劉璐, 孫麗平
綜 述
核轉(zhuǎn)錄因子κB對(duì)哮喘患兒氣道平滑肌作用機(jī)制的研究進(jìn)展
劉璐, 孫麗平
核轉(zhuǎn)錄因子κB(NF-κB)是一種促進(jìn)轉(zhuǎn)錄的蛋白質(zhì),可調(diào)節(jié)炎癥介質(zhì)的基因表達(dá)和氣道內(nèi)多種細(xì)胞的功能,是防治哮喘的研究的一個(gè)核心環(huán)節(jié)。NF-κB感受刺激而活化后能調(diào)控前炎性因子的生成,參與多種促炎反應(yīng)因子和趨化因子基因的轉(zhuǎn)錄。NF-κB抑制蛋白(IκB)是 NF-κB信號(hào)轉(zhuǎn)導(dǎo)途徑成員之一,以無(wú)活性形式存在于胞漿中,在外界信刺激下被激活而發(fā)生磷酸化,結(jié)果NF-κB由抑制狀態(tài)被激活。腫瘤壞死因子α刺激IκB激酶α進(jìn)入細(xì)胞核,繼而調(diào)控特定NF-κB應(yīng)答基因的表達(dá)。
哮喘; 氣道平滑肌細(xì)胞; 核轉(zhuǎn)錄因子κB; 兒童
氣道重塑是支氣管哮喘(簡(jiǎn)稱哮喘)的特征之一。氣道平滑肌是維持氣道張力的重要組織,而氣道平滑肌細(xì)胞是其效應(yīng)細(xì)胞,過(guò)度增殖是導(dǎo)致重塑的主要原因,與炎癥密切相關(guān)。核轉(zhuǎn)錄因子(nuclear transcription factor kappa B,NF-κB)參與多種基因的轉(zhuǎn)錄,是炎癥反應(yīng)發(fā)生的核心環(huán)節(jié),在發(fā)病過(guò)程中占重要角色。目前對(duì)于哮喘而言,NF-κB是一個(gè)研究熱點(diǎn)。本文通過(guò)文獻(xiàn)檢索,從而闡述NF-κB對(duì)氣道平滑肌細(xì)胞的作用機(jī)制。
1986年Sen和Baltimore首次在B細(xì)胞提取物中發(fā)現(xiàn)了能與免疫球蛋白κ輕鏈基因增強(qiáng)子發(fā)生特異結(jié)合和的蛋白,稱其為NF-κB。NF-κB家族是一類可與多種基因啟動(dòng)子部位的κB位點(diǎn)發(fā)生特異性結(jié)合,促進(jìn)轉(zhuǎn)錄的蛋白質(zhì)總稱,其轉(zhuǎn)錄因子涉及多種細(xì)胞應(yīng)答。NF-κB有5個(gè)主要成員,在哺乳動(dòng)物的細(xì)胞中有RelA(p65)、RelB、c-Rel、p50/p105(NF-κB1)和p52/p100(NF-κB2),所有成員的N末端均有約300個(gè)氨基酸殘基的Rel同源區(qū),各蛋白成員間可形成不同形式的同源或異源二聚體復(fù)合物[1]。
哮喘是一種異質(zhì)性疾病,以氣道慢性炎癥和氣道重塑為特征。由多細(xì)胞參與調(diào)控的慢性炎癥導(dǎo)致黏液增多、膠原沉積和氣道平滑肌增生或肥大,致使氣道重構(gòu),出現(xiàn)氣道高反應(yīng)性,可引起呼吸道通氣受限[2]。臨床上表現(xiàn)為呼吸短促、氣喘、咳嗽、痰液產(chǎn)生。目前,抗炎療法是西醫(yī)主要治療手段,如糖皮質(zhì)激素、白三烯調(diào)節(jié)劑、色甘酸鈉等多種抗炎藥物在臨床廣泛應(yīng)用[3]。因炎癥途徑復(fù)雜,抗炎療法仍無(wú)法從根本上解決問(wèn)題。研究發(fā)現(xiàn)控制炎癥級(jí)聯(lián)反應(yīng)的上游是理想的治療策略。誘導(dǎo)痰測(cè)驗(yàn)發(fā)現(xiàn)氣管組織內(nèi)炎癥細(xì)胞隨著NF-κB活化而增加[4-6]。多種因子通過(guò)NF-κB調(diào)節(jié)炎癥介質(zhì)的基因表達(dá),對(duì)炎癥細(xì)胞有至關(guān)重要的作用[7-10]。
