戴霜?jiǎng)⒉?┿頗?云張翔金治鵬蒙珍?ぱ罨秤?++武志江+白斌張莉莉
摘要:南祁連黨河南山地區(qū)加里東晚期中酸性小型淺成侵入體和巖脈包括花崗(斑)巖、次流紋斑巖、次英安斑巖和石英閃長(zhǎng)(玢)巖。巖石SiO2質(zhì)量分?jǐn)?shù)為53.05%~74.12%,K2O與Na2O質(zhì)量分?jǐn)?shù)之和為4.01%~1043%。巖石系列包括鈣堿性、高鉀鈣堿性、鉀玄巖和堿性系列,以高鉀鈣堿性和堿性為主,具過(guò)鋁質(zhì)—準(zhǔn)鋁質(zhì)性質(zhì)。巖石稀土元素總含量較低,相對(duì)富集輕稀土元素、大離子親石元素(Rb、Ba、La、Ce、Sr)、Th和U,虧損高場(chǎng)強(qiáng)元素(Nb、Ta、Zr、Hf)和重稀土元素,具弱—中等負(fù)Eu異常。中酸性侵入體和巖脈產(chǎn)出特征和微量元素特征顯示巖石形成于后碰撞環(huán)境,巖漿源巖為變質(zhì)基性巖及少量變質(zhì)碎屑巖,可能指示其繼承了源巖的地球化學(xué)特征。巖漿在侵位過(guò)程中與圍巖發(fā)生了交代作用。巖漿分異程度從石英閃長(zhǎng)(玢)巖→次英安斑巖→花崗(斑)巖→次流紋斑巖逐漸增強(qiáng)。脈巖Au含量較低,偏酸性脈巖在蝕變后Au含量普遍升高,偏中性脈巖(石英閃長(zhǎng)巖)在狼查溝、東洞溝礦區(qū)為金礦成礦提供了熱源和物源。
關(guān)鍵詞:淺成侵入體;巖脈;地球化學(xué);巖石成因;構(gòu)造環(huán)境;金礦;古生代;祁連山
中圖分類號(hào):P588文獻(xiàn)標(biāo)志碼:A
Geochemical Characteristics of Intermediateacid Hypabyssal Intrusions
and Dykes in Danghenanshan Area of South Qilian and
Its Implications on the Gold Mineralization
DAI Shuang1,2, LIU Bo1,2, YAN Ningyun1, ZHANG Xiang1,2,3, JIN Zhipeng4, MENG Zhen4,
YANG Huaiyu4, WU Zhijiang4, BAI Bin4, ZHANG Lili1,2, PENG Dongxiang1,2
(1. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;
2. Key Laboratory of Western Chinas Environmental Systems of Ministry of Education, Lanzhou University,
Lanzhou 730000, Gansu, China; 3. Gansu Institute of Geological Survey, Lanzhou 730000, Gansu, China;
4. No.2 Institute of Geological and Mineral Exploration of Gansu, Lanzhou 730030, Gansu, China)
Abstract: The Late Caledonian small intermediateacid hypabyssal intrusions and dykes in Danghenanshan area of South Qilian include granite and granite porphyry, subrhyolite porphyry, subdacite porphyry, quartz diorite and quartz diorite porphyrite. The mass fractions of SiO2 are 53.05%74.12%, and the sums of mass fractions of K2O and Na2O are 4.01%10.43%. The rock series include calcalkaline, highpotassium calcalkaline, shoshonite and alkaline with the characteristics of peraluminousquasialuminous, and the highpotassium calcalkaline and alkaline series are main. The rocks have the characteristics of low contents of rare earth elements, and are relatively enriched in light rare earth elements, large ion lithophile elements (Rb, Ba, La, Ce and Sr), Th and U, and relatively depleted in high fieldstrength elements (Nb, Ta, Zr and Hf) and heavy rare earth elements with weakmediate negative Eu anomaly (0.70.9). The occurrence characteristics of intermediateacid intrusions and dykes and the analysis results of trace elements show that the rocks form in postcollisional tectonic setting, and the source rocks of magma are mainly metabasite and a little of metasedimentary, so that the rocks maybe inherit the geochemical characteristics of source rocks. There is metasomatism between magma and wall rock in the process of emplacement. The magmatic differentiation is ranked by granite and granite porphyry, subrhyolite porphyry, subdacite porphyry, quartz diorite and quartz diorite porphyrite in the ascending order. The Au content of rock from dyke is low, and that of metaacid rock increases because of the alteration. The intermediate rock of dyke (quartz diorite) provides thermal source and provenance for gold mineralization in Langchagou and Dongdonggou mining areas.
