周 曄,鄧新娜,范曉燕,李 陽,張麗霞,Andrew Chang,李慶霞
(1河北省人民醫(yī)院,河北 石家莊 050000;2Rice University,USA Houston 77005)
乳腺癌基因治療現(xiàn)狀及進(jìn)展
周 曄1,鄧新娜1,范曉燕1,李 陽1,張麗霞1,Andrew Chang2,李慶霞1
(1河北省人民醫(yī)院,河北 石家莊 050000;2Rice University,USA Houston 77005)
乳腺癌已經(jīng)超越宮頸癌成為居于發(fā)展中國家女性腫瘤死亡率首位的惡性腫瘤,其發(fā)病率約占全身惡性腫瘤的23%,死亡率占14%.目前乳腺癌的治療方法主要包括手術(shù)、放療、化療或聯(lián)合治療,但治療效果有限,尤其是對三陰乳腺癌及晚期乳腺癌效果不佳,探索新的治療方法刻不容緩.隨著精準(zhǔn)醫(yī)療概念的提出,乳腺癌的發(fā)生、轉(zhuǎn)移、耐藥機(jī)制、基因組學(xué)等分子水平的研究逐漸深入,推動了乳腺癌基因治療地快速發(fā)展.目前,乳腺癌基因治療主要包括癌基因治療、抑癌基因治療、免疫基因治療、多藥耐藥基因治療、自殺基因治療、溶瘤病毒治療、microRNA治療等,本文將從上述治療及進(jìn)展方面進(jìn)行綜述.
乳腺癌;基因治療;癌基因;免疫基因治療;溶瘤病毒治療;microRNA治療
乳腺癌的發(fā)生是以多個原癌基因在不同的時間和空間上,經(jīng)不同途徑激活或不同的抑癌基因失活為基礎(chǔ)的多步驟過程.越來越多的癌基因、抑癌基因被發(fā)現(xiàn)與乳腺癌的發(fā)生相關(guān),為癌基因的敲除治療與新的腫瘤抑制機(jī)制探索提供了理論依據(jù)[1-2].此外,乳腺癌的進(jìn)展與復(fù)雜的腫瘤免疫微環(huán)境相關(guān),如近年來研究較多的包括 GM?CSF、VEGF、IL?17、PD1 等[3-4].針對腫瘤免疫微環(huán)境的基因治療手段主要包括免疫基因治療、溶瘤病毒治療等,成為近年來乳腺癌基因治療的新熱點,并有望較早地實現(xiàn)臨床轉(zhuǎn)化.
乳腺癌的傳統(tǒng)治療手段主要包括手術(shù)、化療、放療、靶向治療等.近年來,上述治療方法療效無明顯突破,尤其對晚期及三陰型乳腺癌療效欠佳.基因治療即利用基因轉(zhuǎn)染和基因重組的技術(shù),將構(gòu)建好的外源性治療基因有效地導(dǎo)入細(xì)胞內(nèi),導(dǎo)入基因可以起到直接修復(fù)和糾正腫瘤發(fā)病相關(guān)基因的作用,從而達(dá)到治療腫瘤的目的[5],成為了新型治療手段.目前常用的基因轉(zhuǎn)染載體包括病毒載體(腺病毒、腺相關(guān)病毒、慢病毒、逆轉(zhuǎn)錄病毒等,其中最常用的是腺病毒)和非病毒載體(脂質(zhì)體、納米粒等,其中研究最多的是脂質(zhì)體)[6].常用的基因干預(yù)技術(shù)包括:反義RNA(antisense RNA)技術(shù)、RNA 干擾(RNA interference,RNAi)技術(shù)、核酶技術(shù)、反基因寡核苷酸技術(shù)(anti?sense oligonucleotides, ASO)[7-10].siRNA、miRNA 與納米顆粒技術(shù)在乳腺癌中的運用備受重視,其中siRNA技術(shù)已被廣泛應(yīng)用于腫瘤基因 治療[11-12].CRISPR?Cas9技術(shù)是近年來新興的基因干預(yù)技術(shù),CRISPR?Cas9系統(tǒng)是成簇的具有規(guī)律間隔短回文重復(fù)結(jié)構(gòu)的基因編輯系統(tǒng),利用這項技術(shù)可直接編輯或修改DNA序列,通過導(dǎo)入效應(yīng)基因序列,實現(xiàn)激活、抑制、敲除靶基因的目的[13].研究證實,在乳腺癌中通過應(yīng)用CRISPR?Cas9技術(shù)和激酶抑制劑證實周期蛋白依賴性激酶7(cyclin?dependent protein kinases 7,CDK7)在三陰性乳腺癌中具有介導(dǎo)基因轉(zhuǎn)錄的重要作用[14].另一項靶向陽離子微泡(cationic microbub?bles conjugated with a CD105 antibody, CMB105)技術(shù)用于體內(nèi)基因轉(zhuǎn)染,可通過對血管生成的抑制作用抑制乳腺癌種植瘤生長[15].
綜上,基于乳腺癌分子水平研究進(jìn)展及基因干預(yù)技術(shù)進(jìn)展,目前研究的乳腺癌基因治療方法主要包括癌基因治療、抑癌基因治療、免疫基因治療、多藥耐藥基因治療、自殺基因治療、溶瘤病毒治療、microRNA治療等措施.
