林 宇,賀思佳,黃 倩
1. 上海交通大學(xué)附屬第一人民醫(yī)院臨床醫(yī)學(xué)院,上海 201620;
2.上海交通大學(xué)附屬第一人民醫(yī)院腫瘤中心,上海201620
腫瘤是一種嚴(yán)重危害人類健康的疾病,近年來(lái)腫瘤的發(fā)病率和腫瘤患者的死亡率也逐漸增高[1]。手術(shù)切除、化學(xué)藥物治療、放射治療、靶向治療、內(nèi)分泌治療和免疫治療是常用的治療手段,然而,治療效果并不理想。其中,腫瘤治療抵抗被認(rèn)為是腫瘤治療失敗的重要原因。腫瘤治療抵抗是指腫瘤細(xì)胞對(duì)治療的敏感性降低,包括對(duì)化療藥物的耐受性增加,對(duì)內(nèi)分泌治療的敏感性降低,對(duì)放療敏感性的降低和對(duì)免疫治療的耐受性增加等[2]。
高遷移率族蛋白B1(high mobility group protein B1,HMGB1)是一種核蛋白,它作為DNA伴侶分子能參與細(xì)胞核內(nèi)的多種生理活動(dòng),包括DNA的復(fù)制、轉(zhuǎn)錄,DNA的修復(fù)和核小體的組裝等[3]。HMGB1還能通過(guò)免疫細(xì)胞主動(dòng)分泌或者經(jīng)死亡細(xì)胞被動(dòng)釋放到細(xì)胞外,參與炎性反應(yīng)、免疫、遷移、侵襲、增殖、分化和組織再生等病理生理活動(dòng)[4]。研究表明,HMGB1與腫瘤治療抵抗有著密切聯(lián)系,它能通過(guò)參與調(diào)節(jié)腫瘤自噬、抗凋亡等病理生理活動(dòng)而引起腫瘤治療抵抗[5-6]。本文就近年來(lái)對(duì)HMGB1與腫瘤治療抵抗相關(guān)機(jī)制的研究進(jìn)展作一綜述。
HMGB1由215個(gè)氨基酸所構(gòu)成,含有兩個(gè)DNA結(jié)合結(jié)構(gòu)域(A盒和B盒)和一個(gè)酸性末端(C末端)[7]。B盒能夠發(fā)揮HMGB1誘導(dǎo)細(xì)胞因子的功能,同時(shí)B盒還是HMGB1促進(jìn)炎性反應(yīng)作用的主要參與者,而A盒起著抑制和拮抗B盒促炎活性的作用[8]。C末端富含酸性氨基酸,包括天冬氨酸和谷氨酸,它能在HMGB1從細(xì)胞核轉(zhuǎn)移到細(xì)胞質(zhì)的過(guò)程中起到保護(hù)A盒和B盒的作用[4]。
HMGB1是一種典型的損傷相關(guān)分子模式(damage associated molecular pattern,DAMP),在炎性反應(yīng)中發(fā)揮著重要作用[9]。研究表明,HMGB1能通過(guò)與晚期糖基化終末產(chǎn)物受體(the receptor of advanced glycation end products,RAGE)和Toll樣受體4(Toll-like receptor 4,TLR4)等受體結(jié)合而促進(jìn)免疫細(xì)胞釋放白細(xì)胞介素-6(interleukin-6,IL-6)和IL-10等細(xì)胞因子,進(jìn)而參與炎性反應(yīng)[4]。此外,近年來(lái),HMGB1還被證實(shí)與乳腺癌、肺癌、結(jié)腸癌等多種腫瘤的發(fā)生、發(fā)展有著密切聯(lián)系,在這些腫瘤中,HMGB1的表達(dá)顯著增加[10]。HMGB1的表達(dá)與腫瘤的無(wú)限增殖、血管生成、抵抗凋亡、增強(qiáng)炎性反應(yīng)等特性相關(guān)[11]。HMGB1的含量還與腫瘤局灶浸潤(rùn)的深度、淋巴結(jié)轉(zhuǎn)移、腫瘤的大小和預(yù)后有關(guān)[11]。
腫瘤治療抵抗是導(dǎo)致腫瘤治療失敗的重要原因,而HMGB1在其中起著重要作用。研究發(fā)現(xiàn),與對(duì)治療敏感的腫瘤細(xì)胞相比,產(chǎn)生治療抵抗的腫瘤細(xì)胞HMGB1表達(dá)水平往往較高,例如胰腺癌、直腸癌和泌尿上皮癌[12-14]。HMGB1可能通過(guò)調(diào)節(jié)腫瘤細(xì)胞DNA損傷修復(fù)、自噬、凋亡、增殖、腫瘤血管生成、腫瘤免疫逃逸和炎性腫瘤微環(huán)境形成等病理生理過(guò)程,參與腫瘤細(xì)胞治療抵抗。