Key words: hypabyssal intrusion; dyke; geochemistry; petrogenesis; tectonic setting; Au deposit; Paleozoic; Qilian Mountain
0引言
黨河南山地區(qū)位于南祁連構(gòu)造帶西段黨河以南,西接阿爾金斷裂,東到97°E,呈NW向展布,東西長(zhǎng)約250 km,南北寬為20~50 km。該區(qū)早古生代構(gòu)造沉積及巖漿活動(dòng)發(fā)育,近年來(lái)在該區(qū)發(fā)現(xiàn)并探明了賈公臺(tái)、雞叫溝等10多處金礦床,顯示其具有較好的找礦潛力。金礦成礦大多與加里東期中酸性巖體關(guān)系密切。黨河南山地區(qū)中酸性巖漿侵入活動(dòng)可分為4期[12],其中后兩期巖體為金礦成礦提供成礦物質(zhì),并提供成礦流體和熱源[39]。這些與金礦成礦關(guān)系密切的巖體具有一定的規(guī)模,多呈巖株?duì)睢獛r枝狀;巖石類型包括石英角閃閃長(zhǎng)巖和二長(zhǎng)花崗巖、奧長(zhǎng)花崗巖等,巖體Au含量高出地殼克拉克值數(shù)倍以上[9];巖體形成于島弧或板塊碰撞環(huán)境[1,9],具有不同的礦床地質(zhì)地球化學(xué)特征[3,7,9]和找礦前景。
黨河南山地區(qū)還發(fā)育一系列中酸性小型淺成侵入體及巖脈,常見(jiàn)有輝綠巖脈、閃長(zhǎng)玢巖脈等中基性巖脈或煌斑巖脈,它們與前述深成巖體成分差別較大,分別構(gòu)成二分脈巖的淺色脈巖和暗色脈巖。這些中酸性淺成侵入體或巖脈也與金礦成礦有關(guān),在黨河南山地區(qū)東部狼查溝、東洞溝形成一定規(guī)模的金礦床。但目前對(duì)這些小型淺成侵入體及巖脈的地質(zhì)地球化學(xué)特征、巖石成因及其與金礦成礦關(guān)系還缺乏研究,制約著對(duì)該區(qū)金礦成礦規(guī)律和找礦方向的全面認(rèn)識(shí)。本文通過(guò)對(duì)這些中酸性小型淺成侵入體及巖脈的巖石學(xué)、巖石地球化學(xué)特征研究,探討了巖漿來(lái)源及其與金礦成礦關(guān)系,以期對(duì)認(rèn)識(shí)黨河南山地區(qū)金礦成礦規(guī)律提供參考。
1地質(zhì)背景與巖石學(xué)特征
1.1地質(zhì)背景
黨河南山地區(qū)大地構(gòu)造位置屬秦祁昆造山系中—南祁連弧盆系南祁連巖漿弧[10]西段(圖1)。黨河南山地區(qū)地層出露元古界、震旦系、奧陶系和志留系,呈NWW向展布。元古界出露在西部肅北縣以南地區(qū),為一套中高級(jí)變質(zhì)片麻巖大理巖;震旦系出露在中西部扎子溝—釣魚(yú)溝一帶,為一套火山碎屑巖碳酸鹽巖組合[3,11];奧陶系由下奧陶統(tǒng)吾力溝組(O1w)火山碎屑巖碎屑巖、中奧陶統(tǒng)鹽池灣組碎屑巖及中—上奧陶統(tǒng)碎屑巖組成;志留系主要為淺變質(zhì)火山巖碎屑巖組合。
黨河南山地區(qū)中酸性侵入巖在西段發(fā)育,形成扎子溝超大巖基,而在東部巖體規(guī)模一般較小,多呈巖枝、巖脈產(chǎn)出。巖漿侵入活動(dòng)分為5期[12]:第一期(活動(dòng)時(shí)代約為500 Ma)為洋島花崗巖和島弧花崗巖類,第二期(465~480 Ma)和第三期(450~460 Ma)為島弧花崗巖類,第四期(420~445 Ma)為碰撞(后)花崗巖類[1,12],第五期以中酸性和堿性小型淺成侵入體、巖脈活動(dòng)為主,包括石英閃長(zhǎng)玢巖、次英安斑巖、次流紋斑巖、花崗斑巖、花崗巖、二長(zhǎng)巖及輝綠巖、煌斑巖等[12]。其中,煌斑巖類是板塊碰撞后地殼伸展作用的產(chǎn)物[13]。
①為石塊地金礦床;②為清水溝金礦床;③為小黑刺溝金礦床;④為烏里溝金礦床;⑤為振興梁金礦床;⑥為賈公臺(tái)金礦床;⑦為黑刺溝金礦床;⑧為雞叫溝金礦床;⑨為東洞溝金礦床;⑩為狼查溝金礦床;Ⅰ為北祁連蛇綠混雜巖帶;Ⅱ?yàn)槭枥漳仙健股缴呔G混雜巖帶;Ⅲ為宗務(wù)隆山—夏河甘加裂谷;Ⅳ為柴北緣結(jié)合帶;圖件引自文獻(xiàn)[10],有所修改中酸性淺成小巖體(脈)在大多數(shù)金礦區(qū)都有出露,多沿?cái)嗔褞Мa(chǎn)出(圖2)。小巖體平面上呈不規(guī)則狀、脈狀,面積一般為001~010 km2(圖2)。
巖脈一般寬為1~4 m,最寬可達(dá)8~10 m。小巖體和巖脈多穿插侵位于奧陶系[圖2(a)和圖3(a)、(e)、(m)]或前4期中酸性巖體中[圖2(b)、圖3(b)]。在東段賈公臺(tái)[圖3(a)]、振興梁、黑刺溝、狼查溝[圖2(a)、圖3(m)]、東洞溝一帶,巖(體)脈穿插于下奧陶統(tǒng)吾力溝群中,在賈公臺(tái)、雞叫溝等地穿插于奧長(zhǎng)花崗巖或石英角閃閃長(zhǎng)巖中[1]。
在西段小黑刺溝,次英安斑巖脈穿插于震旦系中基性火山巖中[圖3(c)]。在石塊地,次流紋斑巖脈穿插于第一期花崗閃長(zhǎng)巖與第四期似斑狀二長(zhǎng)花崗巖接觸帶及其內(nèi)部[圖2(b)]。第四期似斑狀二長(zhǎng)花崗巖LAICPMS鋯石UPb年齡為(420.3±5.1)Ma[14],說(shuō)明次流紋斑巖脈就位年代應(yīng)該晚于(420.3±5.1)Ma。
區(qū)域上,這些巖脈在黨河南山地區(qū)以東、青海湖以西的泥盆紀(jì)地層中有報(bào)道,但在石炭紀(jì)地層中未見(jiàn)報(bào)道[15],據(jù)此推測(cè)這些中酸性小巖體(脈)可能形成于泥盆紀(jì)—石炭紀(jì)過(guò)渡時(shí)期。這與北祁連地區(qū)泥盆紀(jì)處于前陸盆地發(fā)育階段[16]以及黨河南山地區(qū)泥盆紀(jì)以來(lái)處于抬升剝蝕階段的事實(shí)相符。