與乳腺癌相關(guān)的癌基因包括:HER?2(c?erbB?2,neu)、Ras基因、C?myc 基因等[16].抑制癌基因的表達(dá)是主要的癌基因治療策略.目前常用的方法有:①反義核苷酸、核酸或siRNA阻止癌基因mRNA轉(zhuǎn)錄和翻譯.近年來,為增強(qiáng)對癌基因表達(dá)的阻斷,增加癌基因治療效果,國內(nèi)對同時阻斷雙癌基因表達(dá)的研究越來越多.陳邵坤等[17]研究將 rAd?hTERT和rAd?TRF2重新構(gòu)建,制備雙表達(dá) siRNA?hTERT 和siRNA?TRF2重組腺病毒,并轉(zhuǎn)染 MCF?7細(xì)胞,結(jié)果顯示重組腺病毒對MCF?7細(xì)胞的增殖周期及集落形成的抑制能力均較單基因腺病毒強(qiáng).②轉(zhuǎn)染顯性負(fù)突變體(dominant negativemutation)干擾癌細(xì)胞的信號轉(zhuǎn)導(dǎo),抑制癌細(xì)胞生長.顯性負(fù)突變體是一種因結(jié)構(gòu)發(fā)生變化而失去正常生物學(xué)功能的蛋白質(zhì)分子,可與相應(yīng)野生型蛋白進(jìn)行競爭性抑制而阻斷后者的生物學(xué)功能.研究[18]顯示將雌激素受體顯性負(fù)突變體轉(zhuǎn)導(dǎo)入雌激素受體(+)的乳腺癌細(xì)胞中,能夠顯著抑制癌細(xì)胞生長.另一項研究[19]顯示,將端粒酶逆轉(zhuǎn)錄酶顯性負(fù)突變體(DN?hTERT)轉(zhuǎn)染入乳腺癌細(xì)胞MCF7中,DN?hTERT的異常表達(dá)能夠顯著抑制癌細(xì)胞端粒酶活性及長度,從而導(dǎo)致癌細(xì)胞生長抑制及凋亡,并影響其體內(nèi)致瘤性.③使用癌基因抑制劑阻斷癌基因磷酸化水平及其下游的信號傳導(dǎo)通路.Luttrell等[20]證實,使用癌基因 c?Src抑制劑 PP2通過阻斷其磷酸化及MAPK和AKt兩條細(xì)胞生長信號通路來阻斷癌基因活性,從而抑制癌細(xì)胞生長.目前,c?Src抑制劑已經(jīng)被用于乳腺癌的臨床驗證階段[21-22].另外,Korcn等[1]研究發(fā)現(xiàn)新的癌基因 PIK3CA(H1047R)突變不僅可以誘導(dǎo)乳腺癌的形成,亦可調(diào)控乳腺癌細(xì)胞的異質(zhì)性,與不同類型乳腺腫瘤和臨床預(yù)后相關(guān),為PIK3CA基因敲除治療打下基礎(chǔ).
抑癌基因是指正常細(xì)胞內(nèi)存在的、能抑制細(xì)胞轉(zhuǎn)化和腫瘤發(fā)生的一類基因群.通過轉(zhuǎn)染功能正常的抑癌基因至乳腺癌細(xì)胞,恢復(fù)細(xì)胞的正常生長或者誘導(dǎo)腫瘤細(xì)胞凋亡是抑癌基因治療主要策略[23-26].目前已分離克隆的乳腺癌抑癌基因主要有p53、Rb、ERBA、WT1、DCC、MCC、APC、nm23、MTS、TIMP、FHIT、ING1 、BRCA1 和 BRCA2等,以 p53、ING1、BRCA1和BRCA2等實驗研究較多.Prabha等[27]以納米微粒(nanopa rticles)介導(dǎo)野生型p53基因?qū)肴橄侔┘?xì)胞系,發(fā)現(xiàn)其能有效抑制小鼠體內(nèi)乳腺癌細(xì)胞的增殖.近年來新發(fā)現(xiàn)的抑癌基因包括 FHIT、WWOX 等[28-29].Ge 等[29]研究發(fā)現(xiàn), 在乳腺癌中WWOX的抑癌作用是通過抑制癌基因KLF5翻譯,減少KLF5蛋白表達(dá),從而抑制腫瘤細(xì)胞的增殖.近年來,除對P53基因研究相對深入外,抑癌基因治療方法進(jìn)展相對緩慢,缺乏特異性及高效性,但2017年Nature中發(fā)表的一項新的研究[3]顯示,線粒體蛋白質(zhì)LACTB能夠有效地抑制乳腺癌細(xì)胞的增殖.其作用機(jī)理是通過減少線粒體磷脂酰絲氨酸脫羧酶的水平改變線粒體脂質(zhì)代謝,影響乳腺癌細(xì)胞的分化.該研究不僅發(fā)現(xiàn)了一種新的線粒體抑癌基因,而且證明線粒體脂質(zhì)代謝與乳腺癌細(xì)胞分化程序之間的關(guān)系,從而揭示出之前從未描述過的腫瘤抑制機(jī)制,為抑癌基因治療的發(fā)展提供新思路.
