1例表現(xiàn)為壁內(nèi)血腫近端及遠(yuǎn)端管壁增強(qiáng),推測(cè)炎癥可能是動(dòng)脈夾層的誘因亦或是動(dòng)脈夾層發(fā)生后的修復(fù)反應(yīng)。另有研究者指出,動(dòng)脈夾層呈現(xiàn)的管壁增強(qiáng)可能源自假腔的慢血流或動(dòng)脈滋養(yǎng)血管[37]??梢?jiàn),VWMRI有望為動(dòng)脈夾層潛在病因的尋找和病理生理機(jī)制的闡釋提供依據(jù)。
夾層的壁內(nèi)血腫信號(hào)因發(fā)病時(shí)間不同而異,典型的偏心高信號(hào)壁內(nèi)血腫(高鐵血紅蛋白)見(jiàn)于發(fā)病后數(shù)天(T1加權(quán)3~4 d,T2加權(quán)7~8 d)至60 d[22-23,38]。Gao等[39]針對(duì)MCA夾層的研究發(fā)現(xiàn),壁內(nèi)血腫發(fā)生后2~340 d的信號(hào)強(qiáng)度變化與預(yù)期值吻合,指出通過(guò)定量分析MRI中的信號(hào)變化可估測(cè)夾層發(fā)病時(shí)間。另有研究證實(shí),急性期與慢性期IAD在病變形態(tài)、強(qiáng)化特征及MRI定量分析參數(shù)方面均存在不同[40],提示MRI可能有助于對(duì)動(dòng)脈夾層進(jìn)行分期。
HR-MRI管壁成像可直接觀察到動(dòng)脈夾層的特征性壁內(nèi)血腫,因而可有效彌補(bǔ)管腔成像的不足,提高動(dòng)脈夾層的診斷率。然而不可否認(rèn),它仍然具有局限性:首先,管壁成像的定位仍然依賴MRA檢查,可導(dǎo)致檢查時(shí)間延長(zhǎng),且在整個(gè)序列采集過(guò)程中需要有經(jīng)驗(yàn)的技術(shù)人員或影像學(xué)醫(yī)師監(jiān)督,以保證病變血管的正確覆蓋[22];其次,由于顱內(nèi)血管與周圍CSF信號(hào)在T1加權(quán)像中相似,致使血管外徑的清晰度相對(duì)不足[41];最后,多數(shù)關(guān)于顱內(nèi)血管影像學(xué)診斷的研究難以得到病理證實(shí),因而診斷大多參考顱外血管的管壁成像結(jié)論。
如前文所述,動(dòng)脈夾層壁內(nèi)血腫的典型信號(hào)改變多見(jiàn)于疾病亞急性期,因而急性期(發(fā)病24 h內(nèi))動(dòng)脈夾層的診斷始終是個(gè)難題。Kato等[42]利用定量非對(duì)稱回波的最小二乘估算法迭代水脂分離序列(iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence,IDEALIQ)技術(shù)建立R2*圖,發(fā)現(xiàn)它對(duì)急性壁內(nèi)血腫的診斷準(zhǔn)確性達(dá)88.9%,顯著高于T2*WI及T1-CUBE序列,并能有效降低顱底骨質(zhì)及血管壁鈣化的干擾作用。但是由于空間分辨率有限,它對(duì)內(nèi)膜瓣與雙腔征的診斷效能尚需更多研究證實(shí)。此外,通過(guò)注射不同類型的對(duì)比劑以顯示特定組織與細(xì)胞的分子MRI已在主動(dòng)脈與心臟疾病研究領(lǐng)域報(bào)道[43],相信在不久的將來(lái)也會(huì)應(yīng)用于動(dòng)脈夾層的診斷中,以提高該病的早期診斷率,改善患者的預(yù)后。
1 Schievink WI. Spontaneous dissection of the carotid and vertebral arteries[J]. N Engl J Med,2001,344:898-906.
2 Ro A,Kageyama N. Pathomorphological differentiation between traumatic rupture and nontraumatic arterial dissection of the intracranial vertebral artery[J]. Leg Med(Tokyo),2014,16:121-127.