1.2巖石學(xué)特征
花崗巖、花崗斑巖類為灰紅色—淺肉紅色,巖石具微晶結(jié)構(gòu)、斑狀結(jié)構(gòu),呈塊狀構(gòu)造?;◢彴邘r斑晶體積分?jǐn)?shù)為5%左右,為長(zhǎng)石及石英?;|(zhì)主要由黑云母(體積分?jǐn)?shù)為3%~8%)或白云母(1%~5%)、斜長(zhǎng)石(25%~35%)、鉀長(zhǎng)石(20%~35%)和石英(30%~40%)組成,長(zhǎng)石為半自形—自形柱狀[圖3(b)],石英為不規(guī)則狀他形。按照長(zhǎng)石種類和含量,該類巖脈包括花崗巖脈、花崗斑巖脈、正長(zhǎng)花崗巖脈(主要在雞叫溝)、黑云二長(zhǎng)花崗巖脈(主要在雞叫溝、清水溝)。在振興梁,斜長(zhǎng)石(鈉奧長(zhǎng)石)體積分?jǐn)?shù)可達(dá)80%,石英僅為10%左右[圖3(g)]。
次英安斑巖呈灰—淺灰黑色,斑晶體積分?jǐn)?shù)為5%~10%,由斜長(zhǎng)石和石英組成[圖3(d)],斜長(zhǎng)石為自形短柱狀,石英為渾圓狀,說(shuō)明受到巖漿溶蝕作用,指示淺成就位特征?;|(zhì)主要由微細(xì)粒狀長(zhǎng)英質(zhì)礦物組成。在黑刺溝礦區(qū),次英安斑巖多發(fā)生綠泥石化、絹云母化、黃鐵礦化和毒砂化,黃鐵礦和毒砂多呈脈狀、團(tuán)斑狀產(chǎn)出[圖3(h)],并見(jiàn)毒砂交代黃鐵礦現(xiàn)象[圖3(i)]。黃鐵礦和毒砂都是重要的載金礦物。
次流紋斑巖為酸性超淺成巖脈,呈灰—青灰色、淺紫紅色[圖3(e)],具斑狀結(jié)構(gòu)?;|(zhì)為梳狀結(jié)構(gòu)、霏細(xì)結(jié)構(gòu)和球粒結(jié)構(gòu)、羽狀結(jié)構(gòu),具流動(dòng)構(gòu)造、塊狀構(gòu)造。斑晶體積分?jǐn)?shù)為5%左右,主要為石英、鉀長(zhǎng)石。石英呈不規(guī)則狀,邊部具溶蝕特征[圖3(f)]?;|(zhì)體積分?jǐn)?shù)為95%左右,主要由長(zhǎng)石和石英組成。
閃長(zhǎng)(玢)巖類包括閃長(zhǎng)玢巖、石英閃長(zhǎng)巖、石英閃長(zhǎng)玢巖,多呈脈狀小巖體[圖2(a)]或巖脈[圖3(m)]產(chǎn)出,具深灰色—淺灰綠色斑狀結(jié)構(gòu)?;|(zhì)具半自形—他形粒狀結(jié)構(gòu)和塊狀構(gòu)造。斑晶體積分?jǐn)?shù)為30%~35%,主要為普通角閃石及少量斜長(zhǎng)石。角閃石呈自形柱狀[圖3(k)、(o)],粒徑為0.5~1.5 mm,多具暗化邊現(xiàn)象[圖3(k)],說(shuō)明其在淺部發(fā)生過(guò)氧化作用,指示巖體在淺部就位。基質(zhì)體積分?jǐn)?shù)為65%~70%,由普通角閃石、斜長(zhǎng)石和少量石英(體積分?jǐn)?shù)為10%左右)組成。石英閃長(zhǎng)巖與石英閃長(zhǎng)玢巖的區(qū)別在于前者具連續(xù)不等粒結(jié)構(gòu)[圖3(o)],角閃石粒徑為01~1.5 mm(與基質(zhì)粒徑相當(dāng)),其他特征基本一致。該類巖石多發(fā)生蝕變礦化,表面多呈黃褐色[圖3(j)、(l)、(n)],見(jiàn)有綠泥石化、絹云母化和黃鐵礦化,黃鐵礦多呈團(tuán)斑狀產(chǎn)出[圖3(l)、(p)],是主要的載金礦物。
2巖石地球化學(xué)特征
本次采集了19件淺成侵入體和巖脈樣品,巖石化學(xué)分析在西北礦冶研究院用化學(xué)分析法完成,結(jié)果見(jiàn)表1。3件中酸性巖脈和1件輝綠玢巖樣品的微量元素和稀土元素分析在長(zhǎng)安大學(xué)國(guó)土資源部成礦作用及其動(dòng)力學(xué)開(kāi)放研究實(shí)驗(yàn)室ICPMS 7700E分析儀上完成,結(jié)果見(jiàn)表2。
2.1主量元素特征
花崗巖類包括花崗巖、花崗斑巖、二長(zhǎng)花崗巖和二長(zhǎng)巖。巖石SiO2含量(質(zhì)量分?jǐn)?shù),下同)變化范圍較大(59.13%~74.12%,平均為68.12%),TiO2含量低(平均為034%),w(K2O)+w(Na2O)值變化范圍也大(537%~10.43%,平均為8.45%),w(K2O)/w(Na2O)值為0.84~1.80(平均為124),MgO含量較低(平均為1.38%),A12O3含量較高(平均為15.24%),里特曼指數(shù)為1.19~6.74(平均為330),巖石分異指數(shù)為68.81~94.38,平均為82.29,分異程度較高。
次英安斑巖SiO2[KG-30x]含量較花崗巖類低(平均為6029%),TiO2[KG-30x]含量較高(平均為056%),w(K2O)+w(Na2O)值變化范圍較?。?.77%~7.12%,平均為5.93%),w(K2O)/w(Na2O)值為038~436(平均為185),MgO含量較低(平均為1.20%),A12O3含量高(平均為17.09%),里特曼指數(shù)平均為2.42,巖石分異指數(shù)為53.00~69.78,平均為60.78,分異程度較低。
次流紋斑巖具有較高的SiO2含量、w(K2O)+w(Na2O)值和w(K2O)/w(Na2O)值(276),較低的MgO、A12O3含量和里特曼指數(shù)(2.51),分異程度最高(92.16)。