乳腺癌是一種具有免疫原性的腫瘤,隨著腫瘤發(fā)生與機(jī)體免疫系統(tǒng)關(guān)系的研究逐步深入,免疫基因治療(immunogene therapy)在近年來取得了突破性的進(jìn)展,彌補(bǔ)了既往免疫基因治療研究的不足.免疫基因治療是通過基因重組技術(shù)在基因水平激發(fā)機(jī)體抗腫瘤免疫或提高腫瘤細(xì)胞的免疫原性.主要包括3種方法:①細(xì)胞因子基因治療.腫瘤的發(fā)生與腫瘤患者的細(xì)胞因子表達(dá)有關(guān),因此,通過細(xì)胞因子網(wǎng)絡(luò)增強(qiáng)機(jī)體抗腫瘤免疫達(dá)到清除腫瘤的目的一直是該領(lǐng)域研究的一個熱點.將某些細(xì)胞因子(如 IL?2、IL?4、IL?12、TNF?α、GMCSF 等)的基因或受體基因轉(zhuǎn)染到機(jī)體免疫細(xì)胞中,從而激活機(jī)體的抗腫瘤免疫反應(yīng).研究發(fā)現(xiàn) DISC?hGMCSF能夠高效轉(zhuǎn)染人乳腺癌細(xì)胞,分泌 GM?CSF;DISC?hGMCSF在4T1 中可有效抑制腫瘤生長,與化療藥物聯(lián)合使用時效果不受影響[30].②腫瘤疫苗治療.一種為抗原特異性疫苗,HER2和MUC1是兩個研究較多的乳腺癌特異性抗原,抗原特異性疫苗的制備能夠有效提高患者的免疫應(yīng)答能力[31-32].一項納入 195 名 HER2 陽性乳腺癌患者的Ⅰ/Ⅱ期臨床實驗研究顯示,同時應(yīng)用HER2介導(dǎo)的MHCI類分子E75肽及GM?CSF治療的患者5年DFS(89.7%)高于單純應(yīng)用 GM?CSF 治療的對照組的 5 年 DFS(80.2%),且局部無明顯不良反應(yīng)[33].另一種為DC介導(dǎo)的疫苗,體外合成負(fù)載腫瘤抗原的DC疫苗然后應(yīng)用于患者體內(nèi),DC細(xì)胞將提呈腫瘤抗原并激活體內(nèi)免疫反應(yīng)或直接依靠DC疫苗的作用起到免疫治療作用[34].在一項Ⅱ期臨床實驗中,26名已經(jīng)被證實疾病進(jìn)展的乳腺癌患者結(jié)束P53DC疫苗治療,其中19名持續(xù)了6周期的疫苗接種,42%的患者療效評價為SD,說明P53DC疫苗治療有效[35].③免疫卡控點治療.基因的改變會導(dǎo)致許多免疫靶點被免疫系統(tǒng)識別,然而因信號通路的異常免疫系統(tǒng)往往不能發(fā)揮正常的免疫反應(yīng).免疫卡控點在細(xì)胞表面分子調(diào)節(jié)免疫應(yīng)答中發(fā)揮重要的生理作用,防止自身免疫,并保持自身耐受性[36-37].這些表面受體或配體調(diào)控腫瘤免疫抑制微環(huán)境,抑制初始T細(xì)胞和浸潤T細(xì)胞的激活.免疫卡控點的靶向抑制抗體在乳腺癌的治療中體現(xiàn)出了巨大的潛能[38-39].目前,針對乳腺癌免疫卡控點CTLA?4、PD?1或淋巴細(xì)胞激活基因3(lymphocyte activation gene 3, LAG?3)通路的靶向治療仍在試驗階段,其可能成為未來乳腺癌免疫基因治療的新趨勢[40].
自殺基因(suicide gene)是指能將無毒的藥物前體轉(zhuǎn)化為細(xì)胞毒性物質(zhì)的基因.轉(zhuǎn)染了自殺基因的腫瘤細(xì)胞可被直接殺傷,且其周圍大量未被轉(zhuǎn)染的細(xì)胞也被殺死,出現(xiàn)旁觀者效應(yīng),且無放化療等不良反應(yīng)[41-42].目前已發(fā)現(xiàn)和克隆應(yīng)用于乳腺癌治療研究的自殺基因系統(tǒng)(基因介導(dǎo)的酶/藥物前體治療系統(tǒng),GEPT)包括多種,其中 HST?TK/GCV、CD/5?FC 系統(tǒng)是最常用也是研究最多的治療系統(tǒng),且越來越多的自殺基因系統(tǒng)被發(fā)現(xiàn)[43-44].Kuo 等[45]研究顯示,STAT3/NF?κB通路可以在基質(zhì)細(xì)胞以及腫瘤干細(xì)胞中持續(xù)激活,轉(zhuǎn)染 STAT3/NF?κB 基因以驅(qū)動 HST?TK/GCV系統(tǒng),可以治療順鉑耐藥的三陰乳腺癌.另外,雙自殺基因系統(tǒng)可提高單系統(tǒng)治療效果,國內(nèi)研究較多的是腺病毒介導(dǎo)胞嘧啶脫氨酶和胸苷激酶融合(CD/TK) 的雙自殺基因系統(tǒng)[46-47].一項新的研究[48]顯示,HSV1?sr39TK?NTR/GCV?CB1954 雙自殺基因系統(tǒng)較單自殺基因系統(tǒng)對三陰性乳腺癌細(xì)胞MDA?MB?231具有更高的殺傷活性.目前,新的研究進(jìn)展為基于應(yīng)用自殺基因系統(tǒng)的轉(zhuǎn)基因干細(xì)胞療法(genetically engineered stem cells, GESTECs)被用于治療乳腺癌.研究[49]發(fā)現(xiàn),許多來源于骨髓或脂肪組織的干細(xì)胞,如神經(jīng)干細(xì)胞(neural stem cell,NSC),神經(jīng)祖細(xì)胞和骨髓間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)均具有永生性及腫瘤趨向性,因此,可將自殺基因TK等轉(zhuǎn)染入干細(xì)胞,并利用干細(xì)胞的永生性及腫瘤趨向性靶向治療乳腺癌.