3 Debette S,Compter A,Labeyrie MA,et al.Epidemiology,pathophysiology,diagnosis,and management of intracranial artery dissection[J]. Lancet Neurology,2015,14:640-654.
4 Jung SC,Kim HS,Choi CG,et al. Quantitative analysis using high-resolution 3T MRI in acute intracranial artery dissection[J]. J Neuroimaging,2016,26:612-617.
5 Sikkema T,Uyttenboogaart M,Eshghi O,et al.Intracranial artery dissection[J]. Eur J Neurol,2014,21:820-826.
6 Mandell DM,Mossa-Basha M,Qiao Y,et al.Intracranial vessel wall MRI:principles and expert consensus recommendations of the American society of neuroradiology[J]. AJNR Am J Neuroradiol,2017,38:218-229.
7 Duna GF,Calabrese LH. Limitations of invasive modalities in the diagnosis of primary angiitis of the central nervous system[J]. J Rheumatol,1995,22:662-667.
8 Mossa-Basha M,Alexander M,Gaddikeri S,et al.Vessel wall imaging for intracranial vascular disease evaluation[J]. J NeuroInterv Surg,2016,8:1154-1159.
9 Aoki S,Shirouzu I,Sasaki Y,et al. Enhancement of the intracranial arterial wall at MR imaging:relationship to cerebral atherosclerosis[J]. Radiology,1995,194:477-481.
10 Kuker W,Gaertner S,Nagele T,et al. Vessel wall contrast enhancement:a diagnostic sign of cerebral vasculitis[J]. Cerebrovasc Dis,2008,26:23-29.
11 van der Kolk AG,Zwanenburg JJ,Brundel M,et al.Intracranial vessel wall imaging at 7.0-T MRI[J]. Stroke,2011,42:2478-2484.
12 Dieleman N,van der Kolk AG,Zwanenburg JJ,et al.Imaging intracranial vessel wall pathology with magnetic resonance imaging:current prospects and future directions[J]. Circulation,2014,130:192-201.
13 Lou X,Ma N,Ma L,et al. Contrast-enhanced 3T highresolution MR imaging in symptomatic atherosclerotic basilar artery stenosis[J]. AJNR Am J Neuroradiol,2013,34:513-517.
14 Chung GH,Kwak HS,Hwang SB,et al. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis[J]. Eur J Radiol,2012,81:4069-4074.
15 Kim JM,Jung KH,Sohn CH,et al. Middle cerebral artery plaque and prediction of the infarction pattern[J].Arch Neurol,2012,69:1470-1475.
16 Cuvinciuc V,Viallon M,Momjian-Mayor I,et al. 3D fat-saturated T1 SPACE sequence for the diagnosis of cervical artery dissection[J]. Neuroradiology,2013,55:595-602.
17 Han M,Rim NJ,Lee JS,et al. Feasibility of highresolution MR imaging for the diagnosis of intracranial vertebrobasilar artery dissection[J]. Eur Radiol,2014,24:3017-3024.
18 Kim BM,Kim SH,Kim DI,et al. Outcomes and prognostic factors of intracranial unruptured vertebrobasilar artery dissection[J]. Neurology,2011,76:1735-1741.
19 Mizutani T. Natural course of intracranial arterial dissections[J]. J Neurosurg,2011,114:1037-1044.
20 Metso TM,Metso AJ,Helenius J,et al. Prognosis and safety of anticoagulation in intracranial artery dissections in adults[J]. Stroke,2007,38:1837-1842.
21 Ahn SS,Kim BM,Suh SH,et al. Spontaneous symptomatic intracranial vertebrobasilar dissection:initial and follow-up imaging fi ndings[J]. Radiology,2012,264:196-202.
22 Swartz RH,Bhuta SS,F(xiàn)arb RI,et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI[J]. Neurology,2009,72:627-634.
23 Kwak HS,Hwang SB,Chung GH,et al. High-resolution magnetic resonance imaging of symptomatic middle cerebral artery dissection[J]. J Stroke Cerebrovasc Dis,2014,23:550-553.
24 Naggara O,Oppenheim C,Louillet F,et al. Traumatic intracranial dissection:mural hematoma on high-resolution MRI[J]. J Neuroradiol,2010,37:136-137.