NF-κB通路從被發(fā)現(xiàn)至今有20年,與多種重要通路聯(lián)系密切、牽涉病種廣。目前多種治療哮喘藥物是通過(guò)抑制NF-κB的表達(dá)或阻斷其信號(hào)通路的方式來(lái)提高抗炎活性[6-7,11-13]。當(dāng)細(xì)胞受到刺激信號(hào)后,NF-κB從NF-κB抑制蛋白(inhibitor of NF-κB,IκB)α復(fù)合體中游離后活化進(jìn)入細(xì)胞核,繼而調(diào)控相關(guān)基因的表達(dá),這個(gè)反式過(guò)程涉及IKK對(duì)IκBα的磷酸催化作用[14]。NF-κB通路是多種誘導(dǎo)物誘導(dǎo)其他基因表達(dá)調(diào)控的途徑[15]。氧化應(yīng)激通過(guò)NF-κB通路誘導(dǎo)炎癥基因表達(dá),從而導(dǎo)致氣道炎癥產(chǎn)生,對(duì)生理應(yīng)激反應(yīng)敏感的轉(zhuǎn)錄因子NF-κB,是炎性細(xì)胞因子網(wǎng)絡(luò)中調(diào)節(jié)氣道病理活動(dòng)的重要參與者。對(duì)NF-κB活化響應(yīng)的主要炎癥介質(zhì)有白細(xì)胞介素1β(interleukin-10,IL-1β)、腫瘤壞死因子α(tumor necrosis factor,TNF-α)和Toll樣受體(Toll-like receptors,TLRs)[16]。炎癥中多種信號(hào)轉(zhuǎn)導(dǎo)通路匯集于NF-κB/IκBα復(fù)合體,因此將NF-κB定為治療標(biāo)靶,是防治哮喘研究的一個(gè)重要環(huán)節(jié)。
氣道上皮細(xì)胞內(nèi)NF-κB活化與哮喘發(fā)病機(jī)制有關(guān)。降低NF-κB過(guò)表達(dá)可抑制氣道平滑肌細(xì)胞增殖。NF-κB可以通過(guò)調(diào)控免疫和炎癥相關(guān)因子及介質(zhì)之間的級(jí)聯(lián)放大瀑布效應(yīng),從而對(duì)炎癥和免疫反應(yīng)起樞紐作用。當(dāng)氣道上皮組織內(nèi)NF-κB通路被激活后,釋放的炎癥介質(zhì)(如IL-1β、TNF-α等)刺激氣道平滑肌細(xì)胞及成纖維細(xì)胞,使之增殖、活化,導(dǎo)致氣道上皮細(xì)胞增生、氣道組織纖維化、氣道重塑[17-18]。
3.1 激活NF-κB對(duì)氣道重塑的影響 氣道上皮受氧化應(yīng)激、細(xì)胞因子等多種刺激,可以刺激NF-κB活化,同時(shí)也可以作為佐劑誘導(dǎo)抗原特異性致敏。IκB激酶(IKK復(fù)合體)是NF-κB信號(hào)轉(zhuǎn)導(dǎo)途徑成員之一,包括IKKα、IKKβ催化亞基和調(diào)調(diào)節(jié)蛋白,研究表明, IKK的表達(dá)能夠證實(shí)NF-κB被激活,通過(guò)誘導(dǎo)表達(dá)IKK復(fù)合體抑制劑的突變體激活氣道內(nèi)NF-κB后,IKKβ瞬時(shí)表達(dá);而后在卵清蛋白致敏的哮喘小鼠氣道內(nèi),除氣道反應(yīng)性乙酰甲膽堿、嗜酸性粒細(xì)胞、黏液增多以外,IKKβ表達(dá)活化標(biāo)志物水平顯著升高[19]。
在炎癥環(huán)境中IKKβ對(duì)NF-κB的激活是重要因素,與氣道重塑相關(guān)。實(shí)驗(yàn)通過(guò)對(duì)卵清蛋白致敏小鼠模型腹腔注射IMD-0354(合成的IKKβ抑制劑),檢測(cè)發(fā)現(xiàn)NF-κB的活化被IMD-0354抑制,同時(shí)也包括氣道重塑的病理特征,杯狀細(xì)胞增生、上皮下纖維化,膠原沉積,平滑肌肥大,還有嗜酸性粒細(xì)胞數(shù)也明顯目減少。氣道結(jié)構(gòu)改變之所以停止, 是通過(guò)IKKβ抑制IL-13、IL-1β的產(chǎn)生致使γ干擾素活化而實(shí)現(xiàn)的[20]。