多藥耐藥(multiple drug resistance,MDR)是指腫瘤細(xì)胞接觸一種抗癌藥物產(chǎn)生的耐藥同時也對其他結(jié)構(gòu)和作用機(jī)制不同的藥物獲得耐藥[50].腫瘤細(xì)胞的多藥耐藥性及大劑量化療的嚴(yán)重骨髓抑制是化療失敗的主要原因.目前已發(fā)現(xiàn)多種多藥耐藥基因:MDR1、MDR3、ABCG2、ABCC1、ABCC2 等[51], 其中MDR1與腫瘤細(xì)胞典型多藥耐藥有關(guān),其編碼P?gp蛋白至腫瘤細(xì)胞對多種藥物通透性降低導(dǎo)致耐藥[52].Zhang 等[53]的研究表明用陽離子聚合物轉(zhuǎn)染siRNA進(jìn)入乳腺癌細(xì)胞,沉默MDR1基因,下調(diào)P?gp蛋白的表達(dá)以減少阿霉素流出癌細(xì)胞外,從而逆轉(zhuǎn)癌細(xì)胞對阿霉素的多藥耐藥.另外,既往研究顯示將藥物增敏基因?qū)肽[瘤細(xì)胞增加藥物敏感性,或?qū)⒛退幓驅(qū)牍撬杓?xì)胞增加骨髓對化療藥物的耐受性,均可改善多藥耐藥[54].
溶瘤病毒治療(oncolytic virotherapy)的原理為通過對自然界存在的一些致病力較弱的病毒進(jìn)行基因改造,轉(zhuǎn)染具有特定功能的抗腫瘤細(xì)胞或腫瘤微環(huán)境的基因,制成特殊的溶瘤病毒,通過病毒對腫瘤細(xì)胞的直接殺傷作用和誘導(dǎo)全身性抗腫瘤免疫反應(yīng)兩種作用機(jī)制治療腫瘤.因正常機(jī)體細(xì)胞存在抗病毒能力且無法無限復(fù)制病毒而使溶瘤病毒對其不具有殺傷作用,因此,近年來,溶瘤病毒的研究成為抗腫瘤治療的新熱點[55].最常用的溶瘤病毒包括DNA病毒[腺病毒、單純皰疹病毒(herpes simplex virus,HSV)和牛痘病毒]和RNA病毒[麻疹病毒、呼腸孤病毒和雞新城疫病毒(newcastle disease virus, NDV)].Kochneva等[56]研究顯示,雙重組痘苗病毒(VV?GMCSF?Lact)增強(qiáng)抗腫瘤蛋白Lactaptin的表達(dá)和人類集落刺激因子(granulocyte?macrophage colony stim?ulating factor,GM?CSF) 抗腫瘤活性,對乳腺癌細(xì)胞MCF?7具有更高的靶向性,并能夠有效抑制腫瘤細(xì)胞的生長.Hernandez等[57]將對低氧和雌激素反應(yīng)的雙特異啟動子插入人類腺病毒?5型基因組的E1A和E4區(qū),利用該系統(tǒng)構(gòu)建了AdEHT2和AdEHE2F,從而殺死低氧條件和雌激素受體陽性的乳腺癌細(xì)胞.近期研究[58]發(fā)現(xiàn),溶瘤病毒已經(jīng)被應(yīng)用在許多聯(lián)合治療策略以增加其對乳腺癌的有效性.例如化療藥物紫杉醇可以增加表達(dá)IL?12的腺病毒的攝取和細(xì)胞毒性.目前溶瘤病毒的研究已經(jīng)進(jìn)入臨床試驗階段[59].
microRNA(miRNA,miR)是調(diào)節(jié)功能基因表達(dá)的重要調(diào)控分子,是由19~25個核苷酸組成的、非編碼的單鏈RNA,被稱為微小核糖核酸.多種microRNA參與腫瘤的惡性轉(zhuǎn)變過程,如惡性增殖、復(fù)發(fā)轉(zhuǎn)移、凋亡抑制等[60].關(guān)于microRNA研究的新進(jìn)展包括以下兩方面:①越來越多的證據(jù)顯示,一些已知的microRNA在乳腺癌患者中異常活躍,將其作為早期乳腺癌的生物標(biāo)志物及其預(yù)測預(yù)后的相關(guān)研究已進(jìn)入臨床試驗階段[61].例如 let?151a,miR?21,miR?155,miR?145,miR?18a,miR?16 以及組織特異性的 miRNAs,例如 miR?182,miR?145,miR?21,miR?155/154,miR?203,miR?213,miR?7.②多項研究顯示 microRNA 與耐藥性有關(guān),例如 miR?200c、miR?34a、miR?134,主要機(jī)制為microRNA能抑制各種信號通路所必需的基因或藥物誘導(dǎo)細(xì)胞凋亡呈現(xiàn)細(xì)胞耐藥[62].Kastl等[63]研究發(fā)現(xiàn),在多西紫杉醇耐藥的乳腺癌細(xì)胞模型中,miR?34a及 miR?141 均過表達(dá),然而受 miR?34a調(diào)控的 bcl?2、CCND1 基因表達(dá)減少,抑制 miR?34a 的過表達(dá)可逆轉(zhuǎn)多西紫杉醇耐藥的乳腺癌細(xì)胞的耐藥性.