細(xì)胞的DNA修復(fù)功能對(duì)于生物的生存和遺傳穩(wěn)定性的維持具有重要意義。Lai等[15]發(fā)現(xiàn)過(guò)表達(dá)或者敲除對(duì)順鉑耐藥的食管癌細(xì)胞中的14-3-3σ基因,會(huì)引起HMGB1的表達(dá)相應(yīng)的增加或減少,表明14-3-3σ蛋白能通過(guò)與HMGB1發(fā)生相互作用而促進(jìn)DNA損傷修復(fù),進(jìn)而引起食管鱗癌細(xì)胞對(duì)順鉑的耐藥。Ke等[16]使用X射線對(duì)敲除HMGB1基因的乳腺癌細(xì)胞進(jìn)行照射,發(fā)現(xiàn)細(xì)胞中端粒酶的激活受到抑制,端粒的長(zhǎng)度縮短,DNA損傷增加,腫瘤細(xì)胞對(duì)放療的敏感性也增加,表明HMGB1可能通過(guò)調(diào)節(jié)端粒酶的活性而參與DNA損傷修復(fù),進(jìn)而導(dǎo)致腫瘤細(xì)胞對(duì)放療敏感性降低。這些研究表明,HMGB1能夠通過(guò)參與DNA損傷修復(fù)而引起腫瘤治療抵抗。
自噬是一種細(xì)胞自身分解代謝的生物學(xué)行為,細(xì)胞發(fā)生自噬能促進(jìn)細(xì)胞內(nèi)部營(yíng)養(yǎng)物質(zhì)的循環(huán)利用,并能幫助細(xì)胞維持內(nèi)環(huán)境的穩(wěn)定[17]。
Huang等[18]的研究發(fā)現(xiàn)將MG-63骨肉瘤細(xì)胞中的Ⅲ型磷脂酰肌醇-3激酶(class Ⅲphosphoinositide 3-kinase,PI3KC3)、Beclin-1和Atg7基因敲除后,能抑制LC3-Ⅱ的產(chǎn)生和SQSTM1/sequestosome 1 (p62)的降解,并抑制腫瘤治療抵抗的發(fā)生。進(jìn)一步研究發(fā)現(xiàn),HMGB1是ULK1–mAtg13–FIP200復(fù)合物的下游信號(hào)分子,能通過(guò)促進(jìn)Beclin-1-PI3KC3復(fù)合物的形成而促進(jìn)自噬[18]。Huang等[19]進(jìn)一步研究發(fā)現(xiàn)耐藥的骨肉瘤細(xì)胞中Kruppel樣因子4 (Kruppellike factor 4,KLF4)的表達(dá)增加,而KLF4則能夠與HMGB1基因的啟動(dòng)子結(jié)合,促進(jìn)HMGB1基因的轉(zhuǎn)錄,繼而使骨肉瘤細(xì)胞對(duì)治療的敏感性降低,表明HMGB1基因能通過(guò)促進(jìn)腫瘤細(xì)胞自噬而導(dǎo)致腫瘤治療抵抗。
凋亡是細(xì)胞的一種程序性死亡方式,凋亡對(duì)于消除損傷細(xì)胞,參與機(jī)體的免疫防御和維持內(nèi)環(huán)境的穩(wěn)態(tài)都具有重要意義[20]。分泌型叢生蛋白(secretory/cytoplasmic clusterin,sCLU)是一種強(qiáng)有力的抗凋亡蛋白,它能抑制Bax蛋白向線粒體的轉(zhuǎn)移所引起的細(xì)胞色素c的釋放,進(jìn)而抑制caspase-3所引起的細(xì)胞凋亡。Zhou等[21]的研究發(fā)現(xiàn)在對(duì)多西他賽耐藥的前列腺癌細(xì)胞中,sCLU的表達(dá)顯著增加。進(jìn)一步的研究發(fā)現(xiàn),HMGB1能夠通過(guò)激活NF-κB信號(hào)通路而促進(jìn)sCLU的合成,并能通過(guò)HMGB1-TLR4/RAGE-sCLU信號(hào)通路的激活促使前列腺癌細(xì)胞抗凋亡,進(jìn)而對(duì)多西他賽產(chǎn)生治療抵抗。該研究結(jié)果表明HMGB1能通過(guò)促進(jìn)腫瘤細(xì)胞抗凋亡而引起腫瘤治療抵抗[21]。