結(jié)合蛋白影響氣道順應(yīng)性、肺反沖和氣道收縮反應(yīng),對(duì)氣道平滑肌起平衡作用,與ankrd1有相互作用關(guān)系?;驒z測(cè)表明,NF-κB直接結(jié)合ankrd1啟動(dòng)子,調(diào)節(jié)ankrd1水平。敲除平滑肌細(xì)胞的結(jié)合蛋白后,可增加Akt、IKK-α、IκBα的磷酸化,導(dǎo)致NF-κB激活,以及氣道平滑肌增生和miR-26a上調(diào)。
上述證據(jù)表明,NF-κB過(guò)表達(dá)對(duì)氣道重塑有促進(jìn)作用,因此抑制其表達(dá),有助于減少炎癥反應(yīng)的發(fā)生,從而抑制氣道重塑。
3.2 抑制NF-κB對(duì)氣道重塑的影響 NF-κB是一種轉(zhuǎn)錄因子,通過(guò)降低其表達(dá)水平,抑制其活化從而可以改善各種炎癥性疾病,在哮喘的病理生理過(guò)程中起著至關(guān)重要的作用[21-22]。
通過(guò)抑制NF-κB下游趨化因子和降低Th2反應(yīng),可降低變應(yīng)性氣道炎癥關(guān)鍵引發(fā)劑(Eotaxin-1和胸腺基質(zhì)淋巴細(xì)胞生成素)和肺部Th2型細(xì)胞因子(IL-4、IL-5和IL-13)以及胸腺淋巴細(xì)胞和脾細(xì)胞中Th2轉(zhuǎn)錄因子結(jié)合蛋白3的表達(dá),從而發(fā)揮發(fā)揮其抗炎活性[23]。如硫酸鋅可以降低塵螨介導(dǎo)的炎性產(chǎn)物,如IL-6、IL-8、IL-1和氣道平滑肌細(xì)胞的單核細(xì)胞趨化蛋白。動(dòng)物實(shí)驗(yàn)證明,通過(guò)補(bǔ)充不同劑量(6、12、24、96 μmol/L)硫酸鋅而抑制塵螨誘導(dǎo)的細(xì)胞膜外信號(hào)調(diào)節(jié)激酶和NF-κB的磷酸化,從而使鋅在氣道平滑肌細(xì)胞才中得以產(chǎn)生抗炎作用[24]。
浸潤(rùn)炎癥細(xì)胞會(huì)產(chǎn)生細(xì)胞因子、趨化因子和細(xì)胞黏附分子等一系列炎性介質(zhì),可調(diào)節(jié)炎癥細(xì)胞、皮細(xì)胞、平滑肌、成纖維細(xì)胞和內(nèi)皮細(xì)胞的功能。NF-κB在調(diào)節(jié)氣管炎癥細(xì)胞基因表達(dá)有著核心作用。
4.1 淋巴細(xì)胞 淋巴細(xì)胞有免疫調(diào)節(jié)的功能。嗜酸粒細(xì)胞性炎癥反應(yīng)促使T淋巴細(xì)胞產(chǎn)生IL-4、IL-5、IL-13,再刺激B淋巴細(xì)胞而產(chǎn)生IgE。非過(guò)敏性嗜酸性炎癥由先天淋巴細(xì)胞2和自然殺傷細(xì)胞T共同協(xié)調(diào)[25]。中性粒細(xì)胞性炎癥包括Th1和Th17。Th17細(xì)胞是IL-17A、IL-17F和IL-22的主要來(lái)源,在重度哮喘者氣道組織內(nèi)顯著增加[26]。在氣道上皮細(xì)胞和氣道平滑肌細(xì)胞的結(jié)構(gòu)變化中,Th17因子占重要角色[27]。上皮黏蛋白和氣道平滑肌增殖均與NF-κB信號(hào)相關(guān)[28-29]。
4.2 嗜酸性粒細(xì)胞 過(guò)敏性氣道炎癥以嗜酸性粒細(xì)胞浸潤(rùn)和激活為特點(diǎn)。嗜酸性粒細(xì)胞對(duì)氣道上皮細(xì)胞受NF-κB信號(hào)調(diào)控釋放細(xì)胞黏附因子有促進(jìn)作用[30]。過(guò)敏原激活NF-κB和其他因子(TNF-α、IL-8等)[31]。NF-κB信號(hào)可調(diào)節(jié)TNF-α抗凋亡,對(duì)嗜酸性粒細(xì)胞的存亡起重要作用[32]。