近年來,隨著乳腺癌相關(guān)基因的發(fā)現(xiàn),乳腺癌發(fā)病分子機(jī)制的研究以及分子生物學(xué)技術(shù)的發(fā)展,乳腺癌基因治療各個領(lǐng)域的研究均取得新進(jìn)展,為乳腺癌尤其是晚期乳腺癌的治療提供了新手段、新思路.例如癌基因治療中新癌基因PIK3CA的發(fā)現(xiàn),雙癌基因干擾治療,抑制癌細(xì)胞端粒酶活性治療,抑癌基因治療中線粒體抑癌基因的新發(fā)現(xiàn),自殺基因治療中轉(zhuǎn)基因干細(xì)胞療法的理論,溶瘤病毒治療中雙重組溶瘤病毒的研發(fā)等均成為乳腺癌基因治療研究的新熱點.更為重要的是免疫基因治療突破了既往T細(xì)胞及DC疫苗的單一研究方向,在腫瘤相關(guān)抗原、新的免疫卡控點及共刺激分子等領(lǐng)域作出許多新的研究.其中發(fā)現(xiàn)與乳腺癌相關(guān)的包括腫瘤相關(guān)抗原 HER?2、Mucin 1等新的免疫卡控點 CTLA?4、PD?1 及共刺激分子CD40,OX40和4?1BB等及多種細(xì)胞因子.這些乳腺癌免疫基礎(chǔ)分子水平的研究,為乳腺癌免疫基因治療提供了深厚的理論依據(jù),為推動免疫基因治療的快速發(fā)展打下了堅實的基礎(chǔ).
雖然基因治療的研究取得了可喜成果,但大多數(shù)仍停留在細(xì)胞或動物實驗,僅腫瘤疫苗治療及溶瘤病毒治療等少數(shù)方法進(jìn)入臨床試驗階段.實現(xiàn)基因治療的臨床轉(zhuǎn)化是目前的研究方向與目標(biāo),但仍存在許多有待解決的問題.首先,基因轉(zhuǎn)染方法種類多,技術(shù)相對成熟,但轉(zhuǎn)染效率及穩(wěn)定性仍不穩(wěn)定;缺乏特異高效的基因載體,腫瘤細(xì)胞被導(dǎo)入基因效率低,治療效果會受到影響,而載體特異性差會導(dǎo)致正常細(xì)胞受累,且目前多用病毒為載體,其倫理性及致病性問題仍未能完善解決;基因轉(zhuǎn)染后可控性及安全性不佳.當(dāng)基因轉(zhuǎn)導(dǎo)入體內(nèi)后,目前的技術(shù)無法精確控制其表達(dá)部位及表達(dá)程度,因此絕大多數(shù)研究主張用特異性基因啟動子控制靶基因的表達(dá),以此達(dá)到彌補(bǔ)基因表達(dá)部位及表達(dá)程度不精確等缺陷的目的.因此尋找穩(wěn)定的基因轉(zhuǎn)染方法、研發(fā)高效特異且持續(xù)表達(dá)的載體及控制轉(zhuǎn)染基因的表達(dá)仍是今后基因治療研究的重要問題.其次,至今為止,雖然越來越多的與乳腺癌相關(guān)的基因被發(fā)現(xiàn),但仍未確定靶向致病基因.靶向致病基因未明確是導(dǎo)致基因治療無突破性進(jìn)展的關(guān)鍵問題.再次,腫瘤異質(zhì)性和腫瘤微環(huán)境的復(fù)雜性意味著依靠單一方法治愈乳腺癌的機(jī)會是微乎其微的.只阻斷某一單基因不能高效抑制或者逆轉(zhuǎn)腫瘤細(xì)胞的生長,無法達(dá)到理想的治療效果[64].
未來,傳統(tǒng)療法與基因治療的聯(lián)合治療或基因治療間的相互聯(lián)合成為根治乳腺癌的新趨勢[64-66],其不僅可以通過各種各樣的機(jī)制抑制腫瘤細(xì)胞增殖,而且可以降低腫瘤組織耐藥的發(fā)生,減少身體的不良反應(yīng)發(fā)生率.因此,我們根據(jù)腫瘤的個體化特性,聯(lián)合使用兩種或者多種手段治療腫瘤,可以更好地提高腫瘤治療的效果以及有效性.另外,基因治療進(jìn)入臨床試驗還涉及倫理、劑量、途徑及安全等問題,因此在深入研究的同時也需要得到多方面關(guān)注.
隨著乳腺癌發(fā)病機(jī)制及分子生物學(xué)研究的不斷深入與完善,乳腺癌的基因治療將會為乳腺癌的根治帶來希望.