閃長(zhǎng)(玢)巖類包括閃長(zhǎng)巖、石英閃長(zhǎng)巖、閃長(zhǎng)玢巖和石英閃長(zhǎng)玢巖,巖石SiO2[KG-30x]含量(5305%~6805%,平均為61%)和w(K2O)+w(Na2O)值(4.01%~8.04%,平均為5.73%)比花崗巖類及次流紋斑巖低,與次英安斑巖相當(dāng),TiO2[KG-30x]含量相對(duì)較高(平均為067%),MgO含量較高(平均為418%),A12O3含量中等(平均為1545%),里特曼指數(shù)變化較大(0.64~4.85,平均198),巖石分異指數(shù)為43.00~73.09(平均為57.50),分異程度低。
在TAS圖解[圖4(a)]上,花崗巖類投于花崗巖、花崗閃長(zhǎng)巖及正長(zhǎng)巖范圍,次英安斑巖投于閃長(zhǎng)巖、二長(zhǎng)閃長(zhǎng)巖和花崗閃長(zhǎng)巖范圍,次流紋斑巖投于花崗巖范圍,閃長(zhǎng)(玢)巖類投于閃長(zhǎng)巖及花崗閃長(zhǎng)巖范圍。除次流紋斑巖(只有1個(gè)樣品)外,其他類型巖石既有位于堿性區(qū)的樣品,也有位于亞堿性區(qū)的樣品。在SiO2K2O圖解[圖4(b)]上,亞堿性巖石主要投于高鉀鈣堿性系列和鉀玄巖系列中,在A/NKA/CNK圖解[圖4(c)]上投于準(zhǔn)鋁質(zhì)—過(guò)鋁質(zhì)范圍。
綜上所述,南祁連黨河南山地區(qū)中酸性小巖體(脈)巖石系列包括鈣堿性、高鉀鈣堿性、鉀玄巖和堿性系列,以堿性和高鉀鈣堿性系列為主,具準(zhǔn)鋁質(zhì)—過(guò)鋁質(zhì)性質(zhì)。這些特征與當(dāng)?shù)鼗桶邘r及基性巖脈的特征[13]一樣,略微不同的是,后者Al含量較低,為準(zhǔn)鋁質(zhì)性質(zhì)。巖石w(K2O)/w(Na2O)值普遍大于1,具有較低的TiO2含量。在AFM圖解[圖4(d)]上,中酸性巖脈不具富鐵演化趨勢(shì),從閃長(zhǎng)(玢)巖到花崗(斑)巖,MgO和FeO(全鐵)含量均呈減小趨勢(shì),而堿質(zhì)含量增高,暗示這些小型淺成侵入體和巖脈可能是同一巖漿在不同演化階段形成的。
2.2稀土元素、微量元素特征
巖石微量元素和稀土元素分析結(jié)果見(jiàn)表2。巖石稀土元素總含量為(111.1~195.0)×10-6,花崗斑巖含量最高,次英安斑巖最低,石英閃長(zhǎng)巖介于二者之間;巖石wLREE/wHREE值為8.48~10.70,輕稀土元素強(qiáng)烈富集;球粒隕石標(biāo)準(zhǔn)化稀土元素配分模式右傾[圖5(a)],w(La)N/w(Yb)N值為10.68~28.09,輕、重稀土元素分餾明顯;Eu異常為076~090,具弱負(fù)Eu異常,表明淺成侵入體和巖脈由于在淺部快速就位,分離結(jié)晶作用較弱。比較而言,石英閃長(zhǎng)巖巖漿分離結(jié)晶作用比英安斑巖略弱,但比花崗斑巖強(qiáng),這與石英閃長(zhǎng)巖以小巖體產(chǎn)出,巖石具連續(xù)不等粒結(jié)構(gòu),分離結(jié)晶作用比較充分的事實(shí)基本一致。
比較同期的基性巖脈(輝綠玢巖和角閃巖脈)和煌斑巖脈,后者的稀土元素含量較低(表2),稀土元素總含量為(64.37~10250)×10-6;wLREE/wHREE值為490~675,輕稀土元素相對(duì)富集,但是富集程度不及中酸性巖脈;球粒隕石標(biāo)準(zhǔn)化稀土元素配分模式右傾,但相對(duì)平緩[圖5(a)],w(La)N/w(Yb)N值處于中間水平(466~898),輕、重稀土元素分餾不甚明顯;Eu異常為0.61~072,具中等負(fù)Eu異常,說(shuō)明巖漿分離結(jié)晶作用比中酸性巖脈明顯。
在原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖[圖5(b)]上,巖石富集大離子親石元素(Rb、Ba、La、Ce、Sr)和Th、U,虧損高場(chǎng)強(qiáng)元素Nb、Ta、Zr、Hf。輝綠玢巖、角閃巖脈富集Th、U,虧損大離子親石元素(Rb、Ba)和高場(chǎng)強(qiáng)元素(Nb、Ta、Zr),與石英閃長(zhǎng)巖相比具有更低的Nb、Ta、Zr、Hf含量。
總體來(lái)看,黨河南山地區(qū)中酸性巖脈(小巖體)、基性巖脈、煌斑巖脈(源自本文及文獻(xiàn)[13])的稀土元素配分模式類似,顯示具有相同的巖漿來(lái)源[圖5(a)]。但是,中酸性巖脈(小巖體)比基性巖脈、煌斑巖脈的稀土元素總含量要高,輕、重稀土元素分餾更明顯,從石英閃長(zhǎng)巖、次英安斑巖到花崗斑巖,稀土元素總含量漸次升高,Eu異常也升高,更富集大離子親石元素[圖5(b)],說(shuō)明巖漿分異作用越來(lái)越強(qiáng)。
3討論
3.1巖石成因與構(gòu)造環(huán)境
區(qū)域上,中酸性小型淺成侵入體和巖脈大多穿插于較大規(guī)模的中酸性侵入巖或圍巖中,巖石學(xué)特征與該區(qū)規(guī)模較大的中酸性侵入巖差別較大。在一個(gè)礦(地)區(qū),產(chǎn)有兩種或兩種以上不同巖性的小型淺成侵入體和巖脈:在賈公臺(tái)和振興梁礦區(qū)不足1 km2范圍內(nèi),見(jiàn)有花崗巖脈[圖3(a)]、花崗斑巖脈及輝綠巖脈;在狼查溝和東洞溝礦區(qū),見(jiàn)有石英閃長(zhǎng)巖、閃長(zhǎng)玢巖、次英安斑巖和煌斑巖脈。這些小型淺成侵入體和巖脈大多在空間上相伴產(chǎn)出,總體走向?yàn)镹WW向或NE向,與NWW向區(qū)域構(gòu)造線平行或與NE向次級(jí)構(gòu)造走向一致。另外,這些小型淺成侵入體和巖脈具有類似的巖石地球化學(xué)性質(zhì),稀土元素配分模式和微量元素蛛網(wǎng)圖類型更與煌斑巖、基性巖脈相似(圖5),說(shuō)明其可能具有相同的構(gòu)造背景及巖漿來(lái)源。巖石分異指數(shù)變化范圍較大,從4300到93.48連續(xù)變化,中性到中酸性,再到酸性,逐漸升高,說(shuō)明巖石類型不同可能是巖漿分異程度不同所致。淺色的中酸性小侵入體及巖脈與暗色的煌斑巖、輝綠巖等構(gòu)成二分巖脈,代表一種張裂環(huán)境。在石塊地礦區(qū),流紋斑巖穿插第四期二長(zhǎng)花崗巖(LAICPMS鋯石UPb年齡為(420.3±5.1)Ma),該期花崗巖屬A型花崗巖,代表碰撞后地殼張裂環(huán)境巖漿活動(dòng)[14]。區(qū)域上,泥盆紀(jì)祁連山整體處于碰撞后伸展階段,因此,從宏觀地質(zhì)特征來(lái)看,脈巖的形成環(huán)境為張裂環(huán)境。