4.3 中性粒細(xì)胞 中性粒細(xì)胞性炎癥主要來(lái)源于呼吸道黏膜下的中性粒細(xì)胞浸潤(rùn)。NF-κB是中性粒細(xì)胞產(chǎn)生的IL-8是調(diào)控基因,是重要介導(dǎo)物[33]。Th17和巨噬細(xì)胞分別調(diào)節(jié)中心粒細(xì)胞的應(yīng)答[34-35]。
4.4 上皮細(xì)胞 氣道上皮組織直接與空氣接觸,是保護(hù)組織免受外界侵害的生理屏障,其中上皮細(xì)胞起關(guān)鍵作用。受NF-κB調(diào)節(jié)產(chǎn)生免疫或炎癥介質(zhì),這些介質(zhì)可復(fù)原炎癥細(xì)胞,從而影響上皮功能。通過(guò)Th2應(yīng)答,上皮細(xì)胞可產(chǎn)生胸腺基質(zhì)淋巴細(xì)胞生成素[36]。黏蛋白過(guò)度增殖來(lái)源于上皮細(xì)胞,Toll樣受體4和NF-κB對(duì)其有調(diào)控作用[37]。
4.5 氣道平滑肌細(xì)胞 氣道平滑肌持續(xù)收縮與氣管痙攣有關(guān),同時(shí)也參與氣道重構(gòu),致使氣管阻塞[38-40]。氣道平滑肌細(xì)胞所產(chǎn)生生長(zhǎng)因子、細(xì)胞因子和其他炎癥介質(zhì),與阻塞性呼吸道疾病的炎癥有密切聯(lián)系。通過(guò)刺激炎癥因子和生長(zhǎng)因子的表達(dá),可產(chǎn)生炎癥細(xì)胞和上皮細(xì)胞[41]。NF-κB被凝血酶和IL-1α激活,從而調(diào)節(jié)與哮喘相關(guān)的基因。
NF-κB是多種炎性反應(yīng)的通路,可以作為抗炎治療的重要靶點(diǎn)。目前GINA推薦的治療或控制哮喘的一線基礎(chǔ)藥物——糖皮質(zhì)激素,則是NF-κB活化抑制劑,糖皮質(zhì)激素受體和NF-κB可能在功能上互為轉(zhuǎn)錄拮抗因子GC可直接結(jié)合IκB-α基因啟動(dòng)子上的GC結(jié)合位點(diǎn),活化IκB-α基因的啟動(dòng)子,促使IκB-α表達(dá)的上調(diào),進(jìn)而抑制NF-κB依賴的基因轉(zhuǎn)錄[42-43]。已使用多年的哮喘控制類藥物——長(zhǎng)效β2受體激動(dòng)劑,實(shí)驗(yàn)表明通過(guò)抑制NF-κB信號(hào)可降低小鼠模型中TNF-α、IL-1、IL-6等促炎因子的表達(dá)[44]。除此之外,多種中藥成分也具有相似作用,如在卵清蛋白致敏小鼠肺組織樣本中檢測(cè)到黃芪提取物能抑制NF-κB表達(dá)。雷公藤甲素通過(guò)抑制NF-κB表達(dá),從而抑制哮喘小鼠氣道杯狀細(xì)胞增生[45]。說(shuō)明通過(guò)抑制NF-κB活化對(duì)治療哮喘有效。
綜上所述,NF-κB與多細(xì)胞聯(lián)系緊密,對(duì)哮喘相關(guān)的因子表達(dá)起重要調(diào)控作用,參與氣道重塑整個(gè)環(huán)節(jié)。因此,NF-κB可以作為治療哮喘的目標(biāo)。
[1] Tully JE, Nolin JD, Guala AS, et al.Cooperation between classical and alternative NF-κB pathways regulates proinflammatoryresponses in epithelial cells[J]. Am J Respir Cell Mol Biol,2012,47(4):497-508.