[1]Koren S, Reavie L, Couto JP, et al.PIK3CA(H1047R) induces multipotency and multi?lineage mammary tumours[J].Nature,2015,525(7567):114-118.
[2]Keckesova Z, Donaher JL, De Cock J, et al.LACTB is a tumour suppressor that modulates lipid metabolism and cell state[J].Nature,2017, 543(7647):681-686.
[3]Lin L,Chen YS,Yao YD, et al.CCL18 from tumor?associated macro?phages promotes angiogenesis in breast cancer[ J].Oncotarget,2015,6(33):34758-34773.
[4]Coffelt SB, Kersten K, Doornebal CW, et al.IL?17?producing γδ T cells and neutrophils conspire to promote breast cancer metastasis[J].Nature,2015, 522(7556):345-348.
[5]Shim MS, Kwon YJ.Controlled cytoplasmic and nuclear localization of plasmid DNA and siRNA by differentially tailored polyethylenimine[J].J Control Release,2009,133(3):206-213.
[6]Kazemi Oskuee R, Mahmoudi A, Gholami L, et al.Cationic liposomes modified with polyallylamine as a gene carrier:preparation, charac?terization and transfection efficiency evaluation[J].Adv Pharm Bull,2016,6(4):515-520.
[7]Mottolese M, Nádasi EA, Botti C, et al.Phenotypic changes of p53,HER2,and FAS system in multiple normal tissues surrounding breast cancer[J].J Cell Physiol,2005,204(1):106-112.
[8]Hofland HE, Masson C, Iginla S, et al.Folate?targeted gene transfer in vivo[J].Mol Ther,2002, 5(6):739-744.
[9]Watson PH, Pon RT, Shiu RP.Inhibition of c?myc expression by phosphorothioate antisense oligonucleotide identifies a critical role for c?myc in the growth of human breast cancer[J].Cancer Res,1991,51(15):3996-4000.
[10]Rait AS, Pirollo KF, Rait V, et al.Inhibitory effects of the combination of HER?2 antisense oligonucleotide and chemotherapeutic agents used for the treatment of human breast cancer[J].Cancer Gene Ther,2001,8(10):728-739.
[11]Timp W,F(xiàn)einberg AP.Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host[J].Nat Rev Cancer,2013,13(7):497-510.
[12]Shu D, Li H, Shu Y, et al.Systemic delivery of anti?miRNA for suppression of triple negative breast cancerutilizing RNA nano?technology[J].ACS Nano,2015, 9(10):9731-9740.
[13]Chen S, Sun H, Miao K, et al.CRISPR?Cas9:from Genome Editing to Cancer Research[J].Int J Biol Sci,2016,12(12):1427-1436.
[14]Wang Y, Zhang T, Kwiatkowski N, et al.CDK7?dependent transcriptional addiction in triple?negative breast cancer[ J].Cell,2015,163(1):174-186.
[15]Zhou Y,Gu H,Xu Y,et al.Targeted antiangiogenesis gene therapy using targeted cationic microbubblesconjugated with CD105 antibody compared with untargeted cationic and neutral microbubbles[J].Theranostics,2015, 5(4):399-417.
[16]Naidu R, Wahab NA, Yadav M, et al.Protein expression and molecular analysis of c?myc gene in primary breast carcinomas using immunohistochemistry and differential polymerase chain reaction[J].Int J Mol Med,2002,9(2):189-196.
[17]陳紹坤,劉 嵐,稅青林,等.聯(lián)合干擾人端粒酶逆轉(zhuǎn)錄酶和端粒重復(fù)序列結(jié)合因子2基因的表達(dá)對乳腺癌MCF?7細(xì)胞生長的抑制作用[J].中華腫瘤雜志,2010,32(2):93-97.
[18]Lee EJ, Jakacka M, Duan WR, et al.Adenovirus?directed expression of dominant negative estrogen receptor induces apoptosis in breast cancer cells and regression of tumors in nude mice[J].Mol Med,2001,7(11):773-782.
[19]Rao Y,Xiong W,Liu H,et al.Inhibition of telomerase activity by dominant?negative hTERT retards the growth of breast cancer cells[J].Breast Cancer,2016,23(2):216-223.
[20]Luttrell DK, Lee A, Lansing TJ, et al.Involvement of pp60c?src with two major signaling pathways in human breast cancer[J].Proc Natl Acad Sci USA,1994, 91(1):83-87.
[21]Finn RS, Dering J, Ginther C, et al.Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases,selectively inhibits growth of basal?type/“ triple?negative” breast cancer cell lines growing in vitro[J].Breast Cancer Res Treat,2007,105(3):319-326.
[22]Finn RS,Bengala C,Ibrahim N,et al.Dasatinib as a single agent in triple?negative breast cancer:results of an open?label phase 2 study[J].Clin Cancer Res,2011,17(21):6905-6913.
[23]te Poele RH, Okorokov AL, Jardine L, et al.DNA damage is able to induce senescence in tumor cells in vitro and in vivo[J].Cancer Res,2002,62(6):1876-1883.
[24]Mottolese M, Nádasi EA,Botti C,et al.Phenotypic changes of p53,HER2,and FAS system in multiple normal tissues surrounding breast cancer[J].J Cell Physiol,2005,204(1):106-112.