腫瘤細(xì)胞的無(wú)限增殖是腫瘤的重要特性之一,能促進(jìn)腫瘤的發(fā)生、發(fā)展。Guo等[22]的研究發(fā)現(xiàn)耐藥的骨肉瘤細(xì)胞HMGB1的表達(dá)增加,通過(guò)過(guò)表達(dá)miR-22抑制HMGB1的表達(dá)后,骨肉瘤細(xì)胞的增殖受到抑制。Chen等[23]的研究發(fā)現(xiàn),敲除HMGB1基因的卵巢癌細(xì)胞的增殖受到抑制,此外,細(xì)胞周期調(diào)節(jié)蛋白——增殖細(xì)胞核抗原和cyclin D1的表達(dá)也下降。Pellegrini等[24]使用丙酮酸乙酯(ethyl pyruvate,EP)處理惡性間皮瘤細(xì)胞后,發(fā)現(xiàn)其HMGB1的表達(dá)下降,RAGE的表達(dá)和NF-κB信號(hào)通路的激活也被削弱。用EP處理異體移植惡性間皮瘤的小鼠模型后,測(cè)得小鼠血清中HMGB1的含量增加,同時(shí)腫瘤的生長(zhǎng)也受到了抑制。這些研究表明,HMGB1能通過(guò)促進(jìn)腫瘤細(xì)胞增殖而導(dǎo)致腫瘤治療抵抗。
腫瘤血管能為腫瘤細(xì)胞提供氧、營(yíng)養(yǎng)物質(zhì)和生長(zhǎng)因子,對(duì)促進(jìn)腫瘤的生長(zhǎng)、侵襲和轉(zhuǎn)移起著重要作用。Pistoia等[25]的研究發(fā)現(xiàn),HMGB1的表達(dá)增加能促進(jìn)神經(jīng)母細(xì)胞瘤細(xì)胞分化轉(zhuǎn)化為腫瘤源性血管內(nèi)皮細(xì)胞,進(jìn)而促進(jìn)腫瘤血管生成而導(dǎo)致神經(jīng)母細(xì)胞瘤對(duì)抗CD31單克隆抗體的治療敏感性降低。van Beijnum等[26]的研究發(fā)現(xiàn)使用血管源性生長(zhǎng)因子誘導(dǎo)內(nèi)皮細(xì)胞激活后,內(nèi)皮細(xì)胞中HMGB1的表達(dá)增加。再使用siRNA敲降HMGB1基因后,發(fā)現(xiàn)HMGB1促進(jìn)血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)表達(dá)的作用會(huì)受到抑制。進(jìn)一步的研究發(fā)現(xiàn),HMGB1能通過(guò)與RAGE或者TLR4結(jié)合而激活ERK 1/2、p38和NF-κB信號(hào)通路,從而促進(jìn)VEGF和血小板源生長(zhǎng)因子的表達(dá),以促進(jìn)腫瘤血管的生成。這些研究表明,HMGB1能通過(guò)促進(jìn)腫瘤血管生成而誘發(fā)腫瘤治療抵抗。
腫瘤細(xì)胞能通過(guò)干擾抗原提呈過(guò)程及減少樹突狀細(xì)胞的數(shù)量等多種機(jī)制來(lái)逃避機(jī)體免疫系統(tǒng)的監(jiān)控、識(shí)別與攻擊而繼續(xù)分裂生長(zhǎng),這被稱為腫瘤免疫逃逸[27]。Parker等[28]在使用HMGB1抑制劑處理的荷瘤小鼠后,發(fā)現(xiàn)其髓系抑制性細(xì)胞(myeloid-derived suppressor cell,MDSC)的數(shù)量會(huì)減少。該結(jié)果表明HMGB1可能與MDSC所參與的促進(jìn)腫瘤細(xì)胞免疫逃逸過(guò)程有關(guān),其可能機(jī)制為:HMGB1促進(jìn)骨髓祖細(xì)胞分化為MDSC;促進(jìn)MDSC釋放IL-10;促進(jìn)MDSC抑制初始T細(xì)胞產(chǎn)生L-選擇素的作用。Liu等[29]的研究發(fā)現(xiàn)調(diào)節(jié)性T細(xì)胞(Foxp3+CD4+CD25+regulatory T cells,Treg)釋放的IL-10對(duì)于抑制CD8+T細(xì)胞抗腫瘤免疫有著重要作用。進(jìn)一步研究發(fā)現(xiàn),使用抗HMGB1中和抗體處理小鼠乳腺癌細(xì)胞所構(gòu)建的荷瘤小鼠來(lái)源的Treg細(xì)胞后,其IL-10的表達(dá)下降。再用siRNA敲降小鼠乳腺癌細(xì)胞中的HMGB1基因,接著將這些細(xì)胞注入BALB/c-WT小鼠體內(nèi),然后用抗CD8的抗體抑制CD8的表達(dá),發(fā)現(xiàn)小鼠的生存率增加,表明腫瘤細(xì)胞所釋放的HMGB1能通過(guò)促進(jìn)Treg細(xì)胞表達(dá)IL-10,而抑制獲得性CD8+T細(xì)胞所介導(dǎo)的抗腫瘤免疫。Kovar等[30]的研究發(fā)現(xiàn)CD8+T細(xì)胞的抗腫瘤免疫被抑制后,白血病對(duì)B1單克隆抗體靶向綴合物的敏感性會(huì)降低。這些研究表明,HMGB1能通過(guò)促進(jìn)腫瘤免疫逃逸而造成腫瘤治療抵抗。