[2] Tubby C, Harrison T, Todd I,et al. Immunological basis of reversible and fixed airways disease[J]. Clin Sci (Lond),2011,121(7):285-296.
[3] 馬龍艷,吳琦.支氣管哮喘與細(xì)胞自噬[J].天津醫(yī)藥,2016,44(1):3-4.
[4] Tully JE, Hoffman SM, Lahue KG, et al.Epithelial NF-κB orchestrates house dust mite-induced airway inflammation,hyperresponsiveness, and fibrotic remodeling[J]. J Immunol,2013,191(12):5811-5821.
[5] Poynter ME, Cloots R, van Woerkom T,et al. NF-kappa B activation in airways modulates allergic inflammation but not hyperresponsiveness[J]. J Immunol,2004,173(11):7003-7009.
[6] Poynter ME, Irvin CG, Janssen-Heininger YM. Rapid activation of nuclear factor-kappaB in airway epithelium in a murine model of allergic airway inflammation[J]. Am J Pathol,2002,160(4):1325-1334.
[7] Koziol-White CJ, Panettieri RA Jr.Airway smooth muscle and immunomodulation in acute exacerbations of airway disease[J]. Immunol Rev,2011,242(1):178-185.
[8] Ward JE, Harris T, Bamford T, et al.Proliferation is not increased in airway myofibroblasts isolated from asthmatics [J]. Eur Respir J,2008,32(2):362-371.
[9] Flavell SJ, Hou TZ, Lax S, et al.Fibroblasts as novel therapeutic targets in chronic inflammation[J]. Br J Pharmacol,2008,153 Suppl 1:S241-246.
[10]Li M, Riddle SR, Frid MG, et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severehypoxic pulmonary hypertension[J]. J Immunol,2011,187(5):2711-2722.
[11]Ueda F, Iizuka K, Tago K,et al.Nepetaefuran and leonotinin isolated from Leonotis nepetaefolia R. Br. potently inhibit the LPS signaling pathway by suppressing the transactivation of NF-κB[J]. Int Immunopharmacol,2015,28(2):967-976.
[12]Lee SU, Sung MH, Ryu HW, et al.Verproside inhibits TNF-α-induced MUC5AC expression through suppression of the TNF-α/NF-κB pathway in human airway epithelial cells[J]. Cytokine,2016,77:168-175.
[13]Kurakula K, Vos M, Logiantara A,et al.Nuclear Receptor Nur77 Attenuates Airway Inflammation in Mice by Suppressing NF-κB Activityin Lung Epithelial Cells[J]. J Immunol,2015,195(4):1388-1398.
[14]Hinz M, Scheidereit C. The IκB kinase complex in NF-κB regulation and beyond[J]. EMBO Rep,2014,15(1):46-61.
[15]Rajendrasozhan S, Yang SR, Edirisinghe I, et al.Deacetylases and NF-kappa B in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD[J]. Antioxid Redox Signal,2008,10(4):799-811.