[25]Liu Q, Gazitt Y.Potentiation of dexamethasone?, paclitaxel?, and Ad?p53?induced apoptosis by Bcl?2 antisense oligodeoxynucleotides in drug?resistant multiple myeloma cells[J].Blood,2003,101(10):4105-4114.
[26]Wang R, Wang X, Li B, et al.Tumor?specific adenovirus?mediated PUMA gene transfer using the survivin promoter enhances radiosensi?tivity of breast cancer cells in vitro and in vivo[J].Breast Cancer Res Treat,2009,117(1):45-54.
[27]Prabha S,Sharma B,Labhasetwar V.Inhibition of tumor angiogenesis and growth by nanoparticle?mediated p53 gene therapy in mice[J].Cancer Gene Ther,2012,19(8):530-537.
[28]Iliopoulos D, Guler G, Han SY, et al.Fragile genes as biomarkers:epigenetic control of WWOX and FHIT in lung,breast and bladder cancer[J].Oncogene,2005,24(9):1625-1633.
[29]Ge F, Chen W, Yang R, et al.WWOX suppresses KLF5 expression and breast cancer cell growth[J].Chung?kuo yen cheng yen chiu,2014,26(5):511-516.
[30]Loudon PT, McLean CS, Martin G, et al.Preclinical evaluation of DISC?GMCSF for the treatment of breast carcinoma[J].J Gene Med,2003, 5(5):407-416.
[31]Disis ML, Pupa SM, Gralow JR, et al.High?titer HER?2/NEU protein?specific antibody can be detected in patients with early?stage breast cancer.J Clin Oncol,1997,15(11):3363-3367.
[32]Miles D, Papazisis K.Rationale for the clinical development of STn?KLH (Theratope) and anti?MUC?1 vaccines in breast cancer[J].Clin Breast Cancer,2003, 3(Suppl 4):S134-S138.
[33]Mittendorf EA, Clifton GT, Holmes JP, et al.Final report of the phase I/II clinical trial of the E75 ( nelipepimut?S) vaccine with booster inoculations to prevent disease recurrence in high?risk breast cancer patients[J].Ann Oncol,2014,25(9):1735-1742.
[34]Palucka K, Banchereau J.Cancer immunotherapy via dendritic cells[J].Nat Rev Cancer,2012,12(4):265-277.
[35]Svane IM, Pedersen AE, Johansen JS, et al.Vaccination with p53 peptide?pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer;monitoring of serum YKL?40 and IL?6 as response biomarkers[ J].Cancer Immunol Immunother,2007, 56(9):1485-1499.
[36]Ghasemzadeh A, Bivalacqua TJ, Hahn NM, et al.New strategies in bladder cancer:a second coming forimmunotherapy[J].Clin Cancer Res,2016,22(4):793-801.
[37]Nishimura H, Nose M, Hiai H, et al.Development of lupus?like autoimmune diseases by disruption of the PD?1 gene encoding an ITIM motif?carrying immunoreceptor[J].Immunity,1999,11(2):141-151.
[38]Gibson J.Anti?PD?L1 for metastatic triple?negative breast cancer[J].Lancet Oncol,2015,16(6):e264.
[39]Hodi FS, O'Day SJ, McDermott DF, et al.Improved survival with ipilimumab in patients with metastatic melanoma[J].N Engl J Med,2010, 363(8):711-723.
[40]Schneble E, Jinga DC, Peoples G.Breast cancer immunotherapy[J].Maedica (Buchar),2015,10(2):185-191.
[41]Hedley D, Ogilvie L, Springer C.Carboxypeptidase?G2?based gene?directed enzyme?prodrug therapy: a new weapon in the GDEPT armoury[J].Nat Rev Cancer,2007,7(11):870-879.
[42]Chung?Faye GA, Kerr DJ, Young LS, et al.Gene therapy strategies for colon cancer[J].Mol Med Today,2000,6(2):82-87.
[43]Shah K.Mesenchymal stem cells engineered for cancer therapy[J].Adv Drug Deliv Rev,2012,64(8):739-748.
[44]Grignet?Debrus C, Calberg?Bacq CM.Potential of Varicella zoster virus thymidine kinase as a suicide gene in breast cancer cells[J].Gene Ther,1997,4(6):560-569.
[45]Kuo W Y, Hwu L, Wu C Y, et al.STAT3/NF?κB?regulated lentiviral TK/GCV suicide gene therapy for cisplatin?resistant triple?negative breast cancer[J].Theranostics,2017,7(3):647-663.
[46]Li XH, Zhou P, Wang LH, et al.The targeted gene (KDRP?CD/TK)therapy of breast cancer mediated by SonoVue and ultrasound irradiation in vitro[J].Ultrasonics,2012, 52(1):186-191.
[47]Kong H, Huang ZH, Li Q, et al.Adenovirus?mediated double suicide gene selectively kills breast cancer MCF?7 cells in vitro[J].Nan Fang Yi Ke Da Xue Xue Bao,2008,28(6):907-910.
[48]Sekar TV, Foygel K, Ilovich O, et al.Noninvasive theranostic imaging of HSV1?sr39TK?NTR/GCV?CB1954dual?prodrug therapy in metastatic lung lesions of MDA?MB?231 triple negative breast cancer in mice[J].Theranostics,2014,4(5):460-474.
[49]Joo KM,Park IH,Shin JY,et al.Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases[J].Mol Ther,2009,17(3):570-575.