25 Sakurai K,Miura T,Sagisaka T,et al. Evaluation of luminal and vessel wall abnormalities in subacute and other stages of intracranial vertebrobasilar artery dissections using the volume isotropic turbo-spin-echo acquisition (VISTA)sequence:a preliminary study[J]. J Neuroradiol,2013,40:19-28.
26 Hunter MA,Santosh C,Teasdale E,et al. High-resolution double inversion recovery black-blood imaging of cervical artery dissection using 3T MR imaging[J]. AJNR Am J Neuroradiol,2012,33:E133-E137.
27 Li Q,Wang J,Chen H,et al. Characterization of craniocervical artery dissection by simultaneous MR noncontrast angiography and intraplaque hemorrhage imaging at 3T[J]. AJNR Am J Neuroradiol,2015,36:1769-1775.
28 Hamaguchi T,Yamada M. Basiparallel anatomic scanningmagnetic resonance imaging in vertebral artery dissection[J].Arch Neurol,2009,66:276-277.
29 Fatima Z,Motosugi U,Okumura A,et al. Basiparallel anatomical scanning (BPAS)-MRI can improve discrimination of vertebral artery dissection from atherosclerosis and hypoplasia[J]. Acad Radiol,2012,19:1362-1367.
30 Khan S,Cloud GC,Kerry S,et al. Imaging of vertebral artery stenosis:a systematic review[J]. J Neurol Neurosurg Psychiatry,2007,78:1218-1225.
31 Park JH,Kim JM,Roh JK. Hypoplastic vertebral artery:frequency and associations with ischaemic stroke territory[J]. J Neurol Neurosurg Psychiatry,2007,78:954-958.
32 Perren F,Poglia D,Landis T,et al. Vertebral artery hypoplasia:a predisposing factor for posterior circulation stroke?[J]. Neurology,2007,68:65-67.
33 Katsanos AH,Kosmidou M,Kyritsis AP,et al. Is vertebral artery hypoplasia a predisposing factor for posterior circulation cerebral ischemic events? A comprehensive review[J]. Eur Neurol,2013,70:78-83.
34 Zhou M,Zheng H,Gong S,et al. Vertebral artery hypoplasia and vertebral artery dissection:a hospital-based cohort study[J]. Neurology,2015,84:818-824.
35 Wang Y,Lou X,Li Y,et al. Imaging investigation of intracranial arterial dissecting aneurysms by using 3 T high-resolution MRI and DSA:from the interventional neuroradiologists' view[J]. Acta Neurochir (Wien),2014,156:515-525.
36 Arai D,Satow T,Komuro T,et al. Evaluation of the arterial wall in vertebrobasilar artery dissection using highresolution magnetic resonance vessel wall imaging[J]. J Stroke Cerebrovasc Dis,2016,25:1444-1450.
37 Sakurai K,Miura T,Sagisaka T,et al. Evaluation of luminal and vessel wall abnormalities in subacute and other stages of intracranial vertebrobasilar artery dissections using the volume isotropic turbo-spin-echo acquisition (VISTA)sequence:a preliminary study[J]. J Neuroradiol,2013,40:19-28.
38 Ryu CW,Kwak HS,Jahng GH,et al. High-resolution MRI of intracranial atherosclerotic disease[J]. Neurointervention,2014,9:9-20.
39 Gao PH,Yang L,Wang G,et al. Symptomatic unruptured isolated middle cerebral artery dissection:clinical and magnetic resonance imaging features[J]. Clin Neuroradiol,2016,26:81-91.
40 Park KJ,Jung SC,Kim HS,et al. Multi-contrast highresolution magnetic resonance fi ndings of spontaneous and unruptured intracranial vertebral artery dissection:qualitative and quantitative analysis according to stages[J].Cerebrovasc Dis,2016,42:23-31.
41 Ryu CW,Jahng GH,Kim EJ,et al. High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla[J].Cerebrovasc Dis,2009,27:433-442.
42 Kato A,Shinohara Y,Yamashita E,et al. Usefulness of R2* maps generated by iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence for cerebral artery dissection[J].Neuroradiology,2015,57:909-915.
43 Makowski MR,Botnar RM. MR imaging of the arterial vessel wall:molecular imaging from bench to bedside[J].Radiology,2013,269:34-51.