在巖石A/MFC/MF圖解(圖6)上,大多數(shù)樣品均落入基性巖部分熔融區(qū)域或附近,只有石塊地次流紋斑巖投于變質(zhì)泥質(zhì)巖范圍,釣魚(yú)溝花崗斑巖投入變質(zhì)砂巖范圍,反映這些中酸性小型淺成侵入體和巖脈的源巖除少量為沉積巖外,大多為變質(zhì)基性巖,與黨河南山地區(qū)主期巖漿源巖一致[12]。值得注意的是:巖石w(K2O)/w(Na2O)值較大(均大于1),說(shuō)明源巖含有較多的殼源成分;出現(xiàn)連續(xù)的巖石系列(包括鈣堿性、高鉀鈣堿性、鉀玄巖及堿性系列),以及既有準(zhǔn)鋁質(zhì)又有過(guò)鋁質(zhì)性質(zhì)巖石,說(shuō)明巖漿可能存在不同程度的混合[19],這種混合可能是基性巖漿(如輝綠玢巖巖漿)與酸性巖漿的混合,也可能是巖漿同化混染上地殼圍巖造成的,或者兩種情況都存在。
巖石均富集輕稀土元素,表明巖漿重熔與深部地質(zhì)過(guò)程有關(guān),可能是幔源巖漿底侵(或地幔底劈)觸發(fā)深部地殼重熔形成了長(zhǎng)英質(zhì)巖漿。酸性巖脈(次英安斑巖和花崗斑巖)MgO含量低,Ni含量(6.0×10-6和189×10-6)、Cr含量(660×10-6和25.79×10-6)也較低,而中性小巖體石英閃長(zhǎng)巖MgO含量中等,Cr含量((107.91~130.64)×10-6)和Ni含量((34.91~84.38)×10-6)較高,但遠(yuǎn)低于基性巖脈和煌斑巖脈。綜上所述,本區(qū)中酸性小巖體(脈)代表的巖漿熔體與地幔楔發(fā)生過(guò)交代作用[2122]。
在Rb(Y+Nb)圖解(圖7)上,中酸性小型淺成侵入體及巖脈均投入碰撞后構(gòu)造環(huán)境,這與前述小型淺成侵入體和巖脈穿插于前泥盆紀(jì)地層、巖體及與區(qū)域斷裂走向平行的裂隙中(即明顯處于張裂環(huán)境)的事實(shí)相一致。樣品位于巖漿弧一側(cè),可能反映了脈巖巖漿繼承了源區(qū)巖石地球化學(xué)特征,即源巖形成與島弧環(huán)境[12,13]有關(guān)。
早奧陶世以來(lái),黨河南山地區(qū)處在島弧活動(dòng)時(shí)期[12],與南部柴北緣[2633]一樣,形成了大量的島弧巖漿沉積產(chǎn)物,這些物質(zhì)構(gòu)成了黨河南山地區(qū)深部巖石圈的重要部分。在晚奧陶世[34]或志留紀(jì)[3536],柴北緣及南祁連地區(qū)碰撞造山后,由于應(yīng)力松弛,淺部地殼發(fā)生伸展,深部熔融形成的巖漿快速或者比較快速地上升并在裂隙中就位,形成中酸性巖脈(小巖體)、基性巖脈和煌斑巖脈[13]。
3.2巖脈與金礦成礦關(guān)系
黨河南山地區(qū)目前探明了10處金礦,其中7處與規(guī)模較大的中酸性巖體有關(guān)[39],3處(清水溝、東洞溝和狼查溝)與小型淺成侵入體(巖脈)有關(guān)。經(jīng)過(guò)對(duì)黨河南山地區(qū)中酸性小型淺成侵入體(巖脈)成礦元素的統(tǒng)計(jì)(表3),發(fā)現(xiàn)Au含量普遍較低,偏酸性巖脈Au含量與地殼克拉克值相當(dāng)(如花崗巖脈、正長(zhǎng)花崗巖脈、次英安斑巖脈、次流紋斑巖脈),但是蝕變后一些巖脈的Au含量普遍升高,甚至高達(dá)46倍,說(shuō)明這些小侵入體(巖脈)不具備提供成礦物質(zhì)的條件,蝕變后Au含量升高,可能指示Au來(lái)源于后期構(gòu)造熱液活動(dòng),有待于進(jìn)一步的研究證實(shí)。
偏中性巖脈(石英閃長(zhǎng)巖)Au含量略高。狼查溝石英閃長(zhǎng)巖脈中普遍含有毒砂和黃鐵礦[圖3(l)、(p)],Au含量為(1.4~10.6)×10-9,平均為5.58×10-9,略高于地殼克拉克值,可能提供了部分成礦物質(zhì)。在東洞溝和狼查溝礦區(qū),金礦體賦存于下奧陶統(tǒng)吾力溝組與石英閃長(zhǎng)巖、閃長(zhǎng)玢巖接觸帶[圖2(a)],共圈出金礦體18條(狼查溝礦段有11條,東洞溝礦段有7條),礦體呈似層狀、透鏡狀,長(zhǎng)45~640 m,厚100~623 m,Au品位為(192~17.85)×10-6。巖脈與地層接觸面呈波狀、枝杈狀,局部地段呈斷層接觸。接觸帶內(nèi)礦化蝕變強(qiáng)烈,發(fā)育鉀長(zhǎng)石化、硅化、絹云母化、鈉黝簾石化、碳酸鹽化、黃鐵礦化、褐鐵礦化等,金礦化與鉀化、硅化、黃鐵礦化關(guān)系密切。礦石具自形—半自形粒狀結(jié)構(gòu),交代殘余結(jié)構(gòu),具塊狀構(gòu)造、浸染狀構(gòu)造,顯示金礦成礦與石英閃長(zhǎng)巖、閃長(zhǎng)玢巖有一定關(guān)系,巖脈就位可能為金礦成礦提供了熱源。巖脈和緊鄰的凝灰質(zhì)砂巖在蝕變后Au含量普遍升高,上升超過(guò)10倍,同質(zhì)礦石Au含量平均為1 092×10-9(表3),說(shuō)明它們?yōu)槌傻V提供了物源。
4結(jié)語(yǔ)