[16]Edwards MR, Bartlett NW, Clarke D, et al.Targeting the NF-kappa B pathway in asthma and chronic obstructive pulmonary disease[J]. Pharmacol Ther,2009,121(1):1-13.
[17]Bisgaard H, Bonnelykke K. Long-term studies of the natural history of asthma in childhood[J]. J Allergy Clin Immunol,2010,126(2):187-197.
[18]Guo L, Li S, Zhao Y,et al.Silencing Angiopoietin-Like Protein 4 (ANGPTL4) Protects Against Lipopolysaccharide-InducedAcute Lung Injury Via Regulating SIRT1/NF-κB Pathway[J]. J Cell Physiol,2015,230(10):2390-2402.
[19]Rabe KF, Calhoun WJ, Smith N, et al. Can anti-IgE therapy prevent airway remodeling in allergic asthma[J]. Allergy,2011,66(9):1142-1151.
[20]Ogawa H, Azuma M, Muto S, et al. IκB kinase β inhibitor IMD-0354 suppresses airway remodelling in a Dermatophagoides pteronyssinus-sensitized mouse model of chronic asthma[J]. Clin Exp Allergy,2011,41(1):104-115.
[21]Liu XH, Bauman WA, Cardozo C.ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity[J]. Biochem Biophys Res Commun,2015,464(1):208-213.
[22]Payne AS, Freishtat RJ.Conserved steroid hormone homology converges on nuclear factor κB to modulate inflammationin asthma[J]. J Investig Med,2012,60(1):13-7.
[23]Wu MY, Hung SK, Fu SL. Immunosuppressive effects of fisetin in ovalbumin-induced asthma through inhibition of NF-κB activity[J]. J Agric Food Chem,2011,59(19):10496-10504.
[24]Shih CJ, Chiou YL.Zinc sulfate inhibited inflammation of Der p2-induced airway smooth muscle cells bysuppressing ERK1/2 and NF-κB phosphorylation[J]. Inflammation, 2013, 36(3): 616-624.
[25]Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma[J]. Nat Med,2013,19(8):977-979.
[26]Chien JW, Lin CY, Yang KD,et al.Increased IL-17A secreting CD4+T cells, serum IL-17 levels and exhaled nitric oxide arecorrelated with childhood asthma severity[J]. Clin Exp Allergy,2013,43(9):1018-1026.
[27]Chesné J, Braza F, Mahay G,et al.IL-17 in severe asthma. Where do we stand[J]. Am J Respir Crit Care Med,2014,190(10):1094-1101.
[28]Fujisawa T, Chang MM, Velichko S,et al.NF-κB mediates IL-1β- and IL-17A-induced MUC5B expression in airway epithelial cells[J]. Am J Respir Cell Mol Biol, 2011, 45(2): 246-252.
[29]Dragon S, Hirst SJ, Lee TH, et al.IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells[J]. Am J Respir Cell Mol Biol, 2014, 50(6): 1053-1063.
[30]Chang Y, Al-Alwan L, Risse PA,et al.Th17-associated cytokines promote human airway smooth muscle cell proliferation[J]. FASEB J,2012,26(12):5152-5160.
[31]Coward WR, Sagara H, Wilson SJ, et al. Allergen activates peripheral blood eosinophil nuclear factor-kappa B to generate granulocyte macrophage-colony stimulating factor, tumour necrosis factor-alpha and interleukin-8[J]. Clin Exp Allergy,2004,34(7):1071-1078.
[32]Kankaanranta H, Ilmarinen P, Zhang X,et al.Tumour necrosis factor-α regulates human eosinophil apoptosis via ligation of TNF-receptor 1 and balance between NF-κB and AP-1[J]. PLoS One,2014,9(2):e90298.
[33]Ordonez CL, Shaughnessy TE, Matthay MA, et al.Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma:Clinical and biologic significance[J]. Am J Respir Crit Care Med,2000,161(4 Pt 1):1185-1190.