在腫瘤炎性微環(huán)境中存在著大量的免疫細(xì)胞、生長(zhǎng)因子和炎性反應(yīng)因子,能促進(jìn)腫瘤的發(fā)生、發(fā)展[31]。對(duì)吉西他濱耐藥的胰腺癌細(xì)胞中HMGB1的表達(dá)增加[32]。腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophage,TAM)是胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma,PDAC)炎性微環(huán)境中分布最為廣泛的免疫細(xì)胞,它能促進(jìn)PDAC對(duì)吉西他濱的耐藥[33]。Xian等[33]的研究發(fā)現(xiàn),辛伐他汀能抑制TAM釋放TGF-β1,進(jìn)而導(dǎo)致PDAC細(xì)胞表達(dá)Gfi-1增加,Gfi-1能抑制HMGB1的表達(dá),進(jìn)而增加耐藥的PDAC對(duì)吉西他濱的敏感性。Stat3和IL-6與炎性反應(yīng)和肝細(xì)胞癌的發(fā)生有著密切聯(lián)系[34]。Chen等[35]的研究發(fā)現(xiàn)HMGB1的表達(dá)增加能通過(guò)激活I(lǐng)L-6/Stat3炎性反應(yīng)信號(hào)通路而促進(jìn)miR-21的表達(dá),miR-21表達(dá)增加則會(huì)通過(guò)抑制基質(zhì)金屬蛋白酶的抑制劑——伴有Kazal基序富含半胱氨酸的逆轉(zhuǎn)誘導(dǎo)蛋白(reversion-inducing cysteine-rich protein with Kazal motifs precursor,RECK)和組織金屬蛋白酶抑制劑3(tissue inhibitors of metalloproteinases 3,TIMP3)的表達(dá)而促進(jìn)腫瘤的發(fā)生,這說(shuō)明HMGB1能通過(guò)促進(jìn)腫瘤炎性反應(yīng)微環(huán)境的形成而導(dǎo)致腫瘤治療抵抗。
近年來(lái),腫瘤治療手段越來(lái)越多樣化,但其治療的有效性卻面臨著腫瘤治療抵抗所帶來(lái)的嚴(yán)峻挑戰(zhàn)。HMGB1是一種參與腫瘤免疫逃逸、腫瘤微環(huán)境形成、促進(jìn)腫瘤侵襲和轉(zhuǎn)移、促進(jìn)腫瘤血管生成的重要蛋白,與腫瘤的發(fā)生、發(fā)展有著密切的聯(lián)系。HMGB1與腫瘤治療抵抗有著密切的聯(lián)系,HMGB1主要是通過(guò)參與腫瘤細(xì)胞自噬、DNA損傷修復(fù)、凋亡、增殖、腫瘤血管生成、免疫逃逸和炎性反應(yīng)而促進(jìn)腫瘤治療抵抗。然而,現(xiàn)有的研究并未對(duì)HMGB1所介導(dǎo)的腫瘤治療抵抗具體信號(hào)轉(zhuǎn)導(dǎo)機(jī)制做出明確的闡述。因此,對(duì)這些問(wèn)題的進(jìn)一步探討與解決,將為克服腫瘤治療抵抗和增強(qiáng)腫瘤治療效果提供新的治療方案。
[1] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2] SKINNER H D, GIRI U, YANG L P, et al. Integrative analysis identifies a novel AXL-PI3 kinase-PD-L1 signaling axis associated with radiation resistance in head and neck cancer[J]. Clin Cancer Res, 2017, 23(11): 2713-2722.
[3] VENEREAU E, DE LEO F, MEZZAPELLE R, et al. HMGB1 as biomarker and drug target[J]. Pharmacol Res, 2016,111: 534-544.
[4] KANG R, CHEN R, ZHANG Q, et al. HMGB1 in health and disease[J]. Mol Aspects Med, 2014, 40: 1-116.