(1)南祁連黨河南山地區(qū)中酸性小型淺成侵入體(巖脈)包括花崗(斑)巖、次流紋斑巖、次英安斑巖、石英閃長(zhǎng)(玢)巖。巖石系列包括鈣堿性、高鉀鈣堿性、鉀玄巖和堿性系列,具準(zhǔn)鋁質(zhì)—過(guò)鋁質(zhì)性質(zhì)。巖石低MgO、Cr、Ni含量,富含大離子親石元素和輕稀土元素,虧損高場(chǎng)強(qiáng)元素,輕、重稀土元素分餾作用明顯,具弱—中等負(fù)Eu異常。從石英閃長(zhǎng)(玢)巖→次英安斑巖→花崗(斑)巖→次流紋斑巖,巖石分異程度逐漸升高。
(2)中酸性小型淺成侵入體(巖脈)宏觀地質(zhì)特征顯示其形成于地殼伸展環(huán)境,巖漿源巖主要為變質(zhì)基性巖,少量為變質(zhì)碎屑巖;構(gòu)造環(huán)境判別顯示其形成于后碰撞環(huán)境,源巖可能繼承了島弧區(qū)巖石地球化學(xué)特征。不同類型的脈巖起源于同一構(gòu)造環(huán)境下的巖漿源,巖漿在侵位過(guò)程中與圍巖發(fā)生了交代作用,從而在不同演化階段形成了不同的巖石類型。
(3)偏酸性脈巖Au含量總體不高,但蝕變后脈巖Au含量普遍升高,原因尚不明確。偏中性脈巖(如石英閃長(zhǎng)巖脈)Au含量較高,在東洞溝、狼查溝礦區(qū)與金礦成礦關(guān)系密切,脈巖就位為成礦提供了熱源和物源。
參考文獻(xiàn):
References:
[1]張莉莉,戴霜,張翔,等.南祁連黨河南山地區(qū)雞叫溝復(fù)式巖體巖石地球化學(xué)特征及構(gòu)造環(huán)境[J].蘭州大學(xué)學(xué)報(bào):自然科學(xué)版,2013,49(6):733740.
ZHANG Lili,DAI Shuang,ZHANG Xiang,et al.Lithogeochemistry of Jijiaogou Intrusive Complex in the Danghenanshan Area,South Qilian Mountain,and Its Tectonic Implications[J].Journal of Lanzhou University:Natural Sciences,2013,49(6):733740.
[2]張翔,張莉莉,汪祿波,等.黨河南山烏里溝中酸性巖體鋯石UPb年齡、地球化學(xué)特征及與金礦成礦關(guān)系[J].成都理工大學(xué)學(xué)報(bào):自然科學(xué)版,2015,42(5):596607.
ZHANG Xiang,ZHANG Lili,WANG Lubo,et al.Zircon UPb Geochronology and Geochemical Characteristics of Neutralacidic Intrusions of Wuligou in Danghenanshan Area,and Its Implications on the Formation of the Gold Deposit[J].Journal of Chengdu University of Technology:Science and Technology Edition,2015,42(5):596607.
[3]李厚民,王崇禮,劉志武,等.南祁連黨河南山北坡兩個(gè)不同特征的金礦床[J].礦床地質(zhì),2003,22(2):191198.
LI Houmin,WANG Chongli,LIU Zhiwu,et al.Two Different Kinds of Gold Deposits on Northern Slope of Danghenanshan Area in South Qilian Mountains[J].Mineral Deposits,2003,22(2):191198.
[4]劉志武,李永軍,李厚民,等.黨河南山黑刺溝地區(qū)與石英二長(zhǎng)閃長(zhǎng)巖有關(guān)的金礦化[J].華南地質(zhì)與礦產(chǎn),2003(1):1216.
LIU Zhiwu,LI Yongjun,LI Houmin,et al.Gold Mineralization Related to Quartz Monzonite Diorite in Heicigou Area of Danghenanshan[J].Geology and Mineral Resources of South China,2003(1):1216.
[5]劉志武,王崇禮.南祁連黨河南山花崗巖類地球化學(xué)及其金銅礦化[J].地質(zhì)與勘探,2007,43(1):6473.
LIU Zhiwu,WANG Chongli.Granitoid Geochemistry and Goldcopper Mineralization in the Danghenanshan Area,Southern Qilian Mountains[J].Geology and Prospecting,2007,43(1):
6473.
[6]常春郊,范俊杰,劉桂閣,等.甘肅黨河南山雞叫溝礦體地質(zhì)特征[J].黃金科學(xué)技術(shù),2008,16(2):511.
CHANG Chunjiao,F(xiàn)AN Junjie,LIU Guige,et al.Geological Characteristics of Jijiaogou Orebody in Danghenanshan Mountain of Gansu Province[J].Gold Science and Technology,2008,16(2):511.
[7]范俊杰,路彥明,叢潤(rùn)祥,等.祁連山西段黨河南山北坡3個(gè)不同特征的金礦床研究[J].地質(zhì)找礦論叢,2008,23(1):4853.