[34]Nakagome K, Matsushita S, Nagata M.Neutrophilic inflammation in severe asthma[J]. Int Arch Allergy Immunol,2012,158 Suppl 1:96-102.
[35]Pappas K, Papaioannou AI, Kostikas K,et al.The role of macrophages in obstructive airways disease: chronic obstructive pulmonary diseaseand asthma[J]. Cytokine, 2013, 64(3): 613-625.
[36]Lee HC, Ziegler SF. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airwayepithelial cells is controlled by NF-kappa B[J]. Proc Natl Acad Sci U S A,2007,104(3):914-919.
[37]Kang JH, Hwang SM, Chung IY. S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC viaextracellular signal-regulated kinase and nuclear factor-κB pathways[J]. Immunology, 2015,144(1):79-90.
[38]James AL, Wenzel S.Clinical relevance of airway remodelling in airway diseases[J]. Eur Respir J,2007,30(1):134-155.
[39]Amin K, Lúdvíksdóttir D, Janson C,et al.Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. BHR Group[J]. Am J Respir Crit Care Med,2000,162(6):2295-2301.
[40]Gosselink JV, Hayashi S, Elliott WM, et al.Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2010,181(12):1329-1335.
[41]Xia YC, Redhu NS, Moir LM, et al.Pro-inflammatory and immunomodulatory functions of airway smooth muscle: emergingconcepts[J]. Pulm Pharmacol Ther,2013,26(1):64-74.
[42]Bateman ED, Hurd SS, Barnes PJ,et al.Global strategy for asthma management and prevention: GINA executive summary[J]. Eur Respir J,2008,31(1):143-178.
[43]Ratman D, Vanden Berghe W, Dejager L, et al. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering[J]. Mol Cell Endocrinol,2013,380(1-2):41-54.
[44]Hu Z, Chen R, Cai Z, et al. Salmeterol attenuates the inflammatory response in asthma and decreases the pro-inflammatorycytokine secretion of dendritic cells[J]. Cell Mol Immunol,2012,9(3):267-275.
[45]Chen M, Lv Z, Zhang W,et al.Triptolide suppresses airway goblet cell hyperplasia and Muc5ac expression via NF-κB in a murine model of asthma[J]. Mol Immunol,2015,64(1):99-105.
(本文編輯:劉穎)
Mechanism of action of nuclear transcription factor kappa B in airway smooth muscle in asthmatic children
LIULu,SUNLiping.
ChangchunUniversityofTraditionalChineseMedicine,Changchun130117,China
Nuclear factor kappa B is a transcription-promoting protein, which regulates the gene expression of inflammatory mediators and function of many kinds of cells in airway. It is a core element in the research of asthma prevention and treatment. NF-kappa B can regulate the production of proinflammatory factors after activation,and participates in the transcription of a variety of proinflammatory and chemokine genes. I kappa B is one of the NF- kappa B signal pathways and is inactive in the cytoplasm. The phosphorylation arises after I kappa B is activated by external stimuli, and then NF- kappa B is activated. Tumor necrosis factor α stimulates I kappa B kinase α to enter into the nucleus, which then regulate the expression of specific NF-kappa B response gene.
Asthma; Airway smooth muscle; Nuclear transcription factor kappa B; Children
國(guó)家自然基金面上資助項(xiàng)目(81473729);吉林省科技廳自然科學(xué)基金項(xiàng)目(20150101209JC)
130117 長(zhǎng)春,長(zhǎng)春中醫(yī)藥大學(xué)2014級(jí)中醫(yī)兒科學(xué)專業(yè)研究生(劉璐);130021 長(zhǎng)春,長(zhǎng)春中醫(yī)藥大學(xué)附屬醫(yī)院兒科(孫麗平)
劉璐(1983-),男,長(zhǎng)春中醫(yī)藥大學(xué)2014級(jí)博士研究生在讀。研究方向:中醫(yī)藥防治小兒肺系疾病的基礎(chǔ)研究
孫麗平,E-mail:slpwzt7063@163.com
10.3969/j.issn.1674-3865.2017.02.005
R725.6
A
1674-3865(2017)02-0106-04
2016-10-29)