[5] PAN B, CHEN D, HUANG J, et al. HMGB1-mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma[J]. Mol Cancer, 2014, 13: 165.
[6] YIN Y, LI W, DENG M, et al. Extracellular high mobility group box chromosomal protein 1 promotes drug resistance by increasing the expression of P-glycoprotein expression in gastric adenocarcinoma cells[J]. Mol Med Rep, 2014, 9(4):1439-1443.
[7] YANG H, WANG H, CHAVAN S S, et al. High mobility group box protein 1 (HMGB1): the prototypical endogenous danger molecule[J]. Mol Med, 2015, 21(Suppl 1): S6-S12.
[8] TIZIANA B, FABIO T, PAOLA S, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion[J]. EMBO J, 2003, 22(20): 5551-5560.
[9] TSUNG A, TOHME S, BILLIAR T R. High-mobility group box-1 in sterile inflammation[J]. J Intern Med, 2014,276(5): 425-443.
[10] KANG R, ZHANG Q, ZEH H J, et al. HMGB1 in cancer: good,bad, or both?[J]. Clin Cancer Res, 2013, 19(15): 4046-4057.
[11] MARTINOTTI S, PATRONE M, RANZATO E. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer[J]. Immunotargets Ther, 2015, 4: 101-109.
[12] CEBRIAN M J, BAUDEN M, ANDERSSON R, et al.Paradoxical role of HMGB1 in pancreatic cancer: tumor suppressor or tumor promoter?[J]. Anticancer Res, 2016,36(9): 4381-4389.
[13] HONGO K, KAZAMA S, TSUNO N H, et al.Immunohistochemical detection of high-mobility group box 1 correlates with resistance of preoperative chemoradiotherapy for lower rectal cancer: a retrospective study[J]. World J Surg Oncol, 2015, 13: 7.
[14] SHRIVASTAVA S, MANSURE J J, ALMAJED W, et al. The role of HMGB1 in radioresistance of bladder cancer[J]. Mol Cancer Ther, 2016, 15(3): 471-479.
[15] LAI K K, CHAN K T, CHOI M Y, et al. 14-3-3sigma confers cisplatin resistance in esophageal squamous cell carcinoma cells via regulating DNA repair molecules[J]. Tumour Biol,2016, 37(2): 2127-2136.