FAN Junjie,LU Yanming,CONG Runxiang,et al.Study on 3 Gold Deposits Varied in Characteristics at the North Slope of the Danghenanshan Mountain in the West Qilian Mountains[J].Contributions of Geology and Mineral Resources Research,2008,23(1):4853.
[8]范俊杰,路彥明,叢潤(rùn)祥,等.甘肅黨河南山地區(qū)雞叫溝金礦床成礦特征及成礦模式[J].安徽地質(zhì),2008,18(3):175181.
FAN Junjie,LU Yanming,CONG Runxiang,et al.Oreforming Features and Model of the Jijiaogou Gold Deposit in the Danghenanshan Area of Gansu[J].Geology of Anhui,2008,18(3):175181.
[9]汪祿波,戴霜,張莉莉,等.甘肅賈公臺(tái)金礦床地質(zhì)特征與流體包裹體研究[J].地球科學(xué)與環(huán)境學(xué)報(bào),2014,36(1):111119.
WANG Lubo,DAI Shuang,ZHANG Lili,et al.Study on Geological Characteristics and Fluid Inclusion of Jiagongtai Gold Deposit in Gansu[J].Journal of Earth Sciences and Environment,2014,36(1):111119.
[10]潘桂棠,肖慶輝,陸松年,等.中國(guó)大地構(gòu)造單元?jiǎng)澐諿J].中國(guó)地質(zhì),2009,36(1):128.
PAN Guitang,XIAO Qinghui,LU Songnian,et al.Subdivision of Tectonic Units in China[J].Geology in China,2009,36(1):128.
[11]趙虹,金治鵬,黨犇,等.甘肅黨河南山北坡早古生代火山巖時(shí)代探討[J].西安工程學(xué)院學(xué)報(bào),2001,23(3):2629.
ZHAO Hong,JIN Zhipeng,DANG Ben,et al.Recognizing the Time of Early Paleozoic Volcanic Rock in the North Slope of Danghe Southern Mountain in Subei County,Gansu Province[J].Journal of Xian Engineering University,2001,23(3):2629.
[12]戴霜,張翔,劉博,等.黨河南山花崗巖類巖石地球化學(xué)、鋯石LAICPMS UPb年代及構(gòu)造意義[C]∥中國(guó)地球物理學(xué)會(huì).第二屆中國(guó)地球科學(xué)聯(lián)合(CGU)學(xué)術(shù)年會(huì)論文摘要集.北京:中國(guó)地球物理學(xué)會(huì),2015:376.
DAI Shuang,ZHANG Xiang,LIU Bo,et al.The Granitoid Geochemistry and Zircon UPb Geochronology in Danghenanshan Area,and Its Tectonic Significance[C]∥Chinese Geophysical Society.Abstracts of the Second Annual Meeting of Chinese Geoscience Union(CGU).Beijing:Chinese Geophysical Society,2015:376.
[13]劉博,戴霜,張翔,等.南祁連黨河南山地區(qū)加里東期碰撞后的地殼伸展:來(lái)自煌斑巖的證據(jù)[J].蘭州大學(xué)學(xué)報(bào):自然科學(xué)版,2016,52(2):153160.
LIU Bo,DAI Shuang,ZHANG Xiang,et al.PostCaledonian Collisional Extension in the Crust of the Danghenanshan Area,South Qilian Mountains:Evidence from the Geochemistry of Lamprophyres[J].Journal of Lanzhou University:Natural Sciences,2016,52(2):153160.
[14]戴霜,金治鵬,張翔,等.甘肅省黨河南山金銅多金屬礦找礦方向與勘查技術(shù)研究報(bào)告[R].蘭州:甘肅省第二地質(zhì)礦產(chǎn)勘查院,2016.
DAI Shuang,JIN Zhipeng,ZHANG Xiang,et al.The Prospecting Direction and Prospecting Technology Research Report of Goldcopperpolymetallic Deposit in Danghenanshan Area,Gansu Province[R].Lanzhou:The Second Institute of Geology and Mineral Exploration of Gansu Province,2016.
[15]青海省地質(zhì)礦產(chǎn)局.青海省區(qū)域地質(zhì)志[M].北京:地質(zhì)出版社,1991.
Qinghai Bureau of Geological and Mineral Resources.Regional Geology of Qinghai Province[M].Beijing:Geological Publishing House,1991.
[16]杜遠(yuǎn)生,張哲,周道華,等.北祁連—河西走廊志留紀(jì)和泥盆紀(jì)古地理及其對(duì)同造山過(guò)程的沉積響應(yīng)[J].古地理學(xué)報(bào),2002,4(4):18.
DU Yuansheng,ZHANG Zhe,ZHOU Daohua,et al.Silurian and Devonian Palaeogeography of Northern QilianHexi Corridor and Its Sedimentary Response to Synorogenesis of North Qilian Orogenic Belt[J].Journal of Palaeogeography,2002,4(4):18.
[17]甘肅省地質(zhì)調(diào)查院.1∶50 000科克巴斯幅和藍(lán)泉幅地質(zhì)說(shuō)明書(shū)[M].北京:地質(zhì)出版社,2000.
Gansu Institute of Geologic Survey.Geological Reports for 1∶50 000 Geologic Map of Kekebasi Sheet and Lanquan Sheet[M].Beijing:Geological Publishing House,2000.
[18]SUN S S,MCDONOUGH W F.Chemical and Isotopic Systematic of Oceanic Basalts:Implications for Mantle Composition and Processess[J].Geological Society,London,Special Publications,1989,42:313345.
[19]王濤.花崗巖混合成因研究及大陸動(dòng)力學(xué)意義[J].巖石學(xué)報(bào),2000,16(2):161168.
WANG Tao.Origin of Hybrid Granitoids and the Implications for Continental Dynamics[J].Acta Petrologica Sinica,2000,16(2):161168.
[20]ALTHER R,HOLL A,HEGNER E,et al.Highpotassium,Calcalkaline Itype Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany)[J].Lithos,2000,50(1/2/3):5173.
[21]PROUTEAU G,SCAILLET B,PICHAVANTZ M,et al.Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust[J].Nature,2001,410:197200.
[22]RAPP R P,SHIMIZU N,NORMAN M D,et al.Reaction Between Slabderived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 38 GPa[J].Chemical Geology,1999,160(4):335356.