[50]Nagengast WB, Oude Munnink TH, Dijkers EC, et al.Multidrug resistance in oncology and beyond:from imaging of drug efflux pumps to cellular drug targets[J].Methods Mol Biol,2010, 596:15-31.
[51]Lockhart AC, Tirona RG, Kim RB.Pharmacogenetics of ATP?bind?ing cassette transporters in cancer and chemotherapy[J].Mol Cancer Ther,2003,2(7):685-698.
[52]Juliano RL, Ling V.A surface glycoprotein modulating drug permea?bility in Chinese hamster ovary cellmutants[J].Biochim Biophys Acta,1976,455(1):152-162.
[53]Zhang CG, Yang SD, Zhu WJ, et al.Distinctive polymer micelle designed for siRNA delivery and reversalof MDR1gene?dependent multidrug resistance[J].J Biomed Mater Res B Appl Biomater,2016.
[54]Takahashi S,Hatake K,Sugimoto Y.Gene therapy for breast cancer[J].Gan To Kagaku Ryoho,2003,30(4):468-477.
[55]Cody JJ, Hurst DR.Promising oncolytic agents for metastatic breast cancer treatment[J].Oncolytic Virother,2015,4:63-73.
[56]Kochneva G, Sivolobova G,Tkacheva A, et al.Engineering of double recombinant vaccinia virus with enhanced oncolytic potential for solid tumor virotherapy[J].Oncotarget,2016,7(45):74171-74188.
[57]Hernandez?Alcoceba R, Pihalja M, Qian D, et al.New oncolytic adeno?viruses with hypoxia?and estrogen receptor?regulated replication [J].Hum Gene Ther,2002,13(14):1737-1750.
[58]Fang L, Cheng Q, Bai J, et al.An oncolytic adenovirus expressing interleukin?24 enhances antitumor activities in combination with paclitaxel in breast cancer cells[J].Mol Med Rep,2013,8(5):1416-1424.
[59]Hemminki O, Diaconu I, Cerullo V, et al.Ad3?hTERT?E1A,a fully serotype 3 oncolytic adenovirus,in patients with chemotherapy refractory cancer[J].Mol Ther,2012,20(9):1821-1830.
[60]Pan JY, Zhang F, Sun CC, et al.miR?134: a human cancer suppressor[J].Mol Ther Nucleic Acids,2017,6:140-149.
[61]Bahrami A, Aledavoud S A, Anvari K, et al.The prognostic and therapeutic application of microRNAs in breast cancer:tissue and circulating microRNAs[J].J Cell Physiol,2017.
[62]Wang J, Yang M, Li Y, et al.The role of microRNAs in the chemoresistance of breast cancer[J].Drug Dev Res,2015,76(7):368-374.
[63]Kastl L, Brown I, Schofield AC.miRNA?34a is associated with docetaxel resistance in human breast cancer cells[J].Breast Cancer Res Treat,2012,131(2):445-454.
[64]Barua S, Yoo JW,Kolhar P,et al.Particle shape enhances specificity of antibody?displaying nanoparticles[J].Proc Natl Acad Sci USA,2013,110(9):3270-3275.
[65]Fukumura D, Duda DG, Munn LL, et al.Tumor microvasculature and microenvironment:novel insights through intravital imaging in pre?clinical models[J].Microcirculation,2010,17(3):206-225.
[66]Kroemer G, Galluzzi L, Kepp O, et al.Immunogenic cell death in cancer therapy[J].Annu Rev Immunol,2013,31:51-72.
Current situation and progress in gene therapy of breast cancer
ZHOU Ye1, DENG Xin?Na1, FAN Xiao?Yan1, LI Yang1, ZHANG Li?Xia1, Andrew Chang2, LI Qing?Xia11HeBei General Hospital, Shijiazhuang 050000, China;2Rice University, Houston 77005, USA
Breast cancer is superceding cervical cancer as the leading cause of cancer death among females in most economically developing countries,and accounts for 23%of the total cancer cases and 14%of the cancer deaths.Various therapeutic strategies are available, including surgery, chemotherapy, radiotherapy and their combinations.However, their therapeutic effect is still limited,particularly on advanced breast cancer and triple negeative breast cancer.Therefore new therapies for metastatic breast cancer patients are urgently needed.With the rise of precision medicine,the researches of carcinogenesis, metastasis, medical resistance,immunotherapy,genomics in molecular level of breast cancer have made great achievements,which greatly promoted the development of gene therapy.The gene therapies mainly include cancer gene therapy, tumor?suppressorgene therapy, immunogenetherapy,multi?drug resistant gene therapy, suicide gene therapy, oncolytic virotherapy, microRNA therapy, etc.This review will summarize the current situation and progresses in gene therapies of breast cancer.
breast cancer; gene therapy; cancer gene; immu?nogene therapy; oncolytic virotherapy; microRNA therapy
R73
A
2095?6894(2017)09?78?06
2017-05-25;接受日期:2017-06-10
河北省2017年度醫(yī)學(xué)科學(xué)研究重點課題計劃(20170028);2015年政府資助臨床醫(yī)學(xué)優(yōu)秀人才培養(yǎng)和基礎(chǔ)課題研究項目計劃(361003)
周 曄.碩士.E?mail:zhouye314@ 126.com
李慶霞.博士,教授,主任醫(yī)師,碩導(dǎo).E?mail:lqx73@163.com