[16] KE S, ZHOU F, YANG H, et al. Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells[J]. Int J Oncol, 2015, 46(3): 1051-1058.
[17] TOWERS C G, THORBURN A. Therapeutic targeting of autophagy[J]. EBioMedicine, 2016, 14: 15-23.
[18] HUANG J, NI J, LIU K, et al. HMGB1 promotes drug resistance in osteosarcoma[J]. Cancer Res, 2012, 72(1):230-238.
[19] HUANG J, LIU K, SONG D, et al. Kruppel-like factor 4 promotes high-mobility group box 1-induced chemotherapy resistance in osteosarcoma cells[J]. Cancer Sci, 2016,107(3): 242-249.
[20] LIU G, PEI F, YANG F, et al. Role of autophagy and apoptosis in non-small cell lung cancer[J]. Int J Mol Sci, 2017,18(2): 367.
[21] ZHOU J, CHEN X, GILVARY D L, et al. HMGB1 induction of clusterin creates a chemoresistant niche in human prostate tumor cells[J]. Sci Rep, 2015, 5: 15085.
[22] GUO S, BAI R, LIU W, et al. MiR-22 inhibits osteosarcoma cell proliferation and migration by targeting HMGB1 and inhibiting HMGB1-mediated autophagy[J]. Tumour Biol,2014, 35(7): 7025-7034.
[23] CHEN R C, YI P P, ZHOU R R, et al. The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines[J]. Mol Cell Biochem, 2014, 390(1-2):271-280.
[24] PELLEGRINI L, XUE J, LARSON D, et al. HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma[J]. Oncotarget, 2017, 8(14): 22649-22661.
[25] PISTOIA V, PEZZOLO A. Involvement of HMGB1 in resistance to tumor vessel-targeted, monoclonal antibodybased immunotherapy[J]. J Immunol Res, 2016, 2016:3142365.
[26] VAN BEIJNUM J R, NOWAK-SLIWINSKA P, VAN DEN BOEZEM E, et al. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1[J].Oncogene, 2013, 32(3): 363-374.
[27] KUSUME A, SASAHIRA T, LUO Y, et al. Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancer[J]. Pathobiology, 2009,76(4): 155-162.
[28] PARKER K H, SINHA P, HORN L A, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells[J].Cancer Res, 2014, 74(20): 5723-33.
[29] LIU Z, FALO L D,YOU Z. Knockdown of HMGB1 in tumor cells attenuates their ability to induce regulatory T cells and uncovers naturally acquired CD8 T cell-dependent antitumor immunity[J]. J Immunol, 2011, 187(1): 118-125.
[30] KOVAR M, TOMALA J, CHMELOVA H, et al. Overcoming immunoescape mechanisms of BCL1 leukemia and induction of CD8+ T-cell-mediated BCL1-specific resistance in mice cured by targeted polymer-bound doxorubicin[J]. Cancer Res, 2008, 68(23): 9875-9883.
[31] CARVALHO M I, SILVA-CARVALHO R, PIRES I, et al. A comparative approach of tumor-associated inflammation in mammary cancer between humans and dogs[J]. Biomed Res Int, 2016, 2016: 4917387.
[32] KURAMITSU Y, WANG Y, KITAGAWA T, et al. Highmobility group box 1 and mitogen-activated protein kinase activated protein kinase-2 are up-regulated in gemcitabineresistant pancreatic cancer cells[J]. Anticancer Res, 2015,35(7): 3861-3865.
[33] XIAN G, ZHAO J, QIN C, et al. Simvastatin attenuates macrophage-mediated gemcitabine resistance of pancreatic ductal adenocarcinoma by regulating the TGF-beta1/Gfi-1 axis[J]. Cancer Lett, 2017, 385: 65-74.
[34] HE G, KARIN M. NF-kappaB and STAT3-key players in liver inflammation and cancer[J]. Cell Res, 2011, 21(1):159-168.
[35] CHEN M, LIU Y, VARLEY P, et al. High-mobility group box 1 promotes hepatocellular carcinoma progression through miR-21-mediated matrix metalloproteinase activity[J].Cancer Res, 2015, 75(8): 1645-1656.