[23]PEARCE J A,HARRIS N B W,TINDLE A G.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].Journal of Petrology,1984,25(4):956983.
[24]PEARCE J A.Sources and Settings of Granitic Rocks[J].Episodes,1996,19(4):120125.
[25]韓寶福.后碰撞花崗巖類的多樣性及其構(gòu)造環(huán)境判別的復(fù)雜性[J].地學(xué)前緣,2007,14(3):6472.
HAN Baofu.Diverse Postcollisional Granitoids and Their Tectonic Setting Discrimination[J].Earth Science Frontiers,2007,14(3):6472.
[26]吳才來(lái),楊經(jīng)綏,IRELAND T,等.祁連南緣嗷嘮山花崗巖SHRIMP鋯石年齡及其地質(zhì)意義[J].巖石學(xué)報(bào),2001,17(2):215221.
WU Cailai,YANG Jingsui,IRELAND T,et al.Zircon SHRIMP Ages of Aolaoshan Granite from the South Margin of Qilianshan and Its Geological Significance[J].Acta Petrologica Sinica,2001,17(2):215221.
[27]許志琴,楊經(jīng)綏,吳才來(lái),等.柴達(dá)木北緣超高壓變質(zhì)帶形成與折返的時(shí)限及機(jī)制[J].地質(zhì)學(xué)報(bào),2003,77(2):163176.
XU Zhiqin,YANG Jingsui,WU Cailai,et al.Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrapressure Metamorphic Belt[J].Acta Geologica Sinica,2003,77(2):163176.
[28]牛廣智,黃崗,鄧昌生,等.青海南祁連巴龍貢噶爾組變火山巖LAICPMS鋯石UPb年齡及其地質(zhì)意義[J].地質(zhì)通報(bào),2016,35(9):14411447.
NIU Guangzhi,HUANG Gang,DENG Changsheng,et al.LAICPMS Zircon UPb Ages of Metamorphic Volcanic Rocks in Balonggonggeer Formation of South Qilian Mountain in Qinghai Province and Their Geological Significance[J].Geological Bulletin of China,2016,35(9):14411447.
[29]付建剛,梁新權(quán),王策,等.柴北緣錫鐵山韌性剪切帶的基本特征及其形成時(shí)代[J].大地構(gòu)造與成礦學(xué),2016,40(1):1428.
FU Jiangang,LIANG Xinquan,WANG Ce,et al.Characteristics and Muscovite 40Ar/39Ar Age of Ductile Shear Zone in the Xitieshan Area,North Qaidam[J].Geotectonica et Metallogenia,2016,40(1):1428.
[30]孫嬌鵬,陳世悅,彭淵,等.柴達(dá)木盆地北緣宗務(wù)隆構(gòu)造帶早古生代鋯石SHRIMP年齡的測(cè)定及其地質(zhì)意義[J].地質(zhì)論評(píng),2015,61(4):743751.
SUN Jiaopeng,CHEN Shiyue,PENG Yuan,et al.Determination of Early Cambrian Zircon SHRIMP UPb Datings in Zongwulong Tectonic Belt,Northern Margin of Qaidam Basin,and Its Geological Significance[J].Geological Review,2015,61(4):743751.
[31]吳才來(lái),郜源紅,李兆麗,等.都蘭花崗巖鋯石SHRIMP定年及柴北緣超高壓帶花崗巖年代學(xué)格架[J].中國(guó)科學(xué):地球科學(xué),2014,44(10):21422159.
WU Cailai,GAO Yuanhong,LI Zhaoli,et al.Zircon SHRIMP UPb Dating of Granites from Dulan and the Chronological Framework of the North Qaidam UHP Belt,NW China[J].Science China:Earth Sciences,2014,44(10):21422159.
[32]付建剛,梁新權(quán),王策,等.柴北緣錫鐵山灘澗山群C巖性組的時(shí)代歸屬及其物源特征[J].地質(zhì)學(xué)報(bào),2014,88(6):10811092.
FU Jiangang,LIANG Xinquan,WANG Ce,et al.Timing and Characteristic of Provenance of the C Formation in the Tanjianshan Group,Xitieshan,North Qaidam[J].Acta Geologica Sinica,2014,88(6):10811092.
[33]陳鑫,鄭有業(yè),許榮科,等.柴北緣超高壓變質(zhì)帶折返過(guò)程對(duì)金紅石成礦的制約:來(lái)自魚(yú)卡和鐵石觀西地區(qū)石榴石成分環(huán)帶的證據(jù)[J].地球科學(xué)與環(huán)境學(xué)報(bào),2016,38(2):143159.
CHEN Xin,ZHENG Youye,XU Rongke,et al.Exhumation Processes of UHP Metamorphic Belt in the Northern Qaidam and Their Constraints to Rutile Mineralization:Evidences from Compositional Zoning of Garnets in Yuqia and West Tieshiguan Areas[J].Journal of Earth Sciences and Environment,2016,38(2):143159.
[34]朱小輝,陳丹玲,王超,等.柴達(dá)木盆地北緣新元古代—早古生代大洋的形成、發(fā)展和消亡[J].地質(zhì)學(xué)報(bào),2015,89(2):234251.
ZHU Xiaohui,CHEN Danling,WANG Chao,et al.The Initiation,Development and Termination of the NeoproterozoicEarly Paleozoic Ocean in the Northern Margin of Qaidam Basin[J].Acta Geologica Sinica,2015,89(2):234251.
[35]宋述光,牛耀齡,張立飛,等.大陸造山運(yùn)動(dòng):從大洋俯沖到大陸俯沖、碰撞、折返的時(shí)限——以北祁連山、柴北緣為例[J].巖石學(xué)報(bào),2009,25(9):20672077.
SONG Shuguang,NIU Yaoling,ZHANG Lifei,et al.Time Constraints on Orogenesis from Oceanic Subduction to Continental Subduction,Collision,and Exhumation—An Example from North Qilian and North Qaidam HPUHP Belts[J].Acta Petrologica Sinica,2009,25(9):20672077.
[36]SONG S G,NIU Y L,SU L,et al.Continental Orogenesis from Ocean Subduction,Continent Collision/Subduction,to Orogen Collapse,and Orogen Recycling:The Example of the North Qaidam UHPM Belt,NW China[J].Earthscience Reviews,2014,129